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For the (NiF6)
4~ complex in KNiF3 we have constructed molecular orbitals (MO) which are linear com

binations of the Ni2+ and F~ Hartree-Fock atomic orbitals. These LCAO-MO, introduced by Van Vleck, 
are of the form ^ = iV~1/2(v?—X%) in which <p is the Ni2+ 3d function and x a linear combination of the suitable 
F~ functions. The orbitals were assumed to be solutions of Schrodinger's equation h& = E&, where the 
Hamiltonian was h= — A/2+VM+VL. The terms VM and VL describe the Coulombic and exchange inter
actions with the metal ion and ligands, respectively. Matrix elements of the form (^r\h\^f) were evaluated 
numerically on an IBM 7090. Assuming X and the overlap between <p and % to be small, the energy was 
minimized and the parameters X were determined. For the 2p<r bonding and the 2s bonding the calculated 
values were iVr1/2Xff=0.383 and Ne~

ll2\» = 0.109 which agreed very well with the values iV*r1/%<r=0.337 and 
iV<r1/2\, = 0.116 determined in the nuclear magnetic resonance experiment. The molecular orbitals were 
used to calculate the cubic crystal field splitting 10Dq= $re\h\tye)— (Vt\h\SPt) which is the promotion 
energy of an electron from a t2g orbital to an e0 orbital. The calculated value of 10Zty = 6350 cm"1 agreed 
quite well with the observed value of 10Dq=7250 cm - 1 considering the accuracy of the calculation. Further
more, the reduction of the spin-orbit parameter and the Racah parameter B from their free-ion values are 
satisfactorily explained by the molecular orbital approach. The physical interpretation of these results is 
emphasized. In particular, the only contributions to lODq with the correct sign come from the off-diagonal 
matrix elements associated with the covalency; the amount of ir electron admixture is shown to be large; one 
novel physical mechanism partly responsible for the large IT bonding is the crystal field splitting of the F " 
pa and pir levels by the Ni2+ ions; expanding the Ni2+ radial function is shown to be unnecessary for some 
purposes and incorrect for the remainder. Details of the calculation are presented and implications of the 
LCAO-MO model discussed. 

I. INTRODUCTION 

IN most applications of crystal field theory the cubic 
field splitting lODq has been a parameter adjusted to 

fit the experimental data. However, several attempts 
have been made to calculate lODq from first principles. 

The first attempts to calculate lODq by Van Vleck1 

and Polder2 used a point charge or point-dipole approxi
mation for the ligands and calculated the splitting of the 
^-electron levels in the field of the ligands. The case 
chosen by Van Vleck and by many of the subsequent 
authors was Cr3+ surrounded by six water molecules 
with their negative oxygens pointing towards the Cr3+. 
These calculations gave the proper sign for lODq since 
it is obvious that a negative charge at the corners of the 
octahedron raises the energy of the eg electrons, which 
point towards the negative charges, above the energy 
of the hg electrons which point between them. Further
more, by using Slater orbitals for the 3^-electron func
tions the values of lODq were quite close to the experi
mental measurements. This harmony lasted until the 
calculations were extended by Kleiner.3 Instead of 
representing the ligands by a negative-point charge, 
Kleiner included the derealization of the oxygen ligand 

1 J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939). 
2 D. Polder, Physica 9, 709 (1942). 
3 W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952). 

electrons by using Slater orbitals for the oxygen elec
trons. This too was a semiclassical calculation in which 
the d electron's energy in the field of the ligands was 
calculated. Unfortunately, the value of lODq calculated 
in this way had the wrong sign, because the positive 
nuclear charge attracted the eg electrons more than the 
ligand electrons repelled them. A major advance in 
the problem was made by Tanabe and Sugano4 who did 
a quantum-mechanical calculation based on a purely 
ionic model. They used the same physical model as 
Kleiner, i.e., delocalized electrons on the ligand, but 
they orthogonalized the d electrons to the ligands which 
meant that their wave functions were composed of 
^-electron functions plus some admixture of ligand 2s 
and 2p functions. Furthermore, they included quantum-
mechanical exchange integrals between the d electrons 
and the ligand electrons in addition to the Coulomb 
integrals considered by Kleiner. They did obtain a value 
of lODq of the proper sign but the result involved some 
ambiguity because reliable 3d wave function were un
available at that time. Phillips5 acting on a suggestion of 
Herring's claimed that the point-charge approximation 
was correct because all the additional terms calculated 
by Tanabe and Sugano would cancel. Freeman and 

4 Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 11, 864 (1956). 
5 J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959). 
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Watson6 repeated Kleiner's calculation using Watson's7 

Hartree-Fock wave functions and concluded that the 
point-charge model only agrees with experiment when 
Slater functions are used. Thus, Phillips' claim that the 
point-charge model can explain the observed crystal 
field is only correct if one used such diffuse-starting 
wave functions as Slater's. Freeman and Watson showed 
that by calculating Kleiner's correction with Hartree-
Fock functions the result was no longer a negative value 
of lODq but rather a very small value which could be 
slightly greater than zero with reasonable assumptions. 

All these treatments, both semiclassical and quantum 
mechanical, are confined to the ionic model. However, as 
shown by the nuclear magnetic resonance (NMR) ex
periments presented in the previous paper,8 it now is 
necessary to go a step further away from the ionic 
model. In this paper, we present the details of a mo
lecular orbital (MO) calculation from first principles of 
both the cubic crystalline field-splitting lODq and the 
linear combination of atomic orbital (LCAO) wave 
functions in KNiF3 . The values calculated agree with 
the experimental results presented in the previous two 
papers.8,9 As a result of this calculation our understand
ing of the physical origins of the crystalline field and of 
the covalency is quite different from the traditionla 
picture. 

From the calculation we have come to the following 
conclusions: 

1. The semiclassical view of the crystalline field 
splitting, which considers the ligands as perturbations 
upon the metal ion, is merely one contribution which in 
KNiF3 is small and has the wrong sign. 

2. The major contribution to lODq arises from the 
covalency. 

3. The 7r bonding is described by large T admixtures 
into the molecular orbitals—admixtures which are al
most as large as the cr-bonding terms. 

4. The 7r bonding is important wherever the wave 
functions themselves are important, i.e., in hyperfine 
interactions, in optical intensities, and in magnetic-
exchange interactions, but it is not as important as the 
<r bonding when the bond energy is involved, i.e., in 
bond distances, bond energies, etc. 

II. MOLECULAR ORBITAL FORMALISM 
IN IONIC CRYSTALS 

In molecular orbital theory, the MO wave functions, 
ty, and orbital energies, E, are obtained by solving the 
Hartree-Fock equation 

h&=Eft, (2.1) 

where h is the Hartree-Fock Hamiltonian for one 

6 A. J. Freeman and R. E. Watson, Phys. Rev. 120,1254 (1960). 
7 R. E. Watson, Phys. Rev. 118, 1036 (1960). 
8 R . G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963), 

referred to as part I. 
9 K. Knox, R. G. Shulman, and S. Sugano, preceding paper 

[Phys. Rev. 130, 512 (1963)], referred to as part II . 

electron. I t should be noted that, in general, the Hamil
tonian involves coefficients of molecular orbitals, 7, 
appearing below. The usual way of solving this Hartree-
Fock equation is to fix y in the Hamiltonian and then 
vary y in the wave functions so as to minimize the 
energy; finally, after iteration, y in the Hamiltonian 
should be equal to y in the wave functions. As a starting 
point one assumes that the antibonding and bonding 
wave functions, respectively, 

*«=JV-i /2(^_ X x ) , (2.2) 
and 

V^N'-wb+yv), (2.3) 

are the exact eigenfunctions of (2.1). In (2.2) and (2.3), 
<p is a normalized wave function localized at the metal 
ion, x is a normalized MO wave function for the sur
rounding atom system, X and y are numerical coeffi
cients, and A^s are normalization constants. This is 
equivalent to assuming that the antibonding orbital 
energy is already maximized by X in (2.2) and the bond
ing orbital energy is already minimized by y in (2.3). 
Inserting (2.2) into (2.1) and integrating after the 
multiplication by cp or % from the left, we obtain 

1 
Ea= [ M * | <P)-H<p\h\xn (2.4) 

1—Xo 

i 
= - — L ( < p \ h \ < p ) - \ > ( x \ k \ x n (2.5) 

1—X2 

where S is the overlap integral between <p and x- Here, 
without any loss of generality, we assume <p and x to be 
real. Similarly, inserting (2.3) into (2.1), we obtain 

£ * = — — [ ( X I % ) + Y M % ) ] , (2.6) 
1+yS 

l 
= [ (x |%) -Y 2 M^M] . (2.7) 

1 —72 

In our problem, the ^ / s have just the forms given in 
(2.2) and (2.3), but the ^Vs have more complicated 
forms as shown in (2.1) and (2.5) of part I. Even for the 
latter, a simple extension of (2.4) and (2.5) is possible 
if X, S, and X are replaced by Xe, Se, and Xe, respectively, 
which are defined as follows; 

^ e — /XsXs-f~M(r^(r, 

Se=lJ,SSs+H<rSa, ( 2 . 8 ) 

X<>= XS /JUS= Xa/fXaj 
where 

Ats
2+M*2=l. 

Therefore, we can use the expressions (2.4) and (2.5) for 
both the eg and l2g antibonding molecular orbitals in our 
problem. 

The cubic crystalline field-splitting parameter, 
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A^lODq, is defined as 

A=Ee
a-Et

a. (2.9) 

Assuming X -and 5 to be small quantities of the order of 
e (e<<Cl) and neglecting quantities smaller than e2, we 
arrive at the expression, 

A=Z(<Pe\h\ <pe)~ (<pt\h\ ^ ) ] 
-tK(<Pe\h\Xe)-\t(<pt\h\Xt)~] 

+ t(\eSe-\tSt)(<Pe\h\<p€)l, (2.10) 

where A*=A* and Xt= XT. Here we have used the impor
tant fact, shown below, that the difference [(<pe|&| <pe) 
— (<Pt\h\(pt)'] is of the same order as \(<p\h\x), which 
has the order of e2 when the order of (% | h \ %) is unity. 
By using relations (2.6) of part I, (2.10) can be re
written as follows : 

A=[(tf>«| A| (Pe)— (<Pt\h\ <pt)~\ 
+ [(AsSs+A(rSa—Ar(S\r)(<pe|/z( <£>e)] 

-LSa(^\h\x8)+S9(<p9\h\x0)^ST(ipt\h\Xr)2 
-LyM(<pe\h\xa)+yff(tp9\h\x9) 

-yMh\xr)]. (2.11) 

The first line of (2.11) involves the point-charge term, 
Kleiner's correction, and the exchange interaction be
tween metal and ligand electrons. The second term 
comes from the renormalization. The third line comes 
from the nonorthogonality between metal and ligand 
orbitals, and the fourth and fifth lines come from the 
covalency which is measured by y as mentioned in Sec. 2 
of part I. Phillips5 argued that the terms in the third 
line would cancel Kleiner's correction and the exchange 
terms in the first line. I t is numerically shown later 
that this argument is approximately correct, although 
the main contribution to A comes from the fourth and 
fifth lines, the covalency term, not from the point-
charge term which is much smaller than the covalency 
contribution. 

For the hg orbitals, A^ is determined by Eq. (2.4) and 
(2.5), with the result that 

Xl(<Pt\h\<pt)-(XT\h\XT)J-\ (2.12) 

Similarly, by equating (2.6) and (2.7), we have 

yT=L-(<Pt\h\Xv)-Sr(Xr\h\Xr)'] 
Xl(<Pt\h\<pt)-(x„\h\x„)-]-\ 

= KSX, (2.13) 

as required £(2.6) of part I ] by the orthogonality be
tween the bonding and antibonding orbitals. In deriving 
(2.12) and (2.13), we have neglected small terms of 
order en(n>2). 

For the eg orbitals, we cannot determine As and \ff 

from (2.4) and (2.5). In this case, we determine ys, yffi 

and ys<r from the expressions for Ees
h and Ee<T

h similar to 
(2.6) and (2.7). Ees

h and Ee<T
h are the orbital energies of 

the tyes
b and ^ea

b bonding orbitals in (2.5) of part I, 

respectively. Neglecting again small terms of higher 
order, we obtain 

7 . = C - ( ^ . | * | X . ) + 5 . ( X . | i i | X , ) ] 
X[_{<Pe\h\<pe)-(Xs\h\Xs)-y\ (2.14) 

y*=l-(<P.\h\x0)+s9(x9\h\x.y] 
XL(<Pe\h\<pe)-(Xa\h\Xff)J-K (2.15) 

and 

ys*=(xs\h\xff)xl(x8\h\xs)--(x(r\h\x<T)lr1. (2.16) 

By using relations (2.6) of part I, As and Â  are now 
obtained from (2.14) and (2.15), respectively. 

III. HAMILTONIAN 

The Hartree-Fock Hamiltonian for a single electron 
in our problem is 

W=h+VCTy8, (3.1) 

in which h is the Hamiltonian of a specific [NiFe]4"" 
molecule and Fcrys represents the effects arising because 
the molecule is embedded in a crystal. Assuming that 
the electron of interest is localized in the molecule for 
which h is given, we are interested in Fcrys in the region 
of the molecule. Neglecting the periodicity of crystals is 
one of the fundamental assumptions employed in 
Bethe's crystalline field theory.10 Experimentally it is 
well known that a cubic crystalline field parameter is 
insensitive to the surroundings beyond the nearest 
neighbor ions or ligands: For example, the cubic 
crystalline field parameters in the Ni(NH3)6

2 + and 
Ni(m)6

2 + systems are almost the same, 10 300 and 
10 800 cm -1, respectively.11 Theoretically it is easily 
shown that the cubic-field potential around the central 
metal ion arising from distant ions beyond the nearest 
neighbors is very small compared with that arising from 
the nearest neighbor ions: The ratio of the former part 
of the crystal field to the latter is only 0.023 in the NaCl-
type crystal. Therefore, the potential inside the hole, 
which is originally occupied by the [NiF6]

4~~ molecule, 
is fairly flat around the center. Folds of the potential 
of cubic symmetry inside the hole deepen as one ap
proaches the edge of the hole, but we can show that at 
the points where the nearest neighbor fluorines are 
located, the depth of the potential fold is still shallow.12 

From these experimental and theoretical considerations, 
we now assume that FCrys is a constant in the region of 
the [NiF6]4~ molecule. In other words, we adopt the 
physical model that the molecule is placed in a flat 

10 H. Bethe, Ann. Physik 3, 133 (1929). 
11Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954). 
12 The potential at the center of the hole is obtained by sub

tracting the point-charge potential due to the nearest neighbor 
fluorines from minus the Madelung potential at the nickel site. 
This gives the depth of the potential well, —0.7666 in atomic 
units, at the center. The potential at the points originally occupied 
by the nearest-neighbor fluorines is roughly estimated by sub
tracting the point-charge potential due to the Ni2+Fs~ originally 
accomodated in the hole from the Madelung potential at the 
fluorine site. This gives the depth of the potential well, —0.7763, 
at the points of interest. 
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bottom potential well. This simplification enables us to 
neglect FCrys as this merely shifts the origin of the 
energy scale. 

The Hamiltonian h is 

h—ho+h', (3.2) 

where ho is the Hamiltonian of a purely ionic Ni2+F6~ 
complex in which the overlaps are ignored (5=0) and 
h! is a correction due to the deviation from this semi-
classical ionic model. Following Tanabe and Sugano,4 

the Hamiltonian ho is given by 

ko=-$A+VM+VL, (3.3) 

in which — A/2 is the kinetic energy operator, VM is the 
Coulomb and exchange interaction operator of all the 
Ni2+ electrons and the Ni2+ nucleus of the form: 

VM= Veoie+ Vd
c™l+ 7 d « (3.4) 

where FCOre comes from the nucleus and the core 
electrons up to and including the 3p shell. We have used 

Fc o r e= - (10+31.0 <r*-wr)/fj (3.5) 

which is obtained13 by an analytical fit to Watson's 
Hartree-Fock core potential of Ni2+. Vd

Conl and Vd
ex 

come from seven d electrons with the configuration 
£±°ri±

0{+0u+0v+
0, where £°, t]°, f°, u°, and v° are the 

abbreviations for the atomic orbitals <p$, y^ <p{, <pu, and 
(pv given in (2.3) of part I. Subscripts + and — indicate 
spins accommodated. Rewriting (2.9) we have 

A(=10Dq) = E(t2
5e* *T2)-E(t2*e2 3A2), (3.6) 

where E's are the energies of the states indicated in the 
brackets. The detailed electron configurations of the 
f component of the ZT2 state and of the SA2 state are 

%±rj±t±u+v+ for ZA2 with Ms=l, 

Z±r}±£+u+v± for ZT<£ with Ms=l. 

2.0 

RADIUS IN AU 

FIG. 1. Normalized radial part of the Ni2+ 3d function, Rza(r) 
(in atomic units) from Watson, where Ru(;r) =Pzd(f)/r. 

1.0 

A 
\ 

\ 

- ^ HARTREE-FOCK 

2 

r IN AU 

FIG. 2. A comparison of Froese's numerical values of R^pir) 
—p2P(r)/r with the analytical function shown in Eq. (4.2). 

Thus, (3.6) can be written as 

A=M*l*)-(r|A|r), (3.7) 

where v and f are the molecular orbitals belonging to e 
and t2, respectively. The explicit forms of Vd

Coul and 
Vd

ex are 

7d°°ul=- L [dr2r12-
1\<Py(2)\'J (3.8) 

Fdex=-E f 
7=51? J 

dr2rl2~
l^(2)^(\)P12, (3.9) 

where P i 2 is the permutation operator for electrons 1 
and 2. 

In (3.3) VL is the contribution from the six fluoride 
ions, which can be decomposed as follows, 

VL= VL^'^+VL
K+VL

E. (3.10) 

In (3.10), Fz,point is the point-charge potential given by 

F^o i n t=i:i / | r-R; | , (3.11) 

which comes from a single negative point charge 
assumed at the position, R4, of the six fluorine nuclei. We 
have separated out of the Hamiltonian the point-charge 
contribution because historically this has been discussed 
as an approximation of the crystalline field potential. 
As mentioned previously, VLK in (3.10) is Kleiner's 
additional potential due to the imperfect screening of 
the ligand nuclear charge by ligand electrons, and it is 
expressed as 

tV^E-S / l r -R ; ! 

13 The numerical values of Fcore were kindly supplied by A. J. 
Freeman. * 

+ 2 / < * T S r , r 1 E I <Pik{2) |2 . (3.12) 
k=2s,2pz,2px,2py 
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0.5 

FIG. 3. A comparison of Froese's numerical values of i?2«W 
= P2s(r)/r with the analytical function shown in Eq. (4.4). 

VLE is the exchange-interaction operator introduced by 
Tanabe and Sugano with the explicit form, 

if drtrii-1 E ¥>«*(2Wl)Pu. 
k=2$,2pz,2px,2py 

(3.13) 
We shall see later that this term makes important 
contributions. 

The Hamiltonian h! in (3.2) gives only a small con
tribution when the overlap integral S and the covalency 
7 are small. In the following calculation, this term will 
be neglected. This means that our calculation is the first 
step of a self-consistent field (SCF) calculation where 
5 = 0 and Y = 0 are assumed in the Hamiltonian. A SCF 
calculation would then substitute our calculated values 
of S and y into the Hamiltonian and repeat the pro
cedure until self-consistency was obtained. 

IV. ORBITAL FUNCTIONS 

As long as Fcry8 in the Hamiltonian (3.1) is assumed 
to be a constant, the eigenfunction satisfying the 
Hartree-Fock equation (2.1) is a molecular orbital of the 
[NiF6]

4~~ molecule. Furthermore, in predominantly 
ionic crystals such as KNiF3 it is a good starting ap
proximation to assume that the molecular orbital SF is 
a linear combination of free ion orbitals. Thus, we use 
the molecular orbitals given in (2.1-5) of part I in 
which the atomic orbitals are the Hartree-Fock solutions 
of free Ni2+ and F" ions.14 

14 An equivalent approach to this problem was described by 
F. Keffer, T. Oguchi, W. O'Sullivan, and J. Yamashita, Phys. Rev. 
115,1553 (1959). However, their evaluation of the matrix elements 
was only qualitative. On the other hand, A. Mukerjee and T. P. 
Das [Phys. Rev. I l l , 1479 (1958)], by claiming that the observed 
F19 hfs could be explained by the overlap term arising from the 
orthogonalization, i.e., \—S, did not allow the ligand electrons 
enough freedom to describe the F19 hfs subsequently measured. 
In an extension of the purely ionic model, W. Marshall and 
R. Stuart [Phys. Rev. 123, 2048 (1961)] claimed to explain many 
transition ion properties in crystals by expanding the metal ion 
radial function. This approach is discussed below. 

The normalized radial part of the Ni2+ 3d function, 
taken from Watson's tables,7 is 

^3dW = r2(3.4096e-2-31^+45.26k-4-52^ 
+ 129.48e-8-502^+24.071e-15-010. (4.1) 

This function is plotted in Fig. 1. 
Froese's numerical values15 of F~ radial functions 

from her Hartree-Fock calculation were used for our F~ 
functions. The numerical values of R2V{r) were fitted to 
a two-term analytical function 

jR2p(r) = f(15.671f-3-7374?-+1.5742e-1-35840, (4.2) 

which is compared with the numerical values in Fig. 2. 
The coincidence of the two functions is not perfect but 
the error introduced is negligible. The complete F~ 2p 
functions are 

*2p,= r(io)tf2p, 
<p2p^=Y(l±l)R2p. 

For the 2s function we used the Slater function 
orthogonalized to the ls-core function: 

R2s(r)= (~11.156e-8-70^+10.805^-2-4250. (4.4) 

The agreement with Froese's numerical values is 
excellent as shown in Fig. 3. The complete 2s function is 

<P2s= ( 4 x ) - 1 ^ 2 s . (4.5) 

The Is function has been shrunk into the fluorine 
nucleus. However, the 1 s-Slater function was used at 
times8 and it is compared in Fig. 4 with Froese's values. 

Since the radial functions are all drawn to the same 
scale, it is possible to compare them. It can be seen that 
i?2p(f) falls off more slowly than the others. To compare 
the amplitude along a particular line, such as the inter-

P 1 s ( r } HARTREE-FOCK 

51.33 r e - 8 - 7 o r 

RADIUS IN AU 

FIG. 4. A comparison of the Slater Is function with 
Froese's Hartree-Fock calculations. 

15 C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957). 
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nuclear radius, it must be remembered that the angular 
parts of the different orbitals have different values. 

V. EVALUATION OF MATRIX ELEMENTS 

Four types of matrix elements will be considered, 
namely: the overlap integrals between nickel and 
fluorines of the form (<p(x); the nickel diagonal terms 
(<p\ho\(p); the fluorine diagonal terms (xl^olx); and 
finally the off-diagonal terms, also called resonance 
integrals, of the form (<p|Ao|x)« The matrix elements of 
the molecular orbitals were expressed in terms of atomic 
orbitals. Details of this analysis are shown in the Ap
pendices. The integrals expressed in terms of atomic 
orbitals were evaluated numerically by the following 
four means. 

Two-center integrals were: (1) mainly computed on 
the IBM 7090 using Switendick and Corbato's pro
gram16; (2) in a few cases evaluated analytically. 
(3) Some two-center integrals which could not be 
handled adequately by Switendick and Corbato's pro
gram were evaluated by an auxiliary IBM 7090 
computation. Non-negligible three-center integrals were 
(4) determined by a direct summation conducted on the 
IBM 7090. 

(<p\x) 

The overlap integrals are listed in Table I. The atomic 
overlaps were calculated by Switendick and Corbato's 
program on the IBM 7090 and confirmed by a separate 
machine program. These are related in Appendix I to 
the molecular overlaps which are the last three listed in 
the table. It is clear that the molecular overlaps are 
independent of the subscript y indicating the compo
nent of a degenerate set of molecular orbitals. 

M ^ o | <P) 

By using the orbital energy ea of Ni2+ 3d electrons, 

e ^ M - j A + F t f M , (5.1) 
we have 

(<p\ho\ <p) = €d+(<p\VL\ <p), (5.2) 

where VL is separated into three terms as shown in 
(3.10). Detailed methods of calculating (<P\VL\<P) are 

TABLE I. The overlap integrals. 

(d<r\s) 0.047014 

(da\p&) 0.06391s 
(dir+\pir+) 0.037784 

(<Pey\Xys) 0.08143! 
(<Pey\Xye) 0.11071 
(<Pty\Xy7r) 0.075568 

16 A. C. Switendick and F. J. Corbato, Quarterly Progress 
Report, October 15, 1959, Solid-State and Molecular Theory 
Group, Massachusetts Institute of Technology, Cambridge, 
Massachusetts (unpublished). 

R . G . S H U L M A N 

TABLE II . The (<p\ VL\<P) integrals. 

h 
I 

(<Pey\VL
point\<Pey) 

(<Pty\VLP°int\<Pty) 

(da,s\\d(T,s) 
(d<r,p(r\\d<r,p<r) 
(do-tpTT^Wdo-ipw*) 
(dir^Wdv^s) 
{dTr±,pa\\dw±,pa) 
(dic±,pir+\\dic±

ipTC+) 
{dir+

1pir~ 11 d7r~,pir+) 
(dS^WdS^) 
(d8±,p<r\\dd±,p<r) 
(d5±,pir+\\dd±,pir+) 

(<Pey\VL
C™l\<Pey) 

(^|K&0ouW 
(d<r,s\\s,do-) 
(ddypa-Wpa-jda) 
{darf^WpT^ydo-) 
{d^,s\\s4^) 
(dT^tpff^pafiic*) 
(dTT+,pTr+\\pir+,d>ir+) 
(d7T+,pir~ 11 pir~,dTr+) 
(d5±,s\\s,d5±) 
(dS^paWptrJB*) 
(d8+,pTr+\\pir+,d8+) 

(db+,pTr-\\pir-,d?>+) 

(<Pey\VL™\<Pey) 
(<Pty\VL™\<Pty) 

(<Pey\VL\<Pey) 
(<Pty\VL\<Pty) 
Difference 

0.263846 

0.003793 

1.58687 
1.58055 

0.27063 
0.28602 
0.26136 
0.26605 
0.28048 
0.25786 
0.00073 
0.25810 
0.27111 
0.25111 

12.6648 
12.6237 

0.17577X10-2 

0.52749X10-2 

0.01921X10-^ 
0.01233X10-2 
0.14436X10"^ 
0.07668X10-2 
0.00858X10-2 

0.00082X10-2 
0.04545X10-2 
0.00870X10-2 
0.00211X10-2 

0.02396 
0.01082 

1.5327 
1.5490 

-0.0163 

given in Appendix II. Numerical values of the integrals 
are given in Table II. The orbital energy ea is —1.4125 
in atomic units in Watson's calculation,7 and we use this 
value since we are using Watson's Hartree-Fock 
functions. 

(KM*) 

We arrange (x\ho\x) as follows: 

(xl*o|x)= (xl -A/2+VL\x)+(x\ VM\x). (5.3) 

Neglecting the differential overlap between the fluorine 
orbitals at different sites as mentioned in Appendix IV, 
Eq. (5.3) can be rewritten as follows, 

Ocl*o|x)=«+(xl^lx)'+(xl^jf|x), (5.4). 
where 

(x\VL\x)'= (X\VL\X)- (<Pi\ Vi.A vl), (5.5) 

and e is the orbital energy of the fluorine 2s or 2p elec
tron when x is composed of the 2s or 2p orbital: we use 
the Hartree-Fock energies calculated by Froese15 which 
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TABLE III . The ( x | VM\X) integrals. 

\X vs 1 V core 1 X vs) 
\X-v<r\ V coxe\X-v(r) 
\Xv$\ v corelXvoy 
( X f r l F c o r e l X ^ ) 

(d<r,s\\d<r,p<r) 
(dir^sWdir^pa) 
(dd^Wdd^pa) 

(xvs\Vd
c^\xvs) 

(Xva\Vd^
l\Xw) 

(xvs\Vd
G^\xVff) 

(xtAVd^xtJ 

(dir^sWpffidir*) 
(dfcjWptrJS*) 

(Xvs\Vd^\xvs) 
(Xva\Vd^\xv(r) 
(Xvs\Vd*x\xVa) 
(xrr |Fd« |x r , ) 

(xvs\VM\xvs) 
(XVff\VM\Xv<r) 
(XvS\VM\xV(r) 
( x f , | 7 j # | x f i r ) 

-2.6385 
-2.7934 
-0.4226 
-2.5590 

0.04533 
0.04292s 
0.03950 

1.84308 
1.94079 
0.29261 
1.78790 

0.000368 

0.000052 

0.000132 

0.00189s 
0.000420 

0.000097 

-0.7955 
-0.8545 
-0.1304 
-0.7712 

are e2s= —1.0765 and e22>= — 0.1815. <pi is the fluorine 
orbital at site i. The ( X | ^ L | X ) ' term represents the 
effect of five fluorines on a remaining fluorine. The four 
identical fluorine-fluorine interactions in this term were 
calculated exactly by using Switendick and Corbato's 
program on the IBM 7090. The interaction with the 
more distance fluorine was approximated as a point-
charge interaction as shown in Appendix IV. Numerical 
values of (x| VL\XY a r e given in Table IV. 

Neglecting again the differential overlap between <pi 
and <pj(i?*j), methods of evaluating the (X|^JW|X) 
term are given in Appendix III. Numerical values of 
the integrals appearing in this term are given in Table 
III. It should be borne in mind that, in contrast to 
(<p\h\<p), (xl^lx) is n ° t the orbital energy of the 
fluorine electron in the crystal as VM in h involves 

TABLE IV. The (X\VL\XY integrals, where 
( X | F L | X ) ^ ( X | F L | X ) - ( ^ I ^ , L | ^ ) . 

Op)"1 0.13193 
(<PS,*\VI,L\<P*,.) 0.18603 
(<Pz,z\VltL\^,z) 0.18532 
(*M|F i , i | *>,.,) 0.01406 
(<P*.V\VI,L\<P*,V) 0.18333 
(<P8,V\V*,L\<P*,V) 0.18532 

(xvs\VL\xvsy 0.87605 
(xw\VL\xv<ry 0.87322 
(xvs\VL\xV(,y 0.05624 
(Xt,\VL\xt,Y 0.86924 

VdConl and Vdex coming from only seven d electrons of 
Ni2+ as mentioned in Sec. III. 

Ol^olx) 
The use of the relation, 

M - J A + F M | X ) = ^ M X ) , (5.6) 

leads to the expression, 

(<p\ho\x) = ed(<p\x)+(<p\VL\x). (5.7) 

As shown in Appendix V, the (<p\ VL\X) term is divided 
into two-center and three-center integrals, the latter of 
which are important and cannot be neglected. The 
three-center integrals were neglected in Tanabe and 
Sugano's4 work. Details of the evaluation of both these 
two- and three-center integrals are given in Appendix V, 
and the numerical results are listed in Table V. 

TABLE V. The (<P\VL\X) integrals. (<p\ FL |x) = M VL\XY 
-\-(<P\VL\X)"> where (<P\VL\X)' is the two-center integral and 
M VL\X)" the three-center integral. 

0 , |FL p o i n t [x , s ) ' 
(VvWlF^Xv,)' 
{n\y^°'mt\x^y 

(d<r,s\\s,s) 
(d<r,p<r\\s,p<r) 
(^o-,^7r±lk^7r±) 
(d<r,s\\p<r,s) 
(do-,pa\\p(T,p(r) 
(da-yp^Wpa-fpTT^ 
(dir^Wpir^s) 
(d/n±,p<r]\pTr±,p<r) 
(dTr±,pTr±\\px±,pTr±) 

(<pv\vL
c™l\xvsy 

( ^ I F L 0 ™ 1 ! * ™ ) ' 
(n\VLc^l\x^y 

(d<r,p<r\\p<T,s) 
(dffypirmpT^s) 
(do-,s\\s,pa) 
(^o-,^7r±||^7r±,^o-) 
(dir^sWsjpTT*) 
(dir^paWp*,^) 
(dic^pT^pT^pic*) 
(dTT^pTr^WpirtrfTr*) 

(<Pv\VL
GX\xvsy 

(<Pv\VL™\xv<ry 
(n\VL™\x^y 

(<PV\VL\XVS)' 

(<pv\VL\Xva)f 

(^WL\XtrY 

( * , | V L | X . . ) " 

{<PV\VL\XV.)" 
(vtWAxt*)" 

(<PV\VL\XVS) 

(<PV\VL\XV*) 

(<Pt\VL\XtT) 

0.058109 
0.070939 
0.035267 

0.030302 
0.030326 
0.027970 
0.038090 
0.039937 
0.034763 
0.016874 
0.016871 
0.016155 

0.40380 
0.51112 
0.26422 

0.010867 
0.003749 
0.006166 
0.001062 
0.001910 
0.001499 
0.016155 
0.000783 

0.08429 
0.08352 
0.04069 

-0.08725 
-0.06899 
-0.02334 

0.08626 
0.12681 
0.08578 

-0.00099 
0.05782 
0.06244 
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TABLE VI 
and 

Orbital 

hg TT 

'. Numerical values of (v?|^o| <p), (<p 
(xl^olx) in atomic units of 27.2 eV 

(<p\h0\<p) 

0.1202 

0.1365 

Mfalx) 
r—0.1160 
\ -0 .0986 

-0.0443 

I A O I X ) 

Mko\x) 
-0.9959 
-0.1628 
-0.0835 

For summary the calculated values of (<p\ho 
(^l^olx) and (x|^o|x) are listed in Table VI. 

VI. COVALENCY 

<P), 

Now it is possible to determine the covalency 
parameters, y, by using (2.13), (2.14), and (2.15). The 
calculated results are given in Table VII together with 
the experimental values.8 The agreement with the 
experimental values is good, particularly for the experi
mental value of i \ ^ \ s = 0 . 1 1 6 which ignores the Is—2s 
cross-term. 

In Table VII we see that the covalency admixture 
of the 2s orbital, YS, is only about one-third as large as 
the 2s overlap, 5S . I t is particularly important to note 
that the reason for the small value of YS is the large 
negative value of (Xs | ho | Xs) which mainly arises from 
the large negative value of the 2s atomic orbital energy 
of F~~. In contrast to this small 2s covalency, the 
covalencies for the 2p<r and 2pw orbitals are more than 
twice the overlap integrals, S* and ST, respectively. 

I t is interesting to compare 7 , with yT via (2.13) and 
(2.15). We see that - Cf I ^oI x ) + ^ ( x I ^o| x) = 0.0986 
—0.0180=0.0806 for o\ This is more than twice as large 
as the numerator for the ir orbitals which is 0.0380. How
ever, since — (% | ho \ x) m the denominator of the express-
sion for y is larger for a than for w by ~0.08 , the final 
value of y<r is only ^ 1 . 6 times yT. Therefore, we may 
argue that the origin of the relatively large 7r covalency 
is partly the lowering of 2pa orbital energy relative to 
the 2pT energy in the molecule by the attractive poten
tial of the central metal ion. In the semiclassical model 
this is the crystal field splitting of the F~~ ion and it has 
been mentioned in a previous report.17 The large value 
of 7^=0.246 confirms the previous conclusions from 
experiments18,19 that the ir bonding is large. 

TABLE VII. Calculated values of y and X and comparison 
with the experimental values. 

Orbital y 

s 0.031 
o- 0.285 
x 0.173 

fia (calc) =0.9616 

a See Eq. (4.3) of Part I. 

X 

0.113 
0.396 
0.149 

Calc Expa 

0.109 
0.383 
0.246 

Ms (calc) =0.2744 

0.116 
0.337 

17 R. G. Shulman and S. Sugano, J. Chem. Phys. 36,3496 (1962). 
18 M. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549 

(1956). 
19 R..G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960). 

We wish to emphasize that although the w admix
ture into the molecular orbital is almost as large as 
the <r admixture still the bonding energy is given by 
—y(<p\ho\x) which is 6960 cm - 1 for a and 1670 cm"1 for 
7r. Therefore, we may say that the w bonding is impor
tant wherever the wave functions themselves are impor
tant but it is not as important as the <r bond when the 
energy is involved. 

VII. CUBIC FIELD-SPLITTING PARAMETER 

Let us discuss the separate contributions to A shown 
in (2.11). In Table VIII the contributions to A from 
the nickel diagonal terms on the first line of (2.11) are 
listed. We see that the point-charge approximation 
gives a very small contribution, 1390 cm -1, while 
Kleiner's correction makes A negative. Furthermore, 

TABLE VIII. The various contributions to A. 

Origin Term 
Contribution 
to A in cm -1 

rpoint-charge (VL
po'mi) +1390>| 

Kleiner's correction (VL
K) -2080 | 

Nickel diagonal • 

m-orthogonality -

Covalency -

< Exchange (VLE) 
renormalization 

I (\eSe~\tS't) (<Pe\ho\<pe) 

( — SsfJLs(<Pe\ho\Xs) 
{ -SffVff(<Pe\h0\x<r) 

L+^(^lAo|x,) 
f — 7s/*s(<Pe|&o|Xs) 
{ -7<r/**(fe\ho\x*) 
L + T T C ^ M X I T ) 

Total 

-2880 I 
+900 

+2060") 
+2390 V 

-720J 

+790^1 
+6170 i 
-1670J 

calculated 
experimental 

-2670 

+3730 

• +5290 

6350 
7250 

although the individual exchange terms are small as 
shown in Table I I , they make a larger negative con
tribution to A than the total Coulomb contribution. 
Thus, the semiclassical model ( 5 = 0 , 7 = 0 ) which in
cludes only the contribution from the nickel diagonal 
term predicts a negative value of A and disagrees with 
experiment. To a first approximation this conclusion is 
independent of the specific 3d wave function adopted 
because if a more expanded wave function were used, 
the point-charge contribution would increase but so 
would the negative contributions from Kleiner's correc
tion and the exchange interaction. 

After the contributions from the nickel diagonal term 
we have listed the contributions of the nonorthogonality 
to A. In this approximation, which could be called the 
quantum mechanical purely ionic model, the assumption 
is that 7 = 0 but S^O. The metal ion orbitals are 
orthogonalized to the ligand orbitals in this approach 
which was followed by Tanabe and Sugano.4 In this 
approximation, where X=S the renormalization term is 
reduced to about 300 cm -1. The contributions of the 
nonorthogonality term is +3730 cm - 1 while the con
tributions of VLK and VL

E total —4960 cm"1. These two 

file:///-0.0986
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terms cancel to within 1200 cm-1 which is a small num
ber when compared with A. Within this accuracy there
fore we have confirmed Phillips'5 claim that the contri
bution from the nonorthogonality approximately cancels 
those from VLK and VLE. Within this purely ionic model 
the calculated value of A is ^500 cm-1 which does not 
agree with the observed value of 7250 cm-1. Further
more, while an expansion (Marshall and Stuart14) of the 
metal wave function would increase S and the positive 
contribution of the nonorthogonality term it would at 
about the same rate increase the negative contributions 
of the nickel diagonal term. Therefore, by merely 
expanding the metal ion function one could not hope to 
explain the observed A under the assumption of \=S. 
However, good agreement with the observed value is 
obtained when the calculated values of the covalency 
parameters are included in the calculation as shown by 
the last terms in Table VIII. Furthermore, it is note
worthy that with the exception of the small point-
charge contribution the off-diagonal terms are the only 
contributions to A with the correct sign. 

VIII. OTHER PARAMETERS IN THE 
CRYSTALLINE FIELD THEORY 

In the previous discussion we have not explicitly 
touched upon the normalization factors, Ne~

l/2 and 
Nt~

112. These factors are more than unity when 7 = 0 but 
less than unity when y>S. They are just unity when 
y=S. Assuming that y and S are small, we have 

i V e - ^ = l - | ( T 8
2 + 7 . 2 - ^ 2 - ^ 2 ) , ( g 1} 

Inserting the calculated values of y and S 

^ - = 0 . 9 6 8 , 

iVr1/2=0.988. 

These reduced normalization factors are important in 
explaining the small reduction of the Racah parameter, 
J5, which is reduced by ^ 7 % from the free-ion value as 
determined in part II. The exact calculation of B is 
tedious, but a crude estimate was made by substituting 
our calculated molecular orbitals into the Coulomb and 
exchange integrals which determine the term splitting 
and Racah parameters. It was seen that neglecting the 
normalization our calculated molecular orbitals gave 
a negligible reduction of B. On the other hand, the 
normalization factors are important. Since B is propor
tional to N~2 (or the fourth power of the normalization 
constant) the calculated reduction of the normalization 
factors as shown in (8.2) is large enough to account for 
the observed ~ 7 % reduction in B. Since all the reduc
tion of B could be ascribed to the normalization factors, 
the use of Koide and Pryce's20 covalency parameter e is 
justified and it is given as 

(l-e)V2= (Ne/Nt)-v\ (8.2) 
20 S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958). 

which leads to 

e= (y<,2+ys
2-y«2)- (S„ 2 +S s

2 -^ 2 ) . (8.4) 

In our problem, substituting numerical values, we 
obtain 

e=0.039. (8.5) 

It is interesting to compare (8.5) with Zahner and 
Drickamer's21 conclusion for MnCU and MnBr2 that e 
can be no larger than 0.04 in these crystals. Pappalardo22 

also has found values of e in the range 0.03-0.05 for 
Mn2+ in crystals. It also is interesting to note that the 
B value has been found to decrease with increasing 
isotropic pressure21,23,24 and that this fact can easily be 
explained, as seen in Eq. (8.1), by assuming the 
covalency 7 increases more than the overlap S. 

In order to explain the first observations25 of ligand 
hfs in iridium hexachloride complexes the molecular 
orbital model was proposed by Stevens.26 Among his 
many important contributions to this problem he con
sidered how covalency would reduce the orbital angular 
momentum. It has been shown by Geschwind27 for our 
case of Ni+2 in Oh symmetry that the electronic g factor 
should be 

g=2.0023- (SX^,,2/lOZty) (8.6) 

in which Xcrys is the coupling constant of the spin-orbit 
operator XcrysL'S in the crystal and kffT is the orbital 
reduction factor 

JU=(¥.|L|*0/(*.IM*>«), (8.7) 

which can be expressed as 

= l-(Xe
2+X*2)/2. l > ; 

In deriving (8.8) we have assumed, after Tinkham,18 

cancellation of the last two terms in his exact expression. 
Substituting numerical values we find 

*„«0.88. (8.9) 

Substituting in (8.6) and solving for XCrys> we obtain 

XCryS=--320cm-1 (8.10) 

which agrees very well with the value of X= — 324 cm"1 

observed in the free-Ni2+ ion. In other words, this cal
culation shows that to within experimental accuracy 

21 J. C. Zahner and H. G. Drickamer, J. Chem. Phys. 35, 1485 
(1961). 

22 R. Pappalardo, J. Chem. Phys. 31, 1050 (1959); 33, 613 
(1960). 

23 D. R. Stephens and H. G. Drickamer, J. Chem. Phys. 34, 937 
(1961). 

24 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 
1469 (1961). 

2* J. H. E. Griffith, J. Owen, and I. M. Ward, Proc. Roy. Soc. 
(London) A219, 526 (1953). 

26 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 
(1953). 

27 S. Geschwind (private communication). 
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XCrys=Xfree ion. The observed reduction in XCrys&<r7r2 from 
the free-ion value is completely explained by the effects 
of covalency upon the orbital reduction parameter kffT. 
We also note here that 

is given as26 
* „ = ( ^ | L | ^ ) / ( ^ | L | ^ ) 

ft„=l-X«Y2 

= 0.97. 

(8 .H) 

(8.12) 

IX. CONCLUDING DISCUSSION 

As previously mentioned we have succeeded in cal
culating lODq and the covalency in KNiF3 . Before dis
cussing these results further we first summarize the 
approximations adopted in the present calculation. 
They are as follows : 

(1) We have assumed Fcrys to be a constant, in other 
words, we have treated a specific molecule [NiF6]4~ 
placed in a potential well, instead of treating the crystal 
as a whole. This approximation should be valid in the 
determination of A for the experimental and theoretical 
reasons mentioned at the beginning of Sec. I I I . How
ever, in calculating the covalency the approximation 
might be a little worse, since the expression for the 
covalency involves the value of (% | h \ x) which is sensi
tive to the possible deviation from the potential well 
model. However, the final agreement with the meas
ured covalency supports the applicability of this 
approximation. 

(2) The most characteristic approximation in our 
calculation is to neglect h! in the Hamiltonian. This is 
equivalent to doing the first step of the SCF calculation 
where in the Hamiltonian 7 = 0 and S==0. This ap
proximation cannot easily be justified for the calcula
tion of A even in ionic crystals where y and 5 are very 
small, since A is essentially a small quantity of the order 
e2 as mentioned previously. I t would be an important 
future problem to examine why our approximation has 
given such good agreement with experiment. 

(3) We have neglected some three-center integrals 
which seem to be unimportant. As long as h! is ignored, 
the only many-center integrals are the three-center 
integrals appearing in (<p \ fa1 x) and (x | fa | x). The three-
center integrals in (<p\fa\x) are important and have 
been calculated more or less accurately. The three-
center integrals in (x | fa | x) should be small. In particu
lar, the value of A does not involve (x\fa\x) s o that the 
calculation of A is independent of this approximation. 

(4) We have assumed that y and S are small and have 
neglected higher-order small quanties. This approxi
mation is justified in so-called ionic crystals such as 
KNiF3 . 

With these possible sources of error in the calculation, 
it is immediately clear that further calculations intend
ing to improve the agreement with experiment are not 
warranted at this time. These extended calculations 
might follow the SCF approach, or vary the metal ion 
radial functions, or the ligand radial functions (or mix 

in metal ion or ligand excited states, which are equiva
lent to radial expansion). Closer agreement with experi
mental values would not justify the physical existence 
of these terms so long as the errors implicit in the calcu
lation are as large as they appear to be. Furthermore, 
we have shown8 that expanding the metal ion radial 
functions (Marshall and Stuart14) cannot explain the 
observed F19 hf s. Here we see that this assumption is un
necessary to explain the Racah parameters while an 
expanded radial function in the crystal is inconsistent 
with our finding from the spin-orbit interaction that 
(lA3)crys=(lA8)free-ion. In summary, we have shown 
that in KNiF3 the concept of expanded d-electron radial 
functions is unnecessary to explain some of our observa
tions and inadequate to explain the remainder. 

The extensive numerical agreement of the molecular 
orbital calculations with the experimental measure
ments leads to the conclusion that molecular orbitals 
provide an accurate physical model of the crystal. We 
feel that the main value of our calculation lies in the 
physical understanding we now have of the crystal, not 
in any particular agreement between a calculated 
number and a measurement. 

In order to discuss the important physical phenomena 
in this crystal let us turn to the energy level diagram 
shown in Fig. 5. The left-hand column shows the effects 
of the crystal field upon the ^-electron orbital energies. 
In this approximation, we display e + (<py\V'L\ <Py) 
where e is the orbital energy of the d orbitals. Notice that 
in this approximation the fag levels are higher in energy 
than the eg. The reasons for this have been discussed 
above in Sec. VII. In the next column the contributions 

(<p\hW) 

--\e(<Pe\b\Xe) 

•Xt(<Ptlh|Kt) 

s 7 t ( ? t | h l X t ) 
= 7 + S 

egjTJTTTK-

FIG. 5. Energy-level diagram for the molecular orbitals formed 
between Ni2+ d electrons and the F~ ligands. 
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of the covalency, in our perturbation treatment, are 
presented. Energies for the antibonding orbitals are 
increased above the (<py \ ho \ <py) levels by —\y(<py \ h\ Xy) 
in accordance with Eq. (2.4). Here the strength of the 
a bond dominates and the antibonding e* orbitals are 
raised above the h<^. The energy difference is lODq as 
indicated in the figure. The lowering of the bonding 
orbitals from the F~~ orbital energies is shown to scale. 
Substituting the approximate relation 

-(<p\h\x) , x 
X - , (9.1) 

(<p\ho\<p)—(x\ho\x) 

the increase of the antibonding orbital energy is 
approximately 

(<H^o|x)2 , N 
. (9.2) 

(<p\ho\(p)-(x\h\x) 

At this point, we can stop and relate Eq. (9.2) to 
chemical bonding in general. Pauling's28 two considera
tions for the strength of a chemical bond were first the 
overlap of the wave functions corresponding to the 
numerator of (9.2) and second, the energy difference 
between the atomic orbitals corresponding to the 
denominator. From (9.1) we can see a possible explana
tion of one surprising aspect of covalency as measured 
by ligand hfs. The fluorines19 in K2NaCrF6 have ap
proximately the same value of XT as the chlorines25 in 
(IrCl6)~2. All chemical arguments say that the "cova
lency" should be larger in the Ir+ 4 complex than in the 
Cr+3; i.e., the larger charge on the metal ion, 5d electrons 
instead of 3d and chlorine instead of fluorine. But by 
covalency in this general chemical usage one means the 
energy associated with the covalency. From (2.4)-(2.7) 
it is clear that when the values of X are the same for two 
complexes the bond energies might still be different. In 
fact, we are led to the conclusion that both the numera
tor and the denominator of (9.1) are larger for (IrCle)-2 

than for (CrF6)"~3. Since it is considerably easier to 
calculate the diagonal terms in the denominator than 
the off-diagonal terms in the numerator it should not 
be very difficult to estimate the validity of these 
conclusions. 

Another interesting anomaly in covalency and crystal 
field splitting, i.e., the large value of lODq in the cya
nides, is now understandable. Previously in discussing 
lODq in terms of a point-charge model it had been 
necessary to introduce the effects of covalency in an 
ad hoc fashion to explain the large values of lODq in the 
essentially non-ionic cyanides. However, now we see 
that even in the extremely ionic fluorides lODq arises 
from the covalency terms. However whether the large 
value of lODq in the cyanides arises from a small amount 
of 7r bonding or a relatively large amount of a bonding is 
still unanswered. 

28 L. Pauling, The Nature of the Chemical Bond (Cornell Univer
sity Press, Ithaca, N. Y., 1939). 

In conclusion, we have shown that the LCAO-MO 
introduced by Van Vleck29 and extended by Stevens,26 

and Tinkham18 can explain the NMR, optical, and ESR 
experiments in KNiF3 . 
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APPENDIX 

I. Overlap Integrals 

The overlap integrals between <p's and x's are given 
in terms of those between atomic orbitals as follows: 

\<Pey\ X-ys or <r)=V3(<pw| <p3s or z) 
=^/3(da\s or pa), (Al) 

(<Ptv\XyTr) = 2(<Pi:\ <pZty) 

= 2(dw+\pw+). (A2) 

II. (<p I VLI (p) Integrals 

In the following calculations, we use the relations: 

(<Pey\VL\<Pey) = 3 £ (<py | F3,L | <Py), (A3) 
y—u,v 

(<p(y\VL\<pty) = 2 E (<P,\Vt.L\<Py). (A4) 

(a) (<p\ I V o i n t | <p), I V o i n t = E l / | r—R<| . 

In our problem it is convenient to calculate the 
spherically symmetric and cubic parts of these integrals 
separately without using Switendick and Corbato's 
machine program; the main contributions to these 
integrals come from the spherically symmetric parts 
which are canceled by each other in the expression for 
the crystalline field splitting. The analytical expressions 
for (<p\ FLp o i n t | <p) are well known as follows: 

(<Pey\VL»°^\cpey) = 6h+I, (A5) 

(<Pty\VL»°i»t\<Pty) = 6Io-iI, (A6) 

29 J. H. Van Vleck, J. Chem. Phys. 3, 807 (1935). 
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where which are used th roughout this paper . 

h=CdrPidKr)/P+fdrPuKr)/r, (AT) ( c ) ^V^> VL—V,.': 
J<> J" {<Pey\V^\<pey) = 2, Z E (<Py<Pk\\<Pk*y), (A16) 
/•p y.00 y—u,v k=2s,2px,y,z 

1=1 drr*Pu?(rW+P* dr P^(r)/r*t (A8) with 

where Pu\r) = rRza(r). " 
(u,z\\z,u)=(dcr,p<r\\p<T,d<T), 

(b) M ^ - ' M , («,*||*,«)=(«>y||y,«) 
^ • ' = 2 i ; L r u - ' E k.-,*<2)l2- = (Ar,^||^=W, (A17) 

t-1 J k=2s,2pxty,z (V,S\\S,V)= (dd±MU48±), 

B y using (A3) and (A4), i t is easy to see t h a t 

(vlM=(^±^IIM«±) , 
0 , s | | v ) = (d8±,pd\\p(T,d8±), 

(v,x\\%,v)=(v,y\\y,v) 
(<Pey\VL

C™l\<pey) = 6 I ) E ( ^ 7 ^ | | ^ ^ ) , (A9) = | r (^+^7r + | | ^7T+^+) 
7=w,u k=2s,2px,y,z * u x 7r i i r 7 y 

W i t h + ( ^ + ^ - | | ^ - ^ + ) 3 , (A18) 
(w,s||#,,?) = (da7s\\dcr,s), a n 

(«,2||«,2)=(J(r,^(r||rf(r,^), (^T |FLex |^f7) = 2 E E ( ^ ^ I k f c ^ ) , (A19) 
. . . . 7=£.'?>f &=2s,2ps,2/,z 

(u,x\\u)x)=(u,y\\u,y), w[{h 

= ( A r ^ l l ^ r , ^ * ) , (A10) 
(v,s\\v,s)=(d8±s\\d8±,s), fr*ll*,r)-MM, 
MIVJ^C^HI*^), (^ l^=M'P^) , for *'^,y, 

= (<»±, p*+\\d6±, £TT+), (All) ( ^ l b , 0 = fo,*ll*rt), (A20) 
and (S,*|k£) = (dTc^sWsydic*), 

(<Pty\ F L
C o u l | <fty) (&*lk£) = ( ^ i ^ O - J I ^ A ^ , 

= 4 E E ( w l l ^ * ) , (A12) 
(^lk,£) = i(d*+,^r-||pir-,Ar+)> 

7=$^, r k=2s,2px,y,z ^y\\y^)z=z (dTT+,pT+\\pTr+,dT']r) 

with +|(^+^"~llM""A+)- (A21) 
G-,*llr,*)=MM), 

(f,Hlf»*)=(^lky)i 

III. ( x | FMI x) Integrals 

As mentioned in the text, 

tt.y||*,y)=Mk*), (Ai3) ^ = 7 « w . + ^ - > » ' + v ( i « > (A22) 
where 

tt^llW = (^± 5p7T± 5), 7core= (a+be-«ryr} (A23) 
(S>gll^)= (J^^O-I I^TT^/XT) , and, in general, 

M M = (^± p7r+p7r±,M) /• 
-h(dw+,pir\\<hr9pir+), F d

c o ^ E F 7
c o u l = E /rfr2ri2-1 |^(2) |2 , (A24) 

+ J (rfw+,^r-||dir-,#ir+). (A14) 

Notice the following abbreviations: 7 7 
F / X = E F 7

e x = E r jdr2r12~1cpy(2^cpy(l)P12. (A25) 

(<pa<p&|| <pc<pd) I n (A24) the summat ion runs over all valence electrons 
,, 7 and in (A25) the summation extends over all the 

= \aM\cA) valence electrons with spins parallel to the spin of the 
X electron. In our specific treatment of KNiF3, E 7 

dndr2 ri2"1<pa0)*<pb(2)*<pe(l)<pd(2)9 (A15) means ET^ t{ t,,,,f,« | ( and E 7 ' means E T - € . ^ Here, we 
will treat F7

Cou l and F7
e x with any 7 as a general rule. 

<pk=<pz,k for k = s,x,y, z. It should be noticed that three-center integrals are 

# 



completely neglected in the following expressions of 
(X\VM\X). 

(a) (Xl^oarelx). 
Since Fcore is spherically symmetric, we have 

(X-y&l ^core | Xyk') = (<p3,fc| ^core | <£>3,fc')> ( A 2 6 ) 

V^yr\ ^coreI ^ 7 ^ ) == (^3 ,px | FCore| <Pt,px)> (A27) 

which can be calculated analytically. In (A26), k and 
kr are s or pz. 

(b) ( x | F 7 ^ | x ) . 
We need this type of integral with X=X„ or z and 

X=X?T. By using symmetry considerations, we obtain 

(X,* I V(
c™11 X,»0 = (X,* | y ,c°u l | X,40 

= l[(€,*ll€,*0+(r,*llf ,*')], (A28) 

(X,*|Fr<*»I|Xrt,)=tt,*ll€,*0, (A29) 

(X,*| F„Coul| X^) = IC(«^| |M')+3(^| |^ ' )] , (A30) 

(X,t|y.0»«1|X.*') = l[3W|K*')+(p,*||t»>*')], (A31) 

where k,k'=s or z, and 

( X f T | F j C o u l | X ^ ) = ( X r ] r | F i C o u l | X f T ) 

= §[«,*IM+(f,*llr,*)], (A32) 

(xf,|7f<*>«Mxf,) = (f,y||£,y), (A33) 

(Xfir| FM
Coul| XlT) = ll(u,y\\u,y)+3(v,y\\v,y) 

-2^(u,y\\v,y)-], (A34) 

(x fT |F/-1^rx)=iC3(#,y| |M )3')+(^| |^>') 
+2^(«,y||»,y)]. (A35) 

Almost all integrals in (A28)-(A35) have already been 
given in (A10), (All), (A13), and (A14). Cross integrals 
(-y,.?||7,z) are simply obtained by substituting for z or 
per the suitable s's in (7 , J | | 7 ,* )= (dm,s\\dm,s). The only 
new type of integral appearing in (A34) and (A35) is 
given as follows: 

(u,y\\v,y) = -(u,x\\v,x) 
= (l/y/l)(d<r,pTr+\\d5+,pw~). (A36) 

(c) (x|tVxlx). 

Also in this case, the x's are restricted to those with 
components v and f. Then, integrals for any 7 are 
expressed as follows: 

(X,* I Vf* I Xvk.) = (Xvk I V,« I X,JO 

= iC(€,*ll*',€)+(r,*P',f)], (A37) 

(X,t|7r«|x,»)=(£,*||*',{), (A38) 

(X,*| F.«|x,0 = l[(«,*ll*,,«)+3(»,*||*»1 (A39) 

(X,*| V™\xvk) = \[2>(u,k\\k',u)+(v,k\W,v)1, (A40) 

where k,k'=s or z, and 

(Xr, |7t«|x f T)=(x f i r |7,«|x f i r) 
=i:(^n*,{)+(r^ll*,r)], (A4i) 

C O V A L E N C Y E F F E C T S I N K N i F 3 . I l l 

(x rr|7 r«|x r r)=fey|b,{), 
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(A42) 

(x r r |7.«|x r r)=i[M|y,«)+3Ml3P,») 
-2rt(u,y\\y,vn (A43) 

(Xrr| 7 ,« | Xr,) = i[3(«,y||y>«)+(i»1y||y>B) 
+XJ5(u,y\\y,v)l. (A44) 

Almost all the integrals in (A37)-(A44) have already 
appeared in (A17), (A18), (A20), and (A21). The cross 
integrals (7,*||z,7) are simply given by substituting z or 
per for the suitable s's in (y,s\\s,y)=(dm,s\\s,dm). The 
only new type of integral appearing in (A43) and (A44) 
is expressed as follows: 

(u,y\\y,v)= - (u,x\\x,v) 
= (l/TJ2)(d<r,pir+\\pTr-,dS+). (A45) 

!V. (x\VL\JC) Integrals 

To the approximation in which we neglect the dif
ferential overlap between the fluorine orbitals at 
different sites, the (x | VL | X) integrals are expressed, in 
general, as follows; 

(xl VL\x)= M Vt,L\ <Pi)+(<Pi\E' Vj,L\ -Pi), (A46) 

where (pi is a fluorine orbital at the ith. site. The first 
term in (A46) is combined with the kinetic-energy 
matrix element, (<pi \ — J A | ^-), to give the orbital energy 
of the fluorine electron, and the second term is given for 
X with the component, vs or vz, as 

(<P*,k\ Ve,L\ <PZ,k') + M<Phk\ VI,L\ (pZ,kf) 

with k,k'=sorz, (A47) 
and for Xf7r as 

(*>3.y| V6tL\ p8.tf) + 2[(*>3.y| VI,L\ <P*,y) 

+ (<Pz.v\Vt.L\ **.*)!• (A48) 

The first terms in (A47) and (A48) may be well ap
proximated by (2p)~l except for the s—z cross term 
which is assumed to be zero in our calculation. The 
remaining integrals are the Coulomb, exchange, and 
nuclear attraction integrals appearing in a homonuclear 
diatomic molecule with nuclear distance v2p. One must 
be careful of the components z and y which do not refer 
to the molecular axis. 

V. OI VL12c) Integrals 

For this calculation, it is convenient to use the 
relations 

(<Pey\VL\Xey) = 3 £ (Vy\V*.L\Xy), (A49) 

(<Pty\VL\Xty) = 2 £ (<Py\Vitlt\Xy), (A50) 
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which are similar to (A3) and (A4). These relations 
lead to the following equations for y=v and f, 

0 „ | VL\xvk)=y/Sl(<pu\ Vt.L\ v,,h) 

+ ( * « I E ' F u l ? . , * ) ] (k=sorz), (A51) 

(<Pi\VLM = 2£(<pi\V3,L\<Pz,») 

+ (*»«! E ' ^ . L I *»»..)], (A52) 

where the first and second terms are two- and three-
center integrals, respectively. 

(a) The two-center integrals. 
The contribution from F3(L

point has the form of a 
split nuclear attraction integral. The explicit forms are 
as follows: 

(<Pu\ F3,Lpoint | P M ) = (da\ l/r'\k), (A53) 

(<P*\ F3,Lpoint | ^8.y)= (dT±\l/r'\pir±), (A54) 

where rf is the electron coordinate measured from the 
fluorine site at which orbitals k and pir± are located. 

The matrix elements of F 3 ,L C O U 1 are obtained as 
follows: 

(^|F3,L
Coulk3^) = 2[(^p^)+(^^(7p^o-) 

+ 2(Ar,#ir±p,#ir±)], (ASS) 

+2(d>jr±,pTr±\\pTr±,pT±)2- (A56) 

The matrix elements of F3,Lex are given as follows: 

(<Pu\ VZ,L**\ <Pz,k)= (d<r,s\\s,k)+ (d<r,pa\\p(T,k) 
+ 2(dv,pTr±\\pir±,k), (A57) 

(n\V3,LeX\cPZ,y)=(dT^s\\s,pT±)+(dT±M\P^^±) 

+ {d^.pT^WpT^.pTr^). (A58) 

(b) The three-center integrals. 
In our calculation of the three-center integrals, Vi,L 

is assumed to be the point-charge potential. The three-
center integrals are computed approximately, replacing 
the integrals by the sum in which a fine cube mesh has 
the volume (0.0625)3. The summation in fact extends 

over the region, 0<x<p, 0<y<p and — p/2<z<2p, 
and is finally multiplied by 4. Difficulties associated with 
the singular points of the potential, X / Vi,L, at %= p, 
y—0 and x=0,y=p are eliminated by cutting off a small 
cube involving these singular points. This is justified by 
the fact that no appreciable change in the value of the 
integral is seen when the size of the small cube is varied. 

In order to check this, the overlap integrals were 
calculated this way. The comparisons with the exact 
calculated values are: 

Approx. Exact Error % 

(<PU\<PZ,S) 0.01209 0.01175 Z9 
(<Pu\<n, z) 0.01727 0.01598 8.1 (A59) 
(<PS\<P*,V) 0.00967 0.00945 2.3 

The region over which the summation was performed 
was determined after examining the contribution from 
several regions separately. 

Numerical values of the three-center integrals are 

= 0.08626, 

=0.12681, ( A 6 0 ) 

^TT= (<£>f | Fl,|Xf,r)3_cent= 2 (<^|X/ V{.,L\ <PZ,y) 
= 0.08578. 

I t should be noted that the ratio between the three-
center integral and the overlap integral is found to be 
almost the same for s, a, and 7r, e.g., Js/<5,

s=1.06, 
7<r/5ff=1.14 and 1^/5^=1.13. This means that the 
following relation approximately holds: 

(<Py\ V L \ X7A;)3-cent— V LGti (<Py | X7jfe), ( A 6 1 ) 

where VLBU is a constant being independent of 7 and k, 
and it is ~ 1 . 1 in our case. Thus, a very interesting fact 
appears, when we see the values of ]]T/ Vi,L at several 
points: 

*£' VilL(x=y=0,z=0) = 1.32, 

E ' VilL(x=y=0, *=p) = 0."88, (A62) 

E ' Vi,L(x=y=0,z=p/2)=1.12, 

namely, that VLeff is very close to the value of X / Vi,L 
at the midpoint between the nickel and fluorine site 3. 


