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ready promotion to the conducting levels above the top 
Fermi level in the ground state. In graphite, which is 
the two-dimensional case for our system, there are one 
orbital and one valence electron per atom with three 
equivalent neighbors. For graphite it is clear both theo
retically9 and experimentally7'10 that the two-dimensional 
metallic state exists. Thus, we see that for this system, 
at least, bond resonance without vacant orbitals can pro
duce the metallic state. It is our theory that the new class 
of metals discussed here is the three-dimensional analog 
of the two-dimensional metal graphite. There are four 
orbitals and four valence electrons with four neighbors 
in the tetrahedral lattices of diamond, wurtzite, and 
sphalerite which on compression transform, according 
to Jamieson,4 into the six-near-neighbor structure of 
metallic tin. Thus four bonds have to satisfy six atoms 
(the central atom contributes 4 valence electrons and 
each of the surrounding 6 atoms contributes 4/6 more for 
a total of 8, just adequate for four full bonds). The res
onance state is possible because the Franck- Condon 
principle has been satisfied by the location of the atoms 
in equivalent positions, and, as a consequence, the full 
crystal is set into three-dimensional resonance such that 
the entire crystal becomes one molecule at least at the 
absolute zero of temperature. At finite temperatures the 

9 P. R. Wallace, Phys. Rev. 71, 622 (1947). 
10 A. R. Ubbelohde and F. A. Lewis, Graphite and Its Crystal 

Compounds (Clarendon Press, Oxford, 1960). 

THE influence of an electric field on the optical 
absorption of a semiconductor or insulator in the 

vicinity of an absorption edge has previously been 
studied by Franz1 and by Keldysh.2 These authors 
have shown that in the presence of a field, absorption 
occurs for photon energies lower than the ordinary 
band gap. This effect%as been observed experimentally 
by Moss,3 Williams,4 Boer et at.* and Vavilov and 
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principle of strict symmetrical equivalence for neighbors 
will be violated by the lattice vibrations, and the res
onance possibilities will be reduced because of the 
Franck-Condon principle; or in band theory language 
the scattering of conducting electrons will result. 

The conduction act itself can be most clearly en
visaged as the removal of an electron from the resonat
ing molecule at one edge of the crystal at the cost of the 
ionization potential, the distribution of the resultant 
positive charge uniformly over the entire molecule be
cause of the three-dimensional resonance, followed by 
the neutralization by acquisition of an electron at the 
opposite side of the crystal with the regaining of the 
energy corresponding to the ionization potential. In the 
presence of an electric field the positive charge obviously 
will not be completely uniformly distributed at any 
finite temperature because the relaxation time for the 
molecular lattice will necessarily be the time for the 
transport act in order that the charge be passed from 
anode to cathode, and this limitation in rate will cause 
a charge gradient to exist across the molecule. At the 
absolute zero of temperature this electrical resistance 
would appear to be zero. 

Drickamer8 and his co-workers have shown that, like 
true metals, the new compressed phases absorb light 
down to the lowest frequencies. This can be envisaged as 
being due to the close lying states in the crystal (mol
ecule) corresponding to charge displacement from one 
end of the crystal to the other. 

Britsyn.6 In addition to the displacement of the edge, 
one expects to find oscillatory behavior of the absorption 
above the edge resulting from transitions between the 
discrete " Stark" levels produced in the band system 
by the external field.7 This structure might be similar 
to that observed in the interband magneto-optical 
effect by Burstein et al.s and by Zwerdling et al.9 The 

6 V. S. Vavilov and K. I. Britsyn, Soviet Phys.—Solid State 2, 
1746 (1961); L. V. Keldysh, V. S. Vavilov, and K. I. Britsyn, in 
Proceedings of the International Conference on Semiconductor 
Physics, Prague, 1960 (Czechloslovakian Academy of Sciences, 
Prague 1961), p. 824. 

7 G. Wannier, Phys. Rev. 117, 432 (1960). 
8 E. Burstein, G. S. Picus, R. F. Wallis, and F. Blatt, Phys. 

Rev. 112, 15 (1959). 
9 S. Zwerdling, B. Lax, L. M. Roth, and K. J. Button, Phys. 

Rev. 114, 80 (1959). 
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The effect of an external electric field on the optical absorption associated with a direct transition between 
bands is studied. Expressions are given for the absorption constant for photon energies below and above the 
band gap. The formation of discrete levels in the presence of the electric field produces oscillations in the 
absorption. 
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theoretical calculations of Franz and Keldysh do not 
predict such oscillations, and it was with the objective 
of determining whether oscillations should be expected 
that the present work was undertaken. 

Our conclusion is that the absorption should contain 
an oscillatory component, both above and below the 
usual band gap. Although the amplitude of these 
oscillations will not be large for easily attainable field 
strengths, their observation would constitute strong 
evidence for the existence of discrete electronic levels 
in a uniform electric field. 

This calculation is based on discussions of the theory 
of tunneling given by Kane10 and Argyres.11 We will 
use the notation of Argyres whenever possible. 

In the presence of a uniform field of force, F, which 
is assumed to be in the x direction, and a periodic 
potential, the wave function of an electron may be 
written as 

0,fn(ki,r) = L*.^»'.n(k)^„(k,r). (1) 

The \f/n(k,r) are Bloch functions for wave vector k and 
band index n. The Av>n are solutions of the equation 

\En(k)-iF \AVtn=WVtnAVtn. 
L dkj 

(2) 

In this equation E»(k) is the energy of the Bloch 
function ^ n (k) in the periodic potential plus the diagonal 
matrix element of the perturbing field, —FXnn(k). 
We will, however, neglect the latter quantity in the 
following.12 I t is assumed here, as in the calculations 
previously mentioned, that the direction of the electric 
field coincides with one of the reciprocal lattice vectors 
of the crystal. The solution of this equation is 

Aw,n=— e x p l - /" LWVtn-En(khk
f
x)~]dkA, (3) 

K1/2 IF J0 J 

2vvF 1 rK/2 

WVtn= + - / En(kx,kx)dkx. (4) 

In these equations, kx stands for the components of the 
wave vector perpendicular to the field, K is the width 
of the Brillouin zone in the x direction, and v is an 
integer denoting the discrete "Stark" level. The entire 
effect of the electric field on the motion of the electron 
is not included in this calculation since there are off 
diagonal matrix elements of the Hamiltonian between 
states 4>v,n and <j>v\n' which must be included in a 
description of the phenomenon of tuneling. We will, 
however, neglect these quantities in this calculation. 

To treat the problem of optical absorption, we 

10 E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959). 
11 P. N. Argyres, Phys. Rev. 126, 1386 (1962). 
12 The principal effect of this term is to produce an additional 

shift in the band edge linear in the field, in addition to the spread
ing into the gap described in Eq. (23). 

suppose that an external time-dependent electro
magnetic field described by a vector potential 

«=How' ( - M ° (5) 

is incident on the system. The perturbation is 

£r'=G0»)«-p. (6) 

In the calculation of the transition probability with 
the perturbation (6) we wish to avoid explicit use of 
the standard formula 

W=(2Wh)\Hf;\*p(Ef), 

since this involves a density of states for a system which 
here contains discrete levels. We follow instead, the 
procedure of Argyres.11 Let ^ (t) be the complete wave 
function for the perturbed system. This function can be 
expanded in terms of the functions <f>: 

1*r(O = S n f v f k 1 6 v t n l k 1 ( O 0 i ' , n ( k i , r ) . (7) 

The probability that the system is in the state <£„,„ at 
time t if it was in <£„>, n> at / = 0 is, to first order in the 
radiation field: 

|&*,n,ki(0|2 

= \Mnn>{Kvy)\^(Wv,n-Wv>,n>--tlO>, t). (8) 

I t can easily be seen that the transverse components of 
the electron's wave vector are conserved. The function 
Q is given by 

1 2 M = ( 4 A 2 ) s i n 2 ( ^ / 2 ) . (9) 

The matrix element Mnn' is given by 

vi , r)—e- ptfv,n'(kj/,r)dV, Mn 

m 
' = /0 , t»*(ki 

e% r r 
= — / dkxdkx'Av>n*(k)Av>n,(k') 

m J J 

X Un*(k,r)eis-rt-vpn.'(k',r)rf«r, 

= — / Av,n*(k)A,,n,(k)fpnn>(k)dkx. (10) 
m J-K/2 

In order to obtain the last line of Eq. (10) we have 
made the standard approximations of radiation theory 
in which the momentum of the photon is neglected. 
The quantity pnn

f is the usual interband optical matrix 
element. 

The number of electrons per unit volume and time 
which make transitions between band nr and band n 
is given by 

1 2 r dkx 
wn 

1 2 r dkx 

' = — E / 
t Lx vy J (2?r)2 

(ID 

In this equation, Lx, a macroscopic quantity, is the 
length of the specimen in the x direction. The factor 
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of two takes account of spin. When the function 0 is 
placed inside the integral in (11), it may be interpreted 
as being proportional to a delta function for large 
times. Then we have 

wn 

2 2TT r dkx 

E / 
Lx ft vy J (2TT)2 

with /x the reduced mass for the two bands: M 1 = mn
 l 

+mn~
1' Eg is the energy gap at k = 0 . 

Mnn> = (e-ptmO 
m 

\Mn 

XHWv,n-Wv>,n>-fia>). (12) 

X 

The sum over v and v can be expressed in terms of a 
single sum and an integral through a relation employed 
by Argyres.11 For a function f(x), possessing a Fourier 
transform 

1 K • f00 

— Hf{v-v') = — £ / j{x)e2«ilHx. (13) 
Lxv,v' 2lT l=—°o J__^ 

The matrix elements and the delta function depend on 
v, v in the combination v—v\ 

e% rn I 
= ( e - p n n ' ) / e X P 

m J-K/2 I 
i[ <?kx-\ ) . 

3/3/J 

2/x 

\dkx 

/ exp — J ( E^—^oH to/ . 
j _ K / 2 LF Jo \ 2/x / J 

( 

where 

F\ 

m\ Eg-tiu+ ; (3 = 
2 / z / 

2»F 
(16) 

M / = -
eSIo K/2 

e-Pnn' exp — 
WK y_K / 2 

**r2irF 

F J O L K 
-(v'-v) 

where 

+A f t ' f t+£ft„' \dkx\dkx, 

The limits of integration may be extended to ± <*> when 
F is small. The integral then gives 

2ire%oP1/3 

J f . v = (e-p„nO Ai(<7/^). (17) 

In this equation Ai is the Airy integral, denned by13 

1 /-00 

Ai(s)=— / c o s ( 5 2 + ^ 3 ) ^ . 

1 /.K/2 

K J-K/2 

Hence, 

2K oo r dkj. r 

h «—*; (2TT)2 7 

/2TTF \ 
X5f x+A^-^coJe271"^, 

~ ^ n . 

--If 
+2 

1=1 J 

This result must be substituted into Eq. (14) for the 
transition probability. There are two cases to be 
considered. If a is positive, fioo <Eg+fi2k2/2/jL, for small 
fields we may employ the asymptotic expansion of the 
Airy integral 

Ai(s)« ( 1 / 2 T T W 4 ) e x p ( - f ^ 2 ) . (18) 

On the other hand, if a is negative, we use 

A i ( - 2 ) = ( 1 / V W 4 ) s in( f^ 2 +i7r) . (19) 

Let us first consider the case in which a is positive. 
Then 

\Mnn,(x0)\* 

Wnn' z 

dkx 

fa)* 

e22to2/31/2 

4 x 2 w 2 M 
| £ 'P« . ( / * 

expC-fcr3/2/^2] 

Tl/2 

| Mnn' (XQ) J 2 COS(2TT/XO), (14) 

in which #0= (ic/2irF)(Annt—tiu>). 
I t is necessary now to evaluate Mnn'- We will first 

make the standard assumption that, for an allowed 
transition, the momentum matrix element pWW' is 
independent of k. We must also make assumptions 
concerning the band structure. Our concern here is 
with direct transitions. Two bands centered at k = 0 
are considered, both in the effective mass approxima
tion. One band has negative; the other, positive 
curvature. We have 

00 r e x p O 3 ' 2 / ^ 2 ] rd n i 
+ 2 £ dkj. cos —(Ann'-*«) . (20) 

In the case of small fields, it is again legitimate to 
extend the limits of integration to infinity. Further
more, we may expand cr3/2. 

?l/2 = 
i /2/Ai/2r 

„)« 

• £ „ „ ' = E B + ^ A * , (15) 

fl2k2 "1 

+f(Eg-fe)1/2 +••• • 
2/x J 

13 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics 
(Cambridge University Press, New York, 1950), p. 508. 
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The o-1/2 in the denominator may be approximated by 
neglecting k2 altogether. We recall that the absorption 
coefficient, a, is related to the transition probability 
by the formula 

a = 2fiwnn'/o)neoC^io2. (21) 

Finally, we note that Anw> is given by14 

A, 

where 

m2 

--Eg+ +A 0 , 
2\x 

1 rKIZ / 
o = - / ( 

K- J-K/2\ 

)dkx. — )a 
2/j.J 

(22) 

We finally obtain after a straightforward calculation 

ixF r /EQ-tio)\*i2-\ 

where 

and 

K=2e2\ £• pnn'\2/7rin2fi2n€oc, 

E0
3/2 = 3^F/4(2ju)1/2, 

(24) 

(25) 

oo [2n(Ea-iUa)J/2 

/(co) = l + 4 E 
i=i 8 / * ( £ , - * « ) + A W 

X J 2 [ 2 / x ( £ , - M ] 1 / 2 cosj — (tia>-Eg-Ao) 

rut 
-\-fid sin] —(-ha—Eg—AQ) 

IF 
. (26) 

The absorption edge is not sharp in the presence of 
the field, but rather falls off exponentially into the gap. 
The absorption in the gap is governed by the quantity 
EQ which appears in the exponential. I t is seen that EQ 

is proportional to F2/3, so we may say qualitatively that 
the spreading out of the absorption edge is proportional 
to the two-thirds power of the applied field. This spread 
is not large for fields of reasonable magnitude. When 
evaluated with numbers appropriate to GaAs, E0 turns 
out to be approximately 10~2 eV for a field (internal) 
of the order of 106 V/m. 

The summation term in (26) is periodic, repeating 
each time fio) increases by 2TTK/F. This quantity is just 
the Stark level splitting. Hence, we see that, as ex
pected, the absorption has a component which a 
periodic with the period of the separation between the 
Stark levels. The amplitude of this term will be, 
however, relatively small. Normally we will expect 
fi2K2/2fx^>(Eg—fico). In this case, the coefficient of the 
oscillatory term is 4[2/x(£ff—Aco)/AV]1/2. I t may be 

14 In the effective mass approximation, A0=ftV/24. The effec
tive mass approximation may, however, fail badly in the calcu
lation of Ann^ since this involves an integral across the entire 
Brillouin zone. In the following, we will regard it as an adjustable 
parameter. 

possible, however, to observe these oscillations, although 
they are rapidly damped. 

The apparent singularity in a when fto)=Eg is a 
consequence of the failure of the approximations made 
in the integration, and is not to be taken seriously. 

I t is also of interest to examine the absorption 
coefficient for photon energies greater than the band 
gap. In this case, there is a region of kL in which or is 
negative. In this region, it is necessary to use the 
approximation (19) for the Airy function. We define 
a quantity R2 by 

R2==(2fjL/¥)(itco-Eg). (27) 

For negative a, we put ki?=R2—q2. For positive <x, 
we set &x2=i?2+<?'2- Then we obtain for a : 

a=K— -exp - ( . / (« ) , (23) /4M / 4 M r rH r 
a = Kl— J / s i n 2 ( f 7 3

3 + i ^ g + i / g-*y*'*dq 

+2L 
1=1 

sin2(f7g3+i7r) C O S [ Y K % 2 - 5 2 ) ] ^ 

+ if e-*v^* coslyd(q'2+52)2dql\, (28) 

in which y=fi-l=fi2/2fj,F and S2= (2/x/A2)A0. This may 
be written as 

(2M)3'2 

a = K (ftco-E,)1/*^*)), (29) 

where 

2 oo 

R z«i 

B ! 
sm(iy q*)dq-\ 

R J o 2R j o 

R 

-&yq> 

[ l + s i n ( | 7 9
3 ) ] cos[>/(g2-S2)]<fy 

+ -47^3/ 3 c o s | > % 2 + W g • (30) 

These integrals may be evaluated approximately in 
the limit of small fields with the aid of the additional 
assumption that iC>>R>0, which is valid for energies 
moderately close to the normal band edge. We obtain 

!M- , +b 
3 v 1/3 r (4/3) 1 

R 4tyR 

cos (7K182) 

cos(fT#3) 

1 

z=i I {yd)ll2R ydR2 

X [ l + s i n ( f T £ 8 ) ] s inO/(£ 2 -<5 2 ) ] . (31) 

The leading term in the absorption is just the usual 

file://-/-fid
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absorption resulting from a direct transition between 
bands. The absorption constant for this process is 

a = (K(2fxyi2/fio))(ficc-Egyi2. 

The remaining terms in g(co) contain the effect of the 
electric field. Since y is inversely proportional to the 
field, the absorption increases as the field increases, as 
has been observed experimentally.3-6 There are two 
oscillatory components in the absorption as a function 
of energy. The larger of these involves 

cos(f7^3) = c o s [ ( ^ - E , ) / E 0 ] 3 / 2 , 

where E0 is given by (25). The cosine repeats itself 
when fioi changes by (approximately) 

A (fa) = i7rlEozf2/(^-Eg)
1/2J (32) 

Therefore, this term tends to produce oscillations of 
decreasing period and amplitude as energy increases 
for constant field. The other oscillatory term in (31) 
is similar to that found in (26), and has the periodicity 
of the Stark level separation. 

The first term in the summation in (31) gives rise to 
a periodicity of the absorption as a function of field 
strength for fixed energy of a different sort. Whenever 
the quantity y changes by Ay such that 

AY=27T/K52 , (33) 

the cosine in this term returns to its original value. 
The quantity Ay is approximately related to a change 
AF in the field by Ay=h2AF/2ixF2. 

We conclude with some comments relating to the 
approximations employed in the calculation and to 
the possibility of experimental observation of these 
effects. Aside from the usual approximation of energy-
band theory and of first order time-dependent pertur
bation theory, the principal computational approxi
mation is the use of the effective mass formula for the 
energy difference between bands, Eq. (15). The latter 
should be considerably more accurate in the present 
work than in the theory of tunneling since only rela
tively small values of Fa are important in the evaluation 
of the essential integrals. The existence of oscillations 
resulting from the Stark levels follows from Eq. (14) 
without any additional approximation. The only 
quantity in the calculation which is particularly sensi
tive to the effective mass approximation is d2 which 
determines the phase of the oscillations. The long-period 
oscillation (third term of Eq. 31) is the consequence 
of putting a finite upper limit on the integral of an 

oscillatory function, thus this oscillation is reasonably 
independent of the approximations. Use of Kane's 
reduced Hamiltonian10 would enable us to take account 
of the departures of the conduction and valence bands 
from parabolic form but would not enable a more 
accurate determination of 82 since the latter quantity 
involves an integral over the entire Brillouin zone. 
The improvement in accuracy resulting from the use 
of this Hamiltonian would seem to be less significant 
than in the theory of tunneling, and would produce a 
more complicated mathematical problem. 

I t should be noted, in considering possible experi
mental observations of these oscillations, that the 
situation is not particularly favorable in tunnel diodes, 
since the potential drop across the junction is insuffi
cient to produce two turning points in the classical 
description of the electron's motion. I t is probably 
better to use an external electric field, as has been 
done in the experiments previously cited. For instance, 
Williams was able to maintain a potential difference of 
approximately 100 V across a thin layer in a sample of 
CdS.4 For the purpose of making order of magnitude 
estimates of these effects, we will however, consider 
gallium arsenide. This material is available in a form 
with quite high resistivity so that it might be suitable 
for experimental investigations. 

Assume that a field 8=F/e=5Xl07 V/m is present 
inside the material, directed along a [111] crystal axis. 
The Stark splitting amounts to 0.016 eV. This is 
appreciably larger than KT at liquid nitrogen temper
atures and below. Let us consider an energy region 
approximately 0.15 eV above the normal band edge. 
Then yi£3=1.2, and the principal effect of the field is 
to increase the absorption by a factor of about 5/3. 
[However, the relatively small value of yR5 implies 
that additional terms in the expansion of the integrals 
in (30) should be considered in any detailed analysis 
of potential experimental results.] The quantity 
(7/cJ^2)_1[l+sin(|7jR3)] which determines the amplitude 
of the oscillations due to the Stark levels has the value 
0.036. I t might be possible to observe these oscillations 
at low temperatures if the resolution is good. 

If we estimate S2 in the effective mass approximation, 
we find that for this field strength the oscillations 
predicted by (S3) occur at intervals of 3X104 V/m. 
As the effective mass approximation presumably over
estimates S2, the oscillations should be somewhat more 
widely spaced than is predicted here. Since JR2<3C52, the 
second summation term has essentially the same 
periodicity in field strength, although the phase is 
different. 


