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Measurements of the spin-lattice relaxation time T\ by the inversion-recovery technique are reported for 
two paramagnetic centers in quartz over a wide temperature range: from 1.3 to 250°K for the E\ center, 
and from 2 to 80°K the E* center. The data, extending over several orders of magnitude in 7\, are inter­
preted in terms of cross relaxation, direct processes, and Raman processes. The dominant feature of the 
Raman relaxation is a temperature variation of about T3, which is much slower than expected by standard 
theory. 

The theory of spin-lattice relaxation is extended to account for the modification at a defect site of the strain 
due to a lattice wave. Each defect has at least one characteristic frequency and the local strain due to a wave 
of higher frequency is enhanced, being essentially given by the displacement due to the wave, rather than 
its spatial derivative. If the characteristic frequency is sufficiently low compared to the Debye frequency, 
the Raman relaxation rate should vary as Tz (or Tb) over a wide range of temperatures, instead of the usual 
T7 (or T9) variation. 

A detailed comparison of the relaxation rates observed for the two E' centers with the above theory 
suggests that each center has two characteristic frequencies or temperatures 0»-. For the E2 ' center one of 
these (0; = 45°K) is ascribed to the vibration of a neighboring impurity ion, probably a proton. The other 
temperature (c^5°K) may arise from the motion of oxygen ions at the defect. The E\ center has the two 
characteristic temperatures of 140°K and 14°K. 

A model for the E\ center is proposed: An electron is trapped at a silicon ion located in an oxygen di-
vacancy. This model leads to the likelihood of low characteristic frequencies through a non-rigid Si02 
group, and also through a net negative charge, which should attract one or more interstitial impurity ions. 

relaxation has been observed for paramagnetic impurity 
centers in a semiconductor11 in both the direct and the 
Raman regions. Tentative assignment of the tempera­
ture dependence of the Raman processes has been made 
for chromium7'8'12 and for iron.9,10 Recently Orbach13 

has, with a similar analysis, obtained explicit expressions 
for the spin-lattice relaxation time due to the direct 
and the Raman processes in rare earth salts; for the 
special case of a low-frequency acoustic phonon being 
resonant with an excited electronic state of the ion, an 
additional, exponential temperature dependence was 
indicated. The temperature dependence observed for 
rare earth ions14'15 confirms the predictions for the 
direct, Raman, and resonant Raman processes, at liquid 
helium temperatures, with the temperature well below 
the Debye temperature, and the mass of the rare earth 
ion about equal to the mass of the diluent ion. 

Many paramagnetic centers are not imbedded in a per­
fect crystal but are themselves associated with a defect 
site. For example, paramagnetic ions dilutely substituted 
at lattice points usually differ in mass and often differ in 
net electric charge from the ions they replace. Further, 

11 G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959); 
D. K. Wilson and G. Feher, ibid. 124, 1068 (1961); A. Honig and 
E. Stupp, ibid. 117, 69 (1960). 

12 J. G. Castle, Jr., D. W. Feldman, and P. G. Klemens, Ad­
vances in Quantum Electronics (Columbia University Press, New 
York, 1961), p. 414. 

13 R. L. Orbach, Proc. Phys. Soc. (London) 77, 821 (1961). 
14 C. B. P. Finn, R. L. Orbach, and W. P. Wolf, Proc. Phys. Soc. 

(London) 77, 261 (1961); cf., J. A. Cowen and D. E. Kaplan, 
Phys. Rev. 124, 1099 (1961). 

15 P. L. Scott and C. D. Jeffries, Phys. Rev. 127, 32 (1962). 

I. INTRODUCTION 

ELECTRON spins imbedded in a crystal are relaxed 
to the lattice temperature by means of lattice 

vibrations. The main features of the phenomena have 
been described by Van Vleck1'2 and Rronig3 in terms of 
the normal modes of the perfect lattice. Quantitative 
predictions were attempted2'3 for iron group alums and 
a clear identification was indicated for the direct proc­
esses (single phonon emission and absorption) and the 
Raman processes (inelastic scattering of thermal pho-
nons) by their dependence on temperature and on mag­
netic field.4 The temperature dependence of the direct 
processes has been experimentally verified for several of 
the iron group ions.5-10 The temperature dependence of 
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FIG. 1. Proposed 
structural model for the 
E2

f center in crystalline 
quartz. The crystal ball 
model is shown as 
viewed about 30° from 
a [10-0] axis. Regular 
lattice positions of the 
silicon and oxygen ions 
are indicated even 
though static relaxation 
around the defect is 
expected. The locations 
of the interstitial (s) are 
not shown. 

some paramagnetic centers are located at such defects as 
vacancies or interstitials. One, therefore, expects the 
mechanical properties of such defects to alter spin-
lattice interactions in their immediate vicinity. A simple 
modification of the theory of spin-lattice relaxation for 
defect sites is presented here in which the temperature 
dependence in the Raman region is markedly changed. 

The Er centers in quartz are particularly attractive 
for studying the Raman relaxation, because they have 
S= 1/2 ground states and also large optical splittings. 
Furthermore, with the open structure of quartz one 
would expect the mechanical properties of defect sites 
to differ strongly from those of perfect sites. On the 
basis of the relaxation data several details are proposed 
for the models of the E centers. 

The following section summarizes the static charac­
teristics observed for the E' centers in crystalline quartz. 
A more complete account is given in the companion 
paper.16 The theory for spin-lattice interactions at defect 
sites is outlined in Sec. I I I . The experimental technique 
is briefly described and the data are presented in Sec. IV. 
In later sections, the simplified theory is shown to be 
a remarkably good description of the relaxation proc­
esses, and some model details are discussed. 

II. CHARACTERISTICS OF Er CENTERS 

The Ef centers in crystalline quartz are identified by 
their magnetic resonance spectra.16-19 The only optical 
absorption associated with E' centers occurs near 2200 A 
and is spread over some 100 A but is well resolved20 from 
the band gap transition characteristic of quartz. 

The ground states of both E\ and E2
f are Kramers' 

doublets having a spin of one-half ( 5 = 1 / 2 ) , a slight 
anisotropy in spectroscopic splitting factor (g=2.00), 
and hyperfine structure consistent with the natural 
abundance and spin of Si29. Each center is an unpaired 
electron "on" one silicon ion. The magnetic resonance 
spectra indicate one environment for Z*Y centers and 
several for E2' centers. While it is apparent that the 

16 R. A. Weeks, preceding paper [Phys. Rev. 130, 570 (1963)]. 
17 R. A. Weeks, J. Appl. Phys. 27, 1376 (1956). 
18 R. H. Silsbee, J. Appl. Phys. 32, 1459 (1961). 
19 R. A. Weeks and C. M. Nelson, J. Am. Ceram. Soc. 43, 401 

(1960). 
20 C. M. Nelson and R. A. Weeks, J. Am. Ceram. Soc. 43, 399 

(1960). 

hyperfine structure obtained16 from the few centers 
having Si29 at them or near them is the principal source 
of our understanding of the structure of the centers, 
this paper will deal with relaxation of those centers 
having only Si28 in and around them and, therefore, 
having no hyperfine structure due to Si29. These Si28 

centers give rise to the most prominent resonance lines 
in the E' microwave spectra. 

For interpretation of spin-lattice relaxation the char­
acter of the excited electronic states of the E' centers is 
of interest. Since the structural models for E± and E2' 
centers are currently being detailed, the excited wave 
functions are lacking too and it remains for spin-lattice 
relaxation results to classify the excited states according 
to whether or not the Van Vleck cancellation controls 
the Raman processes.2'13 

A. Production of Ef Centers 

The E' centers are produced in high-purity silica by 
Co60 7-ray irradiation.21 The model proposed16 for an 
E% center, shown schematically in Fig. 1, is a single 
electron trapped on a defect silicon ion next to which is 
a silicon vacancy and from which the nonbridging 
oxygen ion has been removed during irradiation. For 
H parallel to [00-1], the three resonance lines are shown 
in Fig. 2 as observed at 73°K having a g value of about 
2.0009. The elements of the g tensor for the central line 
have not been found separately from the outer pair. The 
silicon hyperfine structure16 indicates that there are only 
three silicon neighbors each probably located beyond 
each of the three oxygen ions forming bonds to the 
defect silicon. 

The other paramagnetic centers produced by the 
gamma irradiation have been discussed in some detail 
elsewhere. Apparently some of the aluminum ions pres­
ent lose one electron and become paramagnetic. Mag­
netic resonance lines, similar to those first reported22 as 
being due to substitutional Al, appear a few gauss below 

FIG. 2. Resonance absorption by E</ centers of 9 Gc/sec radia­
tion with the applied field H parallel to the [00-1] axis of sample 
CQ-10 at 73 °K. The photograph of the oscilloscope screen shows 
the three resonance lines for silicon 28 centers with the vertical 
scale linear in microwave emf and the horizontal scale, linear in 
magnetic field. The separation of the two large peaks is about 0.4 
Oe. 

21 R. A. Weeks and E. Sonder, in Proceedings of the Conference on 
Paramagnetism, Jerusalem, Israel, July, 1962 (to be published). 

22 J. H. E. Griffiths, J. Owen, and I. M. Ward, in Report of the 
Conference on Defects in Crystalline Solids (The Physical Society, 
London, 1955), D. 81. 
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the E* lines shown in Fig. 2. Another center23 exhibits 
four equally spaced lines and has g= 2.002 at H parallel 
to [00-1]. 

B. Heat Treatment in Air 

The E2 centers may be removed by bleaching with 
ultraviolet light at 78°K or by heating above 150°C.19 

On the proposed model this bleaching may take place by 
the removal of one electron forming a nonparamagnetic 
E2 center. Heating to 300°C removes the four-line spec­
trum and the paramagnetism from the "Al" centers. 

Ei centers are not observed in crystalline quartz after 
Co60 irradiation but are observed after heating to tem­
peratures in excess of 250°C. Upon heating to about 
350°C, the Ei centers disappear. 

The concentration of E2' centers in synthetic crys tals 
after a dose of 109R of Co60 7 rays is of the order of 1016 

cm"3. After the heat treatment necessary for the E\ 
centers their concentration is of that same order. 

C. The £ / Center 

The Ei centers (with no Si29 around) are all equiva­
lent for H parallel [00-1] , giving a single line at 
g= 2.0008, as shown in Fig. 3. Silsbee has proposed18 

that an E\ center is a single electron trapped on a 
silicon. We propose here an improved model based on 
further microwave data16 and the relaxation results. We 
suggest that an E\ center is a single electron trapped at 
a silicon ion which is located between two oxygen 
vacancies; more details are given in Sec. V and the model 
is shown schematically in Fig. 4. There is presumed to be 
a collection of one or more interstitial impurity ions 
around each E\ center maintaining charge neutrality 
and contributing to the spin-lattice relaxation. 

III. THEORETICAL CONSIDERATIONS 

Van Vleck1,2 has given the theory of the spin-lattice 
relaxation for an isolated spin in terms of the normal 
modes of the perfect lattice. We present here an adapta-

FIG. 3. Resonance absorption of Ei centers of 9 Gc/sec radiation 
with the applied field H parallel to the [00-1] axis of sample GQ-9 
at 4.2°K. The photograph of the oscilloscope screen shows the 
resonance line for silicon 28 centers with the vertical scale linear 
in microwave emf and the horizontal scale, linear in magnetic 
field. The full line width as seen is less than 0.1 Oe. 

FIG. 4. Proposed 
structural model for 
the E\ center in crys­
talline quartz. The 
crystal-ball model is 
shown as viewed 
along [10-0]. Regu­
lar lattice positions 
of the silicon and 
oxygen ions are in­
dicated even though 
static relaxation of 
the lattice around 
the defect is ex­
pected. The loca­
tion (s) of the inter­
stitial is not shown. 

tion of that theory for situations where the defect nature 
of the spin site gives rise to local strains significantly 
different from those in a perfect lattice. The main fea­
tures of the usual theory are given and an approximate 
substitution for the appropriate local strain at a defect 
site permits the Raman summation to be expressed 
rather simply in closed form. The resulting expression 
for the relaxation time is shown to have modified co­
efficients with the same temperature dependence for 
the direct term and a markedly different temperature 
dependence for the Raman terms. Since the present 
theory is essentially phenomenological, we do not deter­
mine separately the values of the effective strain and of 
the coupling coefficients. However, the temperature de­
pendence is put to experimental test in Sec. V. 

A. Relaxation in the Perfect Lattice 

The relative spacing of the two spin levels in a mag­
netic field is perturbed by a change in the crystal field, 
due to a strain e, and the perturbation Hamiltonian is 
of the form 

3C' = Ae+Be2, (1) 

where A and B are the appropriate coupling parameters. 
The strain e of the arrangement of atoms immediately 
surrounding the spin site is expressed as the superposi­
tion of strains due to the normal modes of the perfect 
crystal (lattice waves). This perturbation Hamiltonian 
is substituted into standard second-order perturbation 
theory, giving the rate of return of the spin population 
to equilibrium from some nonequilibrium situation. The 
term Ae, which is linear in the phonon field, describes 
processes in which the spin is reversed with the emission 
or absorption of a single phonon (direct process), the 
term Be2, bilinear in the phonon field, describes two-
phonon (Raman) processes.24 

The strain e at a point x due to a lattice wave of 
wave-vector q in a perfect crystal is given by 

€ = (p>q)a(q)ei^'x+l0t\ 
G1/2 

(2) 

23 However, this center is not identical with that reported by 
J. A. Weil and J. H. Anderson, J. Chem. Phys. 35, 1410 (1961). 

where G is the number of unit cells in the crystal, p a 
unit vector in the polarization direction, a(q) is the dis-

24 See, for example, the phenomenological derivation given by 
P. G. Klemens, Phys. Rev. 125, 1795 (1962). 
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placement amplitude, and (p,q) is either a scalar or 
vector product, depending on the nature of the strain. 

The displacement a(q) is replaced by the oscillator 
matrix element, i.e., 

/ ft V2 

a(q) = ( — ) ZN or (N+1)J'*, 
W c o / 

(3) 

where co is the angular frequency of the lattice wave, M 
the atomic mass, N is the number of phonons in the 
mode considered, and N or (N+l), respectively, is used 
for the matrix element which describes either the annihi­
lation or the creation of a phonon from the oscillator 
state of N phonons. 

Substituting (2) and (3) into (4), and using only the 
term Ae as the perturbation, one obtains for the direct-
phonon relaxation time 

1 / 3 x1/3 ^2(ftco0)
2 T 

= 327T2( ) COD , 
T1D WJ Mc2(keye 

(4) 

where COD is the Debye limiting frequency, 9 the Debye 
temperature, i.e., fouD = kQ, c the velocity of sound, and 
#coo, the energy difference between the two spin levels, is 
assumed to be much less than kT. In deriving (4) one 
has taken for (p,q)2 the average value q2/3, replaced the 
equilibrium value of iV(co0) by kT/hooo, and used the fact 
that the only phonons which can cause a direct transi­
tion are those of frequency co0. 

In a similar way one expands e2 in a double sum of 
lattice waves and derives the Raman relaxation rate.24 

Making the same approximation for (p,q)2 as before, 
using the equilibrium expression for iV(co), summing 
over all pairs of phonons such that co—a/=coo, neglecting 
coo compared to co or co', and taking B independent of 
co, one obtains 

= 36TT( ) c o / - ) j J - \ (5) 

T1R \Mc2J \QJ \T/ 
The / factor is given for n=6 in the expression 

Jn(X) = f (e*- l> 
-dz} (6) 

an integral which is used frequently in transport theory, 
and which has been tabulated.25 For Kramers doublets, 
the Van Vleck cancellation2'13 can give B to be effec­
tively proportional to the phonon frequency and 

1/T1R«TU8(0/T). (7) 

We can visualize the effect on Tm due to a modifica­
tion of the strain by writing (5) in the form 

1 r^T T7z«e* 
oc / — dz. (8) 

. T1B Jo ( e* - l ) 2 

25 W. M. Rogers and R. L. Powell, Tables of Transport Integrals, 
National Bureau of Standards Circular No. 535 (U. S. Govern­
ment Printing Office-, Washington, D. C , 1958). 

A factor of T V arises from the (p,q) factor in the 
expression (1) for the strain. The remaining factor arises 
from the thermal average displacements, and the sum­
mation over pairs of modes such that co'—co = co0. For the 
strain at a defect, it is the factor T%4 which must be 
appropriately modified. 

B. Local Strain at a Defect Site 

In the usual treatment one uses expression (2) for e in 
(1), even though (2) holds only in a perfect crystal. In a 
slightly imperfect crystal Eq. (2) will still hold almost 
everywhere. However, to calculate T\ we need the strain 
in the immediate vicinity of the spin site. When the 
spin is associated with an impurity or defect, this is 
precisely where expression (2) fails. We must, therefore, 
look more closely at the strain at a defect site. 

Every defect has associated with it one or more 
characteristic vibrational frequencies ooi, which have to 
be compared to the frequency describing the normal 
interatomic bond of order COD. Roughly speaking, we can 
expect two classes of behavior: (a) cases whenco* exceeds 
C^D sufficiently, so that the vibrations at that frequency 
are not propagated through the crystal, but are localized 
at the defect26 (The interaction between spins and 
localized modes has been treated elsewhere.24); (b) cases 
when co; falls below COD SO that localized modes in the 
usual sense are not formed,27 but the defect system 
undergoes forced oscillations28 under the influence of the 
lattice waves. We shall be concerned with the latter 
case here. 

To be more specific, consider an interstitial atom in 
the cage formed by the normal atoms of the crystal 
which surrounds it. If the normal lattice is at rest, and 
the interstitial atom slightly displaced from its equi­
librium site, it will vibrate about that site with a fre­
quency w,-. If the lattice is displaced by a lattice wave 
so that an appropriate average of the displacements of 
the neighboring atoms is u—aei(a\ if v is the displace­
ment of the interstitial atom, and if we'neglect damping, 
then the equation of motion of the interstitial becomes 

dh/dt^wfiu-v). 

Writing v — beica\ it is readily seen that 

6 = tf[co;2/(co;2-co2)], 

(9) 

(10) 

where a is the same as in (2). 
The lattice wave gives rise to two types of deforma­

tions about the defect site. If we think of the normal 
lattice atoms surrounding the interstitial as a "cage," 
then the shape of this cage is deformed by the lattice 

26 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955); 
see also, H. B. Rosenstock and C. C. Klick, ibid. 119, 1198 (1960). 

27 An effectively localized mode for a case with O>;<COD in a 
Bravais type lattice is discussed recently by R. Brout and 
W. Visscher, Phys. Rev. Letters 9, 54 (1962). 

28 A possible example of such forced oscillations at a lattice 
defect is discussed by H. B. Rosenstock, J. Phys. Chem. Sol. 23, 
659 (1962). 
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wave. In addition, the interstitial atom will move from 
its central position in the cage, and the motion relative 
to the cage is the difference (v—u). Each of these de­
formations may perturb the spin Hamiltonian 
independently. 

The deformation of the cage, in the absence of the 
interstitial, would be described by a strain of the usual 
form (2). Although the interstitial will somewhat modify 
this deformation, it will not affect the general character 
of the strain. We shall disregard this modification and 
use Eq. (2) to describe this strain. 

The motion of the interstitial atom relative to the 
cage leads to a strain of different character, given for 
negligible damping from Eqs. (9) and (10) by 

v—u a or 
( i i ) 

where #o is the appropriate interatomic distance. 
Clearly, e' is enhanced over e at frequencies near and 
above co». However, expression (11) cannot be used when 
summing over the entire frequency range for the Raman 
relaxation, because the neglect of damping causes Eq. 
(11) to exaggerate e' when co is near coi. 

In order to arrive at a tractable approximation for the 
Raman relaxation, we divide the phonon spectrum into 
two parts, co>o)i and co<co*, and use for each range the 
expression derived from (11) for the limiting cases o££>coz-
and co<3Cwt-, respectively. Thus, 

e'=(<a/<aiy(a/aQ)eiut for co<co* (12) 

and 
e'= — (a/a0)e

iu>t for co>co*. (13) 

This crude approximation is, in fact, preferable to the 
use of expression (11), in which damping was neglected. 
In the Appendix an exact expression is obtained for the 
modulus of ef on the assumption of velocity damping. 
The resulting curve of e'/a as a function of co is shown in 
Fig. 5. I t is seen that Eqs. (12) and (13) are indeed a 
reasonable approximation for any effect integrated over 
the phonon spectrum, for when damping is light, the 
error, although large, is confined to a narrow band of 
frequencies, while the error is small everywhere if 
damping is heavy. In any case, the approximation 
underestimates the effects due to e'. 

C. Relaxation at a Defect Site 

We can now regard the spin-lattice relaxation to be 
effected in two possible ways: The spin may be coupled 
to the strain € as in Eq. (1), and it may also be coupled 
to the strain e' (describing the motion of the central 
atom relative to the center of mass of the cage) through 
a relation analogous to (1) with coupling parameters 
A' and B', respectively. The strain e is also present at 
a perfect lattice site, but is usually disregarded since it 
is proportional to the second derivative of the displace-

2 3 
Phonon Frequency 

FIG. 5. Dependence of local strain per unit displacement on 
frequency. The horizontal scale is in units of the characteristic 
local frequency, w». Curve A represents the usual approximation 
for the strain modulus in a perfect Debye lattice with o>z> = 5; 
curve B, present approximation; curve C, for velocity-damped 
harmonic oscillator [Eq. (A3) with X = l ] ; curve D, for velocity-
damped harmonic oscillator [Eq. (A3) with A= 1/3]. The present 
approximation underestimates the local strain at all frequencies 
as indicated by the excess of curves C and D over curve B. 

ment. However, e' is enhanced at a defect site, becoming 
larger than e for waves of frequency near and above co*. 

The question arises whether the coupling coefficients 
Ar and B' for the odd modes are zero. For a spin site of 
high symmetry A' would indeed be zero,1 but if the 
symmetry is sufficiently low it may not vanish. The 
term in B' arises from two causes: (1) the term A'e' 
taken to second order, (2) and a contribution due to the 
essential nonlinearity of the effect of strain on the elec­
tronic states. The first contribution vanishes if A' 
vanishes, but there is no symmetry requirement that 
would make the second contribution vanish. Thus, in 
general, B' does not vanish and the odd modes con­
tribute to the Raman relaxation, even if they should 
not contribute to the direct relaxation. 

The direct relaxation is still given by Eq. (4), except 
that A2 is now replaced by 

>A*+a(Ay(u3ouD/o>i2), (14) 

where a is a numerical factor. Since there is an 
arbitrariness in our definition of e', there is a corre­
sponding arbitrariness in A1 and thus in a. If we take 
a0

3 to be the volume per atom of the normal crystal, 
a=(47r/3)2/3(27r)"~2. We have assumed that o)0<co4-, and 
unless co; is very small compared to coz>, the second term 
of Eq. (14) can be neglected.29 In any case, this would 
affect not the temperature dependence, but only the 
magnetic field dependence of the direct process. 

The contribution of B'(e')2 to the Raman relaxation 
can be calculated analogously to (5), using Eqs. (12) 
and (13) for e. Note now that the term in (B')2 can be 
derived from (5) simply by considering the different 

29 In the unusual case of co;<<Ccoo, the additional term would be 
a{A')2{<tiDf<tii)2 and this contribution to 1/Tw would be inde­
pendent of wo and thus independent of the magnetic field. The case 
ooi —> 0, which is a special case of our theory, has been treated by 
A. B. Roitsin, Fiz. Tverd. Tela 3, 2879 (1961). 
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dependence of e on phonon frequencies: The contribu­
tion from frequencies co>w»- is enhanced by a factor 

(c7e)4=a2(coi>/w)4 (for all o>>a>,), (15) 

while the contribution from frequencies co<co» is re­
duced by 

( e y e ) 4 = a 2 ( c W ^ 2 ) 4 (forallco<co;). (16) 

Thus, we obtain for the Raman relaxation rate 

1 36TT 
-UDIW 

T1R MV 

+a2(Bj 

TO 

T11 / 9 A 1 
Jiol 

e/e3 

where 9 ;= ftcai/k. I t is easily seen that the fourth term 
in Eq. (17) is always less than the third. Note that 
Eq. (17) contains a gross simplification due to the use 
of Eqs. (12) and (13). 

We must now distinguish further between two cases: 
(1) when ooi is not very much below COD, and (2) when o>» 
is substantially below O>D. An example of the first case is 
Cr(+3) in MgO, discussed earlier.12 Because the 
chromium ion is heavier than the magnesium ion it 
displaces, the defect may have a characteristic fre­
quency of the order CO*=W~1/2COD, where m is the ratio 
of the masses of chromium and magnesium. For lattice 
waves of higher frequency, the local strain would then 
be enhanced, and the spin-lattice relaxation time vary 
more rapidly than one would expect according to (5) 
at temperatures well below 9;. 

We shall be concerned here with the second case, 
when 9* is well below 9, so that there is a wide tempera­
ture range for which 9 4 < T< 9 . The relaxation will then 
arise mainly from modes of frequency co>co4-, for which 
e is enhanced. The temperature variation of 1/Tm is 
then essentially T3 over a wide range of temperatures, 
for the dominant term in Eq. (17) is the second one, 
proportional to 

(T/eyue/T). (is) 
The "ordinary" Raman relaxation, being reduced by a 
factor of order ( r / 9 ) 4 , is then expected to be small 
unless B is very much larger than Br. 

At temperatures below 9;, the other terms in (17) 
will gradually gain in importance. For T below about 
9»/6, 1/TIB will vary essentially as exp(— Qi/T) due to 
the contribution from modes <o>co»\ Furthermore, one 
expects direct processes and cross relaxation to become 
important at sufficiently low temperatures. 

There is the possibility of defect Raman relaxation 
occurring for a Kramers doublet whose normal Raman 

terms have the form T9Js(0/T). In those cases one 
would expect an expression analogous to (17) of the form 

£-(-KM(-D'<-3 
\Q/ \TJ 94

895 XT/ 
(19) 

Although we have so far considered only one special 
case explicitly, namely, an impurity atom carrying the 
spin, surrounded by a cage of normal atoms, the same 
considerations apply more generally. For example, it is 
possible to have the spin at an atom which is firmly 
bound to the lattice, but has a neighboring cell which 
contains a loosely bound interstitial. This interstitial 
may generate an electric field at the spin site, and its 
motion can then contribute to the relaxation. Here the 
out-of-phase vibration of the interstitial would again 
lead to an enhanced interaction, and though the param­
eter Bf may be somewhat smaller, the general behavior 
would again be similar. 

Again, it is possible to have a complex defect with 
internal vibrational degrees of freedom, some of which 
may have a low characteristic frequency. Such an in­
ternal vibrational mode need not be coupled to all 
lattice displacements—it may be preferentially coupled 
to lattice waves of some particular polarization. The 
details of this coupling will effect the magnitude of the 
corresponding interaction, but not its temperature de­
pendence. The Raman relaxation rate may, thus, be 
additively composed of several terms, e.g., one of the 
form of Eq. (5), and others of the form (17). 

IV. EXPERIMENT 

A. Technique 

The spin-relaxation time r was measured by monitor­
ing the recovery of thermal equilibrium following in­
version of the spin magnetic moment by adiabatic rapid 
passage.30 All measurements were made at approxi­
mately 9.2 kMc/sec, and therefore, near 3000 Oe. Pulsed 
field sweep was used both for inversion and for monitor­
ing the resonance by a sensitive superheterodyne spec­
trometer with cathode-ray oscilloscope output.5 For 
r ^ 2 sec, the cyclic method previously described6 was 
used. For longer times, which were encountered at low 
temperatures, the method was modified in that the 
recovery of the E' line from a single inversion was ob­
served a number of times over several time constants 
by occasionally sweeping the resonance through the 
observing frequency. 

The field sweep of many line widths was obtained by 
applying a trapezoidal current pulse to a pair of Helm-

30 An excellent description is given by A. Abragam, Principles of 
Nuclear Magnetism (Oxford University Press, New York, 1961). 
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Time - seconds 

FIG. 6. Recovery of thermal equilibrium of £ / centers in GQ-9 
at 18°K. The vertical scale is the logarithm of the fractional de­
viation from equilibrium spin populations and the horizontal 
scale, real time delay after inversion. The points are interpreted 
in terms of the best fit for a straight line (as shown) whose slope 
gives the relaxation time, Th to =LlO%. 

holtz coils mounted on the reflection cavity31 containing 
the sample. In order to avoid broadening the observed 
line, it is necessary that a good Helmholtz geometry be 
employed. For example, a sweep of 100 line widths (or 
10 Oe) gave no more than 20% broadening in sample 
GQ-9 which measured 1 cm along eight edges. The peak 
signal voltage, corrected for instrumental nonlinearities, 
seen on each sweep was taken to be proportional to the 
difference in the spin populations. This assumption is 
valid where there is no change in the line shape during 
recovery. The inspection of the complete line by field 
sweep allows direct confirmation of this assumption for 
each reading. 

The relaxation time was measured by plotting the 
logarithm of the deviation from equilibrium versus time 
after inversion. When these points yield a straight line, 
its slope is taken to be r. A typical plot is shown in 
Fig. 6 from which r was determined to ± 1 0 % . 

The power input to the resonant cavity was kept low 
enough to avoid observable saturation effects. 10 - 8 W 
with a dwell time of ~ 2 0 /xsec was found to be low 
enough to meet this criterion. 

The cavity coupling was adjusted to the desired re­
flection coefficient for each temperature by a remotely 
controlled sliding-vane tuner32 located just above the 
cavity. Each sample (with a copper-constantan thermo­
couple attached to it) was mounted in the microwave 
cavity so that liquid helium could circulate past its 
surfaces. The thermocouple was used to indicate the 
sample temperature above the liquid helium range.33 

31 P. F. Chester, J. G. Castle, Jr., P. E. Wagner, and G. Conn, 
Rev. Sci. Instr. 30, 1127 (1959). 

32 B. R. McAvoy, Rev. Sci. Instr. 33, 129 (1962). 
33 A careful calibration of this thermocouple vs a calibrated 

platinum resistance thermometer gave excellent agreement 
(=bl fiv on the emf for AT from 4.2) with the published tables of 
the National Bureau of Standards; R. L. Powell, M. D. Bunch, 
and R. J. Corruccini, Cryogenics 1, 139 (1961). 

Runs made with liquid neon indicated the thermocouple 
calibration was accurate to ± one microvolt, when re­
ferred to the helium reading. 

The measured relaxation time r for a particular ex­
ponential recovery of a dilute spin system may be the 
result of a sum of independent relaxation processes each 
characteristic of the isolated spin center. The usual 
collection of mechanisms include: cross relaxation34'35 

(by spin coupling to spins outside of the line being 
observed), and the spin-lattice processes—one or more 
direct processes and one or more Raman processes. The 
expression for r is, then, 

1 1 1 1 

- = - + +—, (20) 
T Tc Tin TiR 

where the relative values of the three terms are evalu­
ated experimentally by the dependence of r on tem­
perature, and on magnetic field orientation and strength. 

For 5 = 1 / 2 spins, such as the E' centers, the curva­
ture of a recovery in which the line shape does not 
change is sufficient evidence for cross relaxation. The 
deviation from a single exponential indicates the other 
spin system is warming up as the 5 = 1 / 2 system is 
cooling down. The reverse unfortunately does not hold 
and a single exponential may be due to cross relaxation 
where the other spin system remains at the lattice 
temperature. 

There may be a variety of conditions in which the 
5 = 1/2 line shape changes during recovery. One of these 
is a deliberate "hole" used to determine the degree of 
inhomogeneity in the resonance line. A changing line 
shape reveals spin-spin interactions within the 5 = 1 / 2 
system, and therefore, cannot affect the spin-lattice re­
laxation except when the S—1/2 system is itself com­
posed of different sets of spins having several classes of 
spin-lattice interactions. 

B. Samples 

The samples were prepared by bombarding polished 
crystals of synthetic quartz in a Co60 source at Oak 
Ridge National Laboratory and by a subsequent heating 
in air. Some details are given in the companion paper. 
Sample dimensions were roughly 1X1X0.2 cm3. 

FIG. 7. Holes in the resonance line of £ / centers in GQ-9 at 
27.3°K. The delay times for the two traces are 0.10 and 1.70 sec. 
The complete line was observed to have Ti = 0.44 sec at this 
temperature. 

34 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 
Phys. Rev. 114, 445 (1959). 

35 A. Kiel, Phys. Rev. 120, 137 (1960); 123, 2202(E) (1961). 
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FIG. 8. Reciprocal of 
observed relaxation time 
constant for Ei and E2

f 

centers in synthetic 
quartz vs lattice tem­
perature. Points marked 
C refer to central line of 
E2' resonance, shown in 
Fig. 2 (see text). The 
magnetic field of 3000 
Oe was applied parallel 
to [00.1]. 
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Relaxation data were taken on three samples GQ-9, 
GQ-10, and GQ-12, cut from the same mother crystal36 

grown on a Z-cut seed and one sample, CQ-10, from 
another crystal37 grown on a F-cut seed. Analysis38 indi­
cated the impurity densities of the GQ crystal (atom 
ratio to Si) to be approximately: Na—200 ppm, Al—100 
ppm, Ca—50 ppm, Cu—10 ppm, and Fe—10 ppm; the 
CQ crystal had the same principal impurities with less 
aluminum by a factor of 5. After irradiation near room 
temperature the densities of paramagnetic Al centers 
were about 10 ppm, of the four-line centers about 1 ppm, 

36 Grown by General Electric Ltd., England, and kindly supplied 
by C. S. Brown. 

37 Grown by Clevite Research Corporation, Cleveland, Ohio, 
and kindly supplied by D. Hale. 

38 The flame spectroscopy was performed by the spectroscopy 
group at ORNL. 

and after heating to about 300°C there were no para­
magnetic Al centers. 

C. Results for Ei Centers 

Figure 3 shows the appearance of the E\ resonance 
for sample GQ-9 at r = 4 . 2 ° K and # ~ 3 2 0 0 Oe. The 
magnetic field is parallel to the c axis. The central line 
is due to centers having no hyperfine interaction with 
Si29, and all measurements of E\ relaxation were made 
on this line. The spin concentration was measured to be 
2 ppm.16 The half-power line width is ^ 6 0 mOe and the 
line is inhomogeneously broadened at least on the time 
scale of the r measured for the complete line at 27°K. 
The inhomogeneity is shown by inverting only a section 
of the line. The "hole" which is, thus, produced dis-
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appears with a time constant39 approximately equal to 
r. The appearance of a typical hole is shown in Fig. 7 
at two different delay times. 

Figure 8 shows the reciprocal relaxation time ( 1 / T ) 
for Ei as a function of temperature between 1.2 and 
250°K for several samples. Each point represents the 
slope of an exponential recovery curve such as is shown 
in Fig. 6. The vertical spread indicated for each point 
was determined by the scatter in the recovery curve, 
with the usual minimum spread of ± 10% being assigned 
because the recovery curves were not often taken over 
more than one decade. Uncertainty in the lattice tem­
perature was appreciable only in the range just above 
4.2°K. The solid curve in Fig. 6 is given by 

+ D ' Q W T ) 
/BI' 

(21) 

w i t h 4 i = 0 , #!=0.0011 sec-^deg-1, d - 1 . 3 X 1 0 4 sec"1, 
Z)1=2.0X104 sec"1, e i=14°K, and 9i '=140°K. These 
parameters were empirically chosen to give the best fit 
with G D = 7 0 0 ° K . Curves of the form (T/GDyji(eD/T) 
and (r/6jD)5/4(9i)/71) are much too steep even with a 
Debye temperature of 300°K. 

Measurements with H±c indicate that r is inde­
pendent of angle for E± at 2.1 and at 80°K. 

D. Results for E2 Centers 

Figure 2 shows the appearance of the E2 resonance in 
sample CQ-10 at T~79°K. The two outer peaks are 
somewhat broader at 4.2°K as shown in Fig. 9. Here the 
central peak is barely discernible. The spin concentra­
tion was measured to be about 1 ppm,16 the half power 
line width of each of the outer peaks was about 60 mOe 
at J T = 7 9 ° K . The resonance line is inhomogeneously 
broadened to the extent that a "hole" inverted any­
where in the lines recovered with a time constant equal 
to that of the whole line ( « 3 0 sec at 4.2°K). Figure 8 
shows the reciprocal relaxation time for E2 in several 

samples from 2 to 80°K. Above 15°K r was found to be 
longer for the central peak than for the outer peaks. 
The relaxation time for the central peak is indicated by 
the letter C adjacent to each point. The upper solid 
curve is of the form 

-=A2+B2T+C2l — J /2( — )-jJ -

(22) 

with ^ 2 =0.032 sec"1, B2=0, C2=3.3(105), Z>2=1.5(105), 
e 2 =3°K, and 9 2 '=45°K. The constants 0 2 and C2 were 
chosen to fit the relaxation rate for the central peak. 
The constants D2 and 6 / were then chosen to fit the 
data of the major lines above 20°K. 

At helium temperatures r for E2 was found to depend 
on the field direction but not at 80°K. In fact, the angu­
lar dependence of Ti for E2 together with the range of 
TVs found in the four-line spectrum clearly indicate the 
dominance of cross relaxation to the aluminum centers 
at and below 4.2°K. 

V. DISCUSSION OF Ex' CENTER 

A. Inhomogeneity of Resonance Line 

Since the time for a "hole" inverted in any portion of 
the resonance line for the crystal with about 1 ppm of 
Ei centers takes seconds to "heal" or disappear into a 
normal line shape, the line is obviously inhomogeneous. 
This is in agreement with the observed line width of 
some 60 to 100 mOe being much wider than the homo­
geneous dipolar width estimated by the Van Vleck-
Kittel-Abrahams method.40 We are not sure how much 
of the observed inhomogeneity is spatial variation in the 
applied static field; we are sure that less than 20% of it 
arises from the field of the sweep coils even when we were 
sweeping a hundred line widths. I t remains for more 
refined measurements to relate the inhomogeneity of E\ 
resonance lines to possible sources of line broadening such 
as distant hyperfine coupling, spatial variation of crys­
tal orientation, or aggregated crystalline imperfections. 

FIG. 9. Resonance absorption of E2' centers in CQ-10 at 4.2°K. 
Conditions are identical to those for Fig. 2 except for the tem­
perature. The separate resonances are considerably broader. 

39 For a discussion of spectral diffusion within a resonance line, 
see for example: W. B. Mims, K. Nassau, and J. D. McGee, Phys. 
Rev. 123, 2059 (1961); A. Kiel, ibid. 125, 1451 (1962). 

B. Absolute Value of Tt 

The absolute value of T\ at 3000 Oe for E\ centers in 
synthetic quartz at any temperature above 4°K is 
specified by our measurements to an accuracy of ± 10% 
according to the agreement shown in Fig. 8. No differ­
ences in relaxation were observed between the two series 
of samples. The samples were quite dilute. Finally, they 
had impurity concentrations reasonably typical of syn­
thetic crystals of quartz. 

40 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948); C. Kittel and 
E. Abrahams, ibid. 90, 238 (1953). 
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Therefore, we conclude that the values observed are 
characteristic of isolated E / centers in synthetic crystal­
line quartz to an accuracy of better than ± 2 0 % . 

In the liquid helium range the T\ values for E / 
centers in GQ-9 are accurate relative to each other to 
about 10%; the principal source of uncertainty in ob­
serving such long TVs is the stability of the normal 
absorption signal (at infinite time after inversion) for 
such narrow lines. One other source of error was a speed­
ing up of recovery due to cross relaxation to the wings of 
the Ei line when the magnetic field for recovery, HR, 
was much less than 1 Oe from the resonant field Ho; 
this error in T\ was made negligible by sweeping so that 
H0—HR~5 Oe during recovery. 

In the liquid helium range the Ti values for 3000 Oe 
agree between samples to better than 20%. The size of 
the cross-relaxation term may, however, be somewhat 
larger than 20% of the observed r. 

C. Temperature Dependence from 1.2 to 4.2°K 

The Ti values for Ex' in GQ-9 from 1.2 to 4.2°K, 
shown in the lower left portion of Fig. 8, are interpreted 
as being due solely to direct processes, as indicated by 
the term JS t : r=0.001ir sec"1 and Ax=0. Therefore, we 
conclude that the sum of the Raman terms at 4.2° is no 
more than 0.001 sec - 1 and, on this basis, the "critical 
frequency" associated with the Raman term is no less 
than (10/700)OJJD, and not as large as (22/700)O>D for 
the Ei center. 

An alternate explanation is possible because of the 
similarity of the sum Ai-\-CiT3 with the linear term 
BiT. Presumably a finite rate of cross relaxation is to be 
associated with the "oxygen" centers. As the cross re­
laxation through A in the expression for 1/r is increased 
from zero, the lower limit on the critical frequency goes 
down below (10/700)COD. A test of the blend of A+BT 
and CTS is planned at 12 000 Oe and investigation of a 
more varied series of samples is underway. 

D. Temperature Dependence above 4.2°K 

Raman relaxation via a loosely coupled acoustic 
response at or near the isolated spin center should, 
according to the present theory [Sec. I l l , Eq. (17)], 
show a temperature dependence of the form Z(QDyQ%) 
= (T/eDyiJ2(eD/T)-J2(Gi/T)']. The Tx values found 
for Ei centers can be fitted to within about 20% over 
the range of six orders of magnitude by the sum of 
two such functions; the values are given in Sec. IV 
and on Fig. 8. The fit is essentially unique on the 
following bases: The only fi\t theoretical expressions 
available for Raman relaxation of a spin center which is 
clearly a S= 1/2 Kramers doublet are: (T/e)U8(6/T); 
(T/Q)7JQ(Q/T); the corresponding functions for cases of 
enhanced local strain, (T/Q)blJ4(G/T)-J4(Gi/T)'] and 
{T/GY[_J2(G/T)-J2(Gi/T)~\; and an exponential of the 
form exp(— A/kT), where A corresponds to a well-

defined energy gap in the spectrum of the lattice or of 
the ion. There are constraints on the G's, namely, (1) 6 
in J2(G/T) should equal the GD determined by specific-
heat measurements, (2) O in J8 and J& may differ some­
what from the specific heat value. According to the 
anisotropy observed in the acoustic velocity,41 the O in 
/ 8 or Je might be as low as 0 . 7 9 D , (3) 0 in J4 may be 
intermediate between (1) and (2) but must be very 
closely 6D, (4) 9* is less than 9 in J2 and J4. Now the 
expressions next closest to the Tz one, namely, the Th 

one with G = GD or the T7Je with 9=§9£>, are several 
orders of magnitude too low at the low-temperature 
end. Therefore, the two Ts functions given are the best 
fit of the Raman relaxation for E / . 

One conclusion from the T3 dependence is that crystal 
field splitting, say 8, between the excited states of the 
Ei center is small enough to allow strong mixing of 
the excited states by the applied field of 3000 Oe. The 
discussion of this general case by Orbach13 indicates 
the TVs and TV& terms can exist when /JLH/ 8^ kT/ A and 
that the latter will dominate for ixH/8^>kT/A. The ex­
cited states for E / are 2100 A up and so A/k^LlO 000°K. 
One is tempted, therefore, to use a sum of 

T5ZJ4(QD/T) - Jt(Qi/T)l+ T*[_J2(GD/T) - J 2 ( 9 y / r ) ] 

to fit the data in Fig. 8. The fit is not as good as with the 
two Tz functions indicated in Fig. 8, but addition of 
some resonant strain would probably make such a fit to 
the data acceptable. The argument for the Tz rests on 
the wide range of temperatures over which the function 
must agree with the data in Fig. 8. The conclusion will 
be checked by similar Ti measurements at 12 kOe. 

E. Crystalline Model for £ / 

During the course of this study, the model for an 
isolated E / center has been extended. The structural 
features of the proposed E± model are indicated sche­
matically in Fig. 4. We suggest that an E / center con­
sists of either one electron or three electrons trapped on 
the silicon located between the two oxygen vacancies. 
There may be one or more interstitial (alkali or alkaline 
earth) ions trapped nearby. Since no hyperfine structure 
to a sodium nucleus is observed16 any such interstitial 
must be an alkaline earth or must be located reasonably 
far from the defect silicon. The hyperfine couplings for 
Si29 are compared in the companion paper with those of 
the E2 center and with those of the similar defect 
centers in crystalline silicon.42 

The proposed model for E\ offers several sources of 
low-frequency vibration and loose coupling which could 
give rise to the observed Raman relaxation. One source 
is apparently (from Fig. 4) the vibrations of the com-

41 Values of the velocity measured for several angles were kindly 
made available to us by J. de Klerk and D. I. Bolef. 

42 G. D. Watkins and J. W. Corbett, Discussions Faraday Soc. 
31, 86 (1961). 
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pound pendulum of SiC>2 along the direction between 
the oxygen vacancies. Another possible source is the 
vibrations of each of the two Si03 complexes located out­
side of the divacancy. Another could be an interstitial 
located in the open c channel of the quartz lattice. 
Assignment of the two characteristic frequencies (Fig. 8) 
to specific sources cannot be made with the available 
data. 

VI. DISCUSSION OF E2' CENTERS 

E<1 centers are distinguished from E± centers by their 
response to heat treatment and by the details of their 
microwave spectra, their optical spectra, and their re­
laxation. The general similarity of the spectra of E2 and 
E\ centers is discussed in the companion paper. The 
general similarity in their Raman relaxation is obvious 
from Fig. 8. 

A. Absolute Value of 7\ 

The agreement between different samples observed for 
T\ at 80°K leads us to conclude the values of relaxation 
time given in Fig. 8 are characteristic of the isolated E2 

center in synthetic crystalline quartz. Specifically, T\ in 
the Raman region for the outer pair of lines is charac­
teristic of E2 centers with an impurity configuration 
which includes a proton and Tm for the central peak is 
for E2 centers with a similar configuration but without 
the proton. The accuracy in the Raman region is ap­
parently better than ± 2 0 % . 

The 30-sec relaxation time observed to be independent 
of T between 2.1 and 4.2°K (and surprisingly similar 
between samples) has been unambiguously identified as 
arising from cross relaxation to the aluminum centers. 
The Al centers were, in turn, observed to have a 
J P I = 0 . 1 0 sec at 2.1°K which is short enough to meet the 
requirement that the "other" spin system remain at the 
lattice temperature in order to produce exponential 
recoveries. 

B. Raman Relaxation 

The small central line of the E2 spectrum shows 
Raman relaxation which can be fitted by a single defect 
Raman function with 7 o K > 0 ; > l ° K and QD = 700°K. 
This relaxation time is TIB for an E2 center without a 
proton trapped adjacent to it. The two larger peaks 
have faster relaxation than the central one, except below 
14°K where their relaxation is observed to be identical. 
We conclude that there is an extra relaxation mechanism 
for the two larger lines, probably associated with a 
loosely bound proton. The observed temperature de­
pendence of the breadth of the outer two lines is con­
sistent with thermal activation of a 45°K motion of an 
impurity ion which is one source of inhomogeneous line 
broadening as well as the source of the extra relaxation 
mechanism. 

Assignment of the observed characteristic frequencies 
(Fig. 8) to a source of loose coupling or local vibration is, 
therefore, unique. The characteristic temperature of 
45°K exists in the motion of an impurity ion trapped 
adjacent to the E2 center. This ion is the proton or 
some other impurity associated with the proton. The 
characteristic temperature between 7 and 1°K exists 
either in the motion of the central silicon ion relative to 
the three oxygens bonded to it or in the motion of the 
three oxygens beyond the silicon vacancy. In either 
case, a very low frequency seems reasonable; the former 
has some similarity to inversion in N H 3 for example. 

Again the use of a Tz function to fit the data in 
the Raman region implies a mixed character13 to the 
excited state of an E2 center which would have given 
(l/T1R)ozH2T7J&(e/T) without loose coupling at the 
site. This same conclusion was seen to hold for E\ 
centers, but for E2 it is clearly unambiguous. 

Furthermore, the effect of the neglected strain of the 
phonons near the characteristic frequency may explain 
the slight excess of the data points in the neighborhood 
of 45°K over the solid curve. The curve was calculated 
from Eq. (17) according to the stated approximation 
and fitted to the observations at 80°K. The excess 
around 45°K is about 25% and apparently persists be­
tween 20 and 60°K. The excess cannot be accounted for 
by the fourth term in (17); this term, disregarded in our 
numerical fit, would contribute about 3 % to the calcu­
lated curve at T=45 0 K. A similar effect could have 
been found in E\ if the T3 term had been fitted at a 
temperature well above the characteristic 140°K 
temperature. 

VII. SUMMARY WITH RESPECT TO E' CENTERS 

The spin-lattice relaxation of E{ and E2 centers in 
synthetic quartz has been measured at 3000 Oe with 
sufficient accuracy and over a sufficient range of tem­
perature and samples to indicate several specific features 
of the electronic configuration for each type of center. 
The models proposed here and in the companion paper 
are certainly consistent with the presence of low 
characteristic frequencies of local distortion around each 
center;the assignment of one of the observed frequencies 
to the presence of a proton is apparently unambiguous. 
Refinement of details is expected after similar relaxation 
measurements at higher magnetic fields and in other 
types of quartz samples. 

Raman relaxation is found to represent another strong 
similarity in electron configuration between E\ and E2 

centers. 

VIII. SUMMARY WITH RESPECT TO RAMAN 
RELAXATION AT DEFECT SITES 

Raman relaxation at defect sites characterized by a 
low frequency of local distortion is shown to have a 
lower temperature dependence than the corresponding 
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Raman relaxation in a perfect lattice. An explicit ex­
pression is derived under the assumption of harmonic 
response of the local distortion at the defect site. The 
close fit to the data for the Ef centers, within about 20% 
over six orders of magnitude variation in T\, supports 
the validity of this method of calculation of Raman 
relaxation processes of defect sites. Such defect relaxa­
tion may be quite common. 

APPENDIX. LOCAL STRAIN AT A DEFECT SITE 
ASSUMING HARMONIC RESPONSE AND 

VELOCITY DAMPING 

The local strain at a defect site was discussed in Sec. 
I l l but damping was neglected. Damping of such motion 
whose frequency is within the acoustic branch of the 
crystal has previously been assumed to be very severe, 
whereas it actually may be quite moderate. In either 
case the following calculation applies to the extent that 
velocity damping is an adequate description. 

The quantity of interest (Sec. I l l ) is the modulus of 
the local strain per phonon at the defect site as a func­
tion of phonon frequency for each of several conditions 
of damping. For convenience, velocity-damping is intro­
duced into the calculation of the forced harmonic 
oscillator response giving the equation of motion 

d2v/dt2= -\a>i(dv/dt)-ooi2(v-u) (Al) 

instead of Eq. (10). For the incident phonon u—aeio}t as 
before, the response of the defect is taken as v=bei(o}t+<f>). 
Then the local strain is given by 

6 ' = (v-u)/ao= (a/a0)Rei<»*» (A2) 

and the modulus (a/ao)R is substituted into the Hamil-
tonian, such as Eq. (1). The solution of Eq. (Al) gives 
the reduced strain modulus R as 

(C( i - / 2 ) - (W2)2-x2/2]2+x2/2}1/2 , x 

where / is the reduced phonon frequency, co/W Equa­
tion (A3) holds for all values of the damping factor X; 
R is plotted in Fig. 5 for X = l and X = | . The value of 
X = | corresponds to the lifetime estimated by Brout and 
Visscher27 for W;=WD/5 in a Bravais lattice. 

The applicability of Eq. (A3) to a real defect is open 
to question on the basis that the actual damping of the 
excess local strain may not be velocity damping. There­
fore, one might expect the response for the higher phonon 
frequencies to be less than that indicated by Eq. (A3) 
and the approximation of Eqs. (12) and (13) might not 
underestimate the strain modulus over the frequency 
range. 



FIG. 1. Proposed 
structural model for the 
EJ center in crystalline 
quartz. The crystal ball 
model is shown as 
viewed about 30° from 
a [10 0] axis. Regular 
lattice positions of the 
silicon and oxygen ions 
are indicated even 
though static relaxation 
around the defect is 
expected. The locations 
of the interstitial(s) are 
not shown. 



FIG. 2. Resonance absorption by E% centers of 9 Gc/sec radia­
tion with the applied field / / parallel to the [00-1] axis of sample 
CQ-\0 at 73°K. The photograph of the oscilloscope screen shows 
the three resonance lines for silicon 28 centers with the vertical 
scale linear in microwave emf and the horizontal scale, linear in 
magnetic field. The separation of the two large peaks is about 0.4 
Oe. 



FlG. 3. Resonance absorption of E\ centers of 9 Gc/sec radiation 
with the applied field // parallel to the Q00-1] axis of sample GQ-9 
at 4.2°K. The photograph of the oscilloscope screen shows the 
resonance line for silicon 28 centers with the vertical scale linear 
in microwave emf and the horizontal scale, linear in magnetic 
field. The full line width as seen is less than 0.1 Oe. 



FIG. 4. Proposed 
structural model for 
the E\ center in crys­
talline quartz. The 
crystal-ball model is 
shown as viewed 
along [ 1 0 0 ] . Regu­
lar lattice positions 
of the silicon and 
oxygen ions are in­
dicated even though 
static relaxation of 
the lattice around 
the defect is ex­
pected. The loca­
tion (s) of the inter­
stitial is not shown. 



FIG. 7. Holes in the resonance line of E\ centers in GQ-9 at 
27.3°K. The delay times for the two traces are 0.10 and 1.70 sec. 
The complete line was observed to have Ti=0.44 sec at this 
temperature. 



FIG. 9. Resonance absorption of E>' centers in CQ-\0 at 4.2°K. 
Conditions are identical to those for Fig. 2 except for the tem­
perature. The separate resonances are considerably broader. 


