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The values of g± are very near the theoretical value of 
4g, the slightly lower value for the trichloride possibly 
being due to the influence of the doublet for which 
/ * = ± 2 ' Such an effect suggests that the splitting of 
the ground level of Cm3+ is smaller in the trichloride 
than in the ethylsulfate, a result analogous to that for 
Gd3+ in the two crystals.3 This is also suggested by a 
number of weak, highly anisotropic, lines in the spec
trum of the trichloride, some of which may arise from 
transitions between higher components of the ground 
level. These are now being investigated. 

The present work, by showing the spurious nature of 

I. INTRODUCTION 

TH E R E has been considerable interest in the past 
several years in developing rate equations de

scribing irreversible behavior in many-body systems. 
The most complete of such equations are the so-called 
"generalized master equations," which have been ob
tained by Prigogine and Resibois,1 Van Hove,2 Janner,3 

and Swenson.4 The Prigogine-Resibois equations, and 
the equations obtained earlier by the Prigogine group,1 

apply to gases with interaction, and describe the evolu
tion in time of the diagonal and off-diagonal elements of 
the density matrix in the quantum-mechanical case. 
Special initial conditions, but not the random phase 
assumption, are used. The Van Hove-Janner-Swenson 
equations apply to any system but describe the time-
dependence of the quantities UijU^-i ("transition prob
abilities") and UijUhi ("interference terms"), where 
U(t) = exp(—iHft/'h) is the time evolution operator, Hf 

is the total Hamiltonian, and subscript indices denote 

* Supported by the U. S. Atomic Energy Commission. 
1I. Prigogine and P. Resibois, Physica 27, 629 (1961). This 

paper contains references to the earlier work of the Prigogine 
group. 

2 L. Van Hove, Physica 23, 441 (1957). 
3 A. Janner, Helv. Phys. Acta 35, 47 (1962). 
4 R. J. Swenson, J. Math. Phys. 3, 1017 (1962). 

the earlier observations, eliminates what had become a 
serious difficulty in the theory; at the same time, it 
provides an important datum, namely, the Lande g 
value of the ground level of Cm3+ that should be 
valuable in fixing the degree of intermediate coupling 
both for Cm3+ and, by extrapolation, for later members 
of the actinide series. 

We wish to thank Dr. M. Klein for his help in the 
experimental work, Miss A. Tryon for growing the 
trichloride crystals, and Dr. J. C. Wallman and 
Professor B. B. Cunningham for their advice and 
encouragement. 

matrix elements in an unperturbed energy representa
tion. The initial conditions for the transition proba
bilities and interference terms are given by the definition 
of U{t). 

The equations mentioned above have the following 
common property. In spite of the different initial condi
tions, the density matrix elements, transition proba
bilities, and interference terms all have Markofiian, 
irreversible behavior in the weak-coupling, long-time 
limits.2,3'5 Specifically, they all are given by Pauli 
equations.6 

The purpose of this paper is to examine the role of 
initial conditions, and the form of the irreversible rate 
equations, for two specific but quite different interac
tions in crystals. We derive rate equations for the density 
matrix elements in the \H limit (defined below). In each 
case the Pauli equation obtains for the diagonal density 
matrix elements but not for the off-diagonal density 
matrix elements. The first example treats a random 
perturbation, and it is shown that no initial random 
phase assumption on the density matrix is necessary. 
The second example treats spin-spin interactions, and 
we show that either of two methods may be used to 

5 P. Resibois, Phys. Rev. Letters 5, 411 (1960). 
6 L. Van Hove, Physica 21, 517 (1955). 
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Irreversible rate equations for the diagonal and off-diagonal elements of the density matrix are derived 
in the weak-coupling, long-time approximation for two types of crystal perturbations—electrons scattering 
from random impurities, and spin-spin interactions. No initial random phase assumption on the density 
matrix is necessary in the derivation using the random perturbation. For the spin-spin interactions, a 
"partial" initial random phase assumption is introduced and used in a natural way. It is shown, alterna
tively, that if one takes into account the very extensive cancellation of terms for the vast majority of 
unperturbed energy states, no initial restrictions need be placed on the majority of the density matrix 
elements. In all three cases the equations obtained are the same, being Pauli equations for the diagonal 
density matrix elements, but simpler relaxation-oscillation equations for the off-diagonal elements. 
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obtain a description of irreversible behavior. In the one 
case, since a complete random phase assumption is too 
restrictive, we introduce and use in a natural way a 
partial random phase assumption. Alternatively, we 
show that if one takes into account the very extensive 
cancellation of terms for the vast majority of unper
turbed energy states, no conditions need be placed on 
the initial values of the majority of the density matrix 
elements. Philippot7 has recently discussed the role of 
random phase assumptions8 and initial conditions. 

The mathematical analysis is very similar to that of 
Van Hove6 and so we shall in most instances indicate the 
techniques only very briefly. The starting point is the 
quantum-mechanical Liouville equation 

-iMp(t)/dt=\j>{t)fl'~], 

where p is the density matrix. The formal solution for 
p(t) is 

p(t)=U(t)P(0)W(t). (1) 

With the Hamiltonian written as H' = H+W, where H 
is the unperturbed part, W is the perturbation, and X 
characterizes the size of the perturbation, the evolution 
operator U(t) may be expanded as 

J7(0 = 6r«'/*+J;(-iX/*)n 

n = l 

X / dtn>>- / dhe-iH^~tn)lhV-' 
Jo Jo 

y^ye-iH(t2-ti)jhye~iHti/h^ (2) 

An alternate and very convenient expansion of U(t) is 
one in terms of its diagonal part.6 However, we shall not 
use that expansion explicitly. We choose V so that it has 
no diagonal elements in the unperturbed energy repre
sentation ; that is, all diagonal elements of Hf comprise 
H. The \H limit is denned by the conditions X —> 0, 
t —> oo, \H finite. Only those terms which do not vanish 
in this limit are retained. 

II. RATE EQUATIONS FOR ELECTRON-IMPURITY 
PERTURBATIONS 

In this section, we consider perturbations corre
sponding to the interaction of independent electrons 
with randomly located impurities. This interaction was 
considered by Kohn. and Luttinger9 in obtaining a 
steady-state solution to the Liouville equation. The 
random nature of the perturbation necessitates an addi-

7 J. Philippot, Physica 27, 490 (1961). 
8 The phrase "random phase assumption" may be used in more 

than one sense. We apply it here only to the phases of the proba
bility amplitudes for the eigenstates forming the basis representa
tion, that is, to the density matrix elements. In some of the above 
references, it is also applied to the phases appearing in the per
turbation matrix elements. These two types of phases are not 
related. 

9 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957); 
109, 1892 (1958). 

tional averaging over the positions of the impurities. 
This feature allows the derivation of the rate equations 
for the density matrix elements without use of a random 
phase assumption. 

The normalized eigenfunctions for a free electron in a 
cubical volume £1=Lz with periodic boundary conditions 
are 

^ ^ f i - ^ e x p C i k - r ) . 

The allowed values of ka(a — %, y, z) are 2irna/L, with na 

any integer or zero. The electron interacts with each of 
31 randomly located scatterers at positions xiy with a 
finite range potential <p(x-^Xi). The matrix elements of 
XV are thus 

XFfcA;' = ^"~1$A ;fc'Eiexp[-i(k—kO-ry], 
where 

$kk>= / dx <p(x) e x p [ - i ( k - k O - r ] . 

The matrix elements of H are 

Hhk=»&/2m+(3l/Q) dx *>(r). 

The statistical properties of V may be illustrated by 
the second-order terms 

\%{VAV)kk)=bkk>c&-^v^w^Ak>rk^ (3) 
and 

\K{VBV)kk)=cQr^r>\^^'\2Bkff,kff+k^ (4) 

where c=9l/fi is the density of impurities, A is a diago
nal operator, and B is an operator with off-diagonal 
elements. The bracket symbol ( ) represents an average 
over the positions of the impurities. 

Equation (3), when referred to infinite volume, ex
hibits the diagonal singularity property, first discussed 
by Van Hove.6 The properties (3) and (4) have been 
used by Prigogine and Toda10 in a derivation of rate 
equations for time-averaged density matrix elements. 
They obtained Pauli equations for the off-diagonal 
elements, whereas, in the \H limit, we do not. 

We consider first the rate equations for the off-
diagonal elements. Let the nXh order term in the ex
pansion (2) of U(t) be denoted by Un(t). The essential 
characteristics of the general term in the expansion of 
p(t) by means of Eqs. (1) and (2), are illustrated by the 
second-order terms. One such term is, for k=^k', 

[£M0P(O)EW(0]**' 

= - (XV*** W ' (0)<r*"»'' E I***" 12 

h" 

X dhl &iexp[«0jbfc»(*2--/iX], (5) 
Jo Jo 

where ookk
rZ= (k2—kf2)ft/2m, and Eq. (3) has been used. 

As 12 —» oo, the summation is replaced by integration 
1 0 1 . Prigogine and M, Toda, Mol, Phys. 1, 48 (1958). 
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according to the scheme 

£ -> (12/8TT3) fdk". 
k" J 

Carrying out the time integrations in Eq. (5), one 
obtains in the \H limit 

[tf2(/)p(0)W(0]**'= -ixw*pM '(0)e-^n (6) 
where 

8TT3 A5 
ir8(<tikk")+iP\ 

\tt j feJb"/J 
(7) 

and 5(w) and P(l/co) are the delta and principal-value 
functions, respectively. 

The second-order term [£/i(/)p(0)£/it(/)]M/, how
ever, has a different character. Using Eqs. (2) and (4), 
one obtains 

[tfi(*)p(O)tfit(0]**' 

= (\2c/m)e -iakk't y^ |cji> 

k 
'(0) 

X / dhf dh' 
Jo Jo 

exp[iujfe*"M-*W''fc'fi/], (8) 

with k ' " = k " + k ; - k . Now if all values of k" in Eq. (8) 
could contribute in the \H limit, a volume-independent 
term similar to Eq. (6) would result. However, only 
those values of k" satisfying k2-k"2=k'2- ( k " + k ' - k ) 2 

can make a \H contribution. That is, for infinite volume, 
the allowed range of integration over say kg", for given 
kx" and ky", is infinitesimal, and the contribution from 
Eq. (8) vanishes. 

The generalization to arbitrary order for the off-
diagonal elements of p(i) is simple. One sees that it is 
never possible to couple V's from opposite sides of p(0) 
because of the restrictions placed upon the intermediate 
states, as in Eq. (8). Hence U and W make \H contri
butions separately. Further, since the \H contributions 
to [Un{t)~]kk' come only from the pairing of adjacent 
V% n must be even, and k' must equal k. A typical 
term of order In is 

[.U2n-2rp(Q)U2j']kk' 

= pkk>(0)e-io>kk,t-
(-\2tWk/2)n-r(-\2tWk>*/2Y 

(n—r)lrl 

On summing r from 0 to n, and n from 0 to oo, one 
obtains the final result 

P**K0 = P**'(O)expC-w**^-iX2/(^ ifc+W rib'*)], (9) 

where Ww* is the complex conjugate of Ww, defined by 
Eq. (7). 

Equation (9) is the off-diagonal solution to the 

Liouville equation in the \H limit, for a perturbation 
characterizing an electron scattering from randomly 
located impurities. The motion is simple oscillation and 
relaxation. The real part of the exponent is %(Wk-{-Wk'), 
apart from the A% where Wk, defined by 

• / • 

Wk^Re{Wk} = \dk" (c/8T*)\$kk„\2(2Tr/fi2)5(a>kk„\ 

is the total transition probability per unit time out of, or 
into, state $k. Thus pkk> (t) relaxes at a rate equal to the 
average total transition rate out of states \//k and \pk>. 

The rate equations for the diagonal density matrix 
elements are obtained in a similar way. Consider, for 
example, the fourth-order term containing 

V kklV kik2Pk2k3 

where ki, k2, k3, and k4 are to be summed over. When 
the average over impurities is taken, only three classes 
of terms remain, for which (1) k 3 = k 2 = k ; (2) k 3 =k 2 , 
k 4 = k i ; (3) k 3 =k 2 , k 4 =k—ki+k 2 . Only classes (1) and 
(2) contribute in the \H limit. Note that in all three 
cases, only the diagonal elements of p(0) appear. This is 
a general result, in any order; that is, the diagonal 
elements of pit) depend only on the diagonal elements 
of p(0). This being the case, the subsequent analysis 
becomes identical to that of Van Hove,6 and we need not 
reproduce it here. In the \H limit, the diagonal elements 
satisfy the Pauli equation 

dpkk(t)/dt^Y.k' Wkk>[j)k>k>(t)—pkk(t)~]1 (10) 

where Wkk> is the transition probability per unit time, 
given by 

The Pauli equation for the diagonal density matrix 
elements, and Eq. (9) for the off-diagonal density 
matrix elements, are thus obtained without a random 
phase assumption on the density matrix, and in fact 
without any statement at all about initial conditions. 
This, however, is not surprising, because of the random 
nature of the perturbation. Two systems with the same 
initial condition but with different distributions of 
impurities will evolve differently in time. When an 
average is taken over all such systems, it is clear that the 
initial condition is unimportant. 

III. RATE EQUATIONS FOR SPIN-SPIN 
INTERACTIONS 

In this section we consider interactions between spin 
particles. For definiteness we give a specific, typical 
Hamiltonian, although to establish the argument it will 
not be necessary to write out the matrix elements in all 
their detail. We take the dipolar and exchange inter
actions plus an external magnetic field term (Zeeman 
energy): 

-2Zi<iJijSi'$j-gPKT,jSA (li) 
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Here Dij and Jij are the dipolar and exchange coupling 
parameters, respectively, S* is the spin operator for 
particle i, nij is the unit vector from i to j , g is the 
spectroscopic splitting factor, ft is the Bohr or nuclear 
magneton, X is a magnetic field in the z direction, and 
the sums X^<y a r e o v ^ r a l l pairs of particles. The 
number of spins is N. 

This Hamiltonian, plus a possible Stark splitting 
term, is the basis for the usual treatment of spin-spin 
relaxation.11 There it is common to take the Zeeman 
energy term, together with all the interaction terms 
commuting with it, as the unperturbed Hamiltonian, 
the remaining terms being chosen as the perturbation. 
However, we shall here take as the perturbation all the 
off-diagonal matrix elements of the Hamiltonian in the 
so-called free-spin representation, that is, the complete 
set of states formed as products of the eigenstates of the 
Sz\ For simplicity we discuss only spin-J particles. 

As seen by taking matrix elements of Eq. (11), there 
are two classes of perturbation matrix elements, corre
sponding to the single-flip and double-flip processes. 
( 5 / only multiplies the state of particle i by a coeffi
cient, whereas SJ and Sy

{- also "flip" the state.) Let 1B) 
represent an arbitrary product of free-spin states. By 
| jB) we will mean the state differing from 10) only by the 
flip of spin j , with similar meanings for | jkd), etc. A 
single-flip perturbation matrix element can be written in 
the form 

(0\V\je) = Y,kMg(0;j,k), (12) 

and is the sum of N— 1 terms, corresponding to the 
number of pairs of one particle with all the others. 
There are N such matrix elements. A double-flip matrix 
element may be written 

(d\V\jk6)=f(d;j,k); (13) 

it contains only one term, corresponding to a given pair 
of particles. There are %N(N— 1) such matrix elements. 

The perturbation so chosen has the diagonal singu
larity property, as we now indicate. One easily sees that 
(0| V2\B) has of the order of N* terms (of which N* are 
single-flip terms and N2 are double-flip terms), whereas 
(01 V21 jB), (6\V2\ jkd), (B\V2\ jktnO), and (0\ V2\ jkmnd) 
have of the order of A^2, A^2, N, and 1 terms, respectively, 
all other matrix elements of V2 vanishing. Thus (0 \ V210') 
is larger by at least a factor of the order of N for 10) 
— \Bf) than otherwise, 

Of course, the magnitude of a term decreases with 
increasing separation between the particles, but this 
does not change the relative orders in N of the matrix 
elements of V2. There is, however, another reason for 
arguing that the classification of the matrix elements of 
V2 strictly according to the number of terms they con
tain is unsatisfactory. Briefly, this is because many of 
the terms in a matrix element of V2 can be positive or 
negative, and for most states |0), a very extensive 
cancellation of terms will occur, lowering the order in N. 

11 W. J. Caspers, Physica 26, 778, 798, 809 (1960). 

We shall examine the consequences of this effect later in 
the section. 

First we consider the classification of powers of V 
according to the number of terms in their matrix 
elements, regardless of any cancellation. The second-
order term (in X) of the form 

<0|tf2(Op(O)W(O|0 ,>, 

where 10'} may be equal to 10), contains the products 

(0\V*\6"X0"\P(O)\0') (14) 

multiplied by time-dependent exponential functions, 
which we need not indicate explicitly. When the summa
tion on | 0") is carried out over the five classes of non-
vanishing matrix elements of V2, given above, and if no 
restrictions are placed on the corresponding five sets of 
matrix elements of p(0), it is seen that, the diagonal 
singularity condition notwithstanding, the classes of 
states | jkd), | jkmd), and | jkmnd), make contributions 
larger than those of the classes 18) and | jff) by a factor 
of N. The latter two each contribute about Nz terms. 
Thus as N —> <*>, the terms which can give a \H contribu
tion, namely, <0| F2(0)(0|p(O)|0'>, are negligible. The 
same effect occurs also in the second-order term 

(01^(^(0)^(01^'), 

as the reader can easily show, and in all higher order 
terms. Therefore, there is no possibility of describing 
irreversible behavior in the \H limit if no restrictive 
conditions are placed on p(0). This is not surprising, but 
it should be contrasted with the results of the previous 
section for random perturbations. 

If we impose the random phase assumption, that is, 
assert that p(0) is diagonal, then (d\p(t)\B) satisfies the 
Pauli equation in the \H limit since Van Hove's deriva
tion then applies directly. But the random phase as
sumption is clearly too strong a condition here, for it 
eliminates the possibility of describing the "transverse" 
magnetization or spin. That is, the ensemble averages of 
^iSx* and X^-Sy are described by means of off-
diagonal elements of the form (0\p(t)\ jB), (or equiva-
lently (jB\p(t) |0)), and only these. We may say that in 
this case, and in most other cases, the "unperturbed" 
energy representation is not the "representation of the 
observables," and hence the random phase assumption 
is too restrictive. 

However, we see that if a partial initial random phase 
assumption is used, corresponding to assuming random 
phases only between pairs of states which play no role in 
determining expectation values or ensemble averages of 
the dynamical observables, then, in the present case at 
least, irreversible rate equations in the \H limit can be 
obtained. In the present case, the partial random phase 
assumption corresponds to setting all matrix elements of 
p(0) equal to zero except those of the form (0|p(O)|0) 
and(0|p(O)|i0). 

To illustrate, we consider the second-order term (14) 
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for the diagonal elements of p(t). The summation over 
|0"), with [0') = |0), goes only over the classes of states 
|0) and | j6), which, as we have seen, each contribute 
about the same number of terms. Thus as N —> <*>, the 
\H terms are not negligible compared to the remaining 
terms. 

The complete diagonal density matrix element may 
be written, with the partial random phase assumption, 

(d\p(t)\e)=(d\u(t)\e)(e\P(o)\eXd\w(t)\e) 
+HAe\u(t)\jeXje\P(o)\d)(e[w(t)\e) 
+Zy(o\u(t)\e)(o\p(o)\je)(jd\W(t)\e)- (15) 

The summation on j goes over the N particles of the 
system. The diagonal singularity condition ensures that 
the first term on the right gives, in the \H limit, the 
right side of the Pauli equation. The second and third 
terms can make no \H contributions since they each 
contain a product of a diagonal matrix element of 
U(t) \jor W(t)^ with a nondiagonal matrix element of 
W{t) [or U(t)~]. But also important is the fact that 
since (6\U(t)\d) is larger by a factor of N than 
(01 U(f) | jd), for any given order in X, the three terms on 
the right in Eq. (15) are of the same order in N. Thus, 
the Pauli equation obtains for (d\p(t)\6) when the 
partial random phase assumption is used. 

The only off-diagonal density matrix elements of 
interest are of the form (6\p(t) \ jd). Again, we illustrate 
the procedure with the second-order terms. Equation 
(14), with |0') = | jd), may be written when summed on 
|0"), again with omission of the time-dependent parts, 

(d | v* | e)(e | P(o) | jo)+(e | F2 | pyje | P(o) | jo) 
+ £ w (0\V*\ jk9)(jk61p(0)| jd). (16) 

The first and third terms are of order N* and the second 
is of order N2. Only the first term contributes in the \H 
limit and is not negligible as N —» °°. 

However, the second-order term 

<*|tfi(Op(O)tfit(O|i0> (17) 

makes no contribution in the X2< limit: Dropping the 
time-dependent terms again, we write Eq. (17) as 

Zk(e\v\ke)(kd\P(0)\d)(e\v\j8) 
+ I w (e\ v\ke)(ke\p(o)\kje}(kje\ v\je) 
+E*w>(o\ v\jd)(je\P(0)\kje)(kj6\v\je) (is) 

plus terms of lower order in N. Each of the three terms 
in Eq. (18) is of order N8, that is, of the same order as 
the term in Eq. (16) making the \H contribution. Only 
the first term in Eq. (18) can make a XH contribution, 
but then only for k = j . [[Note that the function 
exp(—ia)e,jdt), which multiplies every term in (01 p(t) \jd), 
is necessary for obtaining this XH contribution.] The 
result is of order N2 and hence negligible compared to 
the contributing term in Eq. (16). 

The extension to arbitrary order parallels the deri
vation of the off-diagonal rate equations in the pre

ceding section. With the partial random phase assump
tion, Eq. (1) becomes 

(e\p(t)\je)^Z^(e\u(t)\ew\p(o)\eW\UKt)\jo) 
+2>£*<0|tf(/)|0,> 

X(e'\p(0)\kd')(k6f\W(t)\jd). (19) 

One can see that it is not possible to pair F's from 
opposite sides of p(0), as in the above example, and thus 
that the XH contributions come only from the diagonal 
elements of U(t) and W(t). The noncontributing terms, 
for given order in X, are of the same order in N as the 
contributing terms. Omitting the former, one can write 
Eq. (19) as 

(e\p(t) I je)=(e\ u(t)\e)(je\w{t)\jd){e\pmjd), 
which reduces to the same rate equation as given by 
Eq. (9), the techniques of reduction being just the same 
as those leading to Eq. (9). 

We turn now to the alternate classification of the 
matrix elements of powers of V, alluded to earlier. 
Consider, for example, the quantity (0| F2 |0). From the 
single-flip terms, Eq. (12), one obtains 

Ey|<^l^l^>l2=EyE*^l^;i,*)l2 

+ Z y E ^ ) Hm(^j,k) g*(0; jk)g(6;jym), 

and from the double-flip terms, Eq. (13), one obtains 

'£j<k\(o\v\jke)\*='Ej<t\mjji)\*. 
There are thus iV2 positive definite terms coming from 
both the single-flip and double-flip terms, and An 

single-flip terms arising from products referring to 
different pairs of particles. The latter may be positive or 
negative, and for "typical" states |0) one can expect a 
very large degree of cancellation of terms. If |0) is such 
that these cross-product terms have about an equal 
chance of being positive or negative, one would expect 
that their sum would be of order Nzl2 rather than Nz. 
This type of argument is equivalent to the random 
phasing discussed and criticized by Philippot.7 

I t is important to recognize the distinction between 
this type of randomness assumption and that of the 
preceding section. There, the different members of the 
ensemble of systems are assumed to have different 
distributions of impurities. Here the members of the 
ensemble are identical. The sign of a term referring to a 
given pair of particles and a given spin state is the same 
for all members of the ensemble, and has no randomness 
attached to it. The argument is that the signs (phases) 
are "effectively random" for most states because of the 
very many degrees of freedom involved. Obviously, the 
argument cannot be defended very strongly. 

Nevertheless, for the purpose of determining the re
sults of the argument, we shall now proceed as if the 
signs of the terms in the perturbation matrix elements 
were strictly random. Clearly, there will then be some 
states 10) for which the deduced motion of (01 p (t) \ 0) and 
(0 \p(t)\ jd) will be far from the actual motion. However, 
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when one determines ensemble averages of the spin 
operators, thereby summing over all states, those rela
tively few states for which the matrix elements of p(i) do 
not have "typical" behavior, could be expected to be 
unimportant. 

The diagonal singularity condition still holds under 
the assumption of random signs. One finds that (61 V210), 
(0\V2\ JO), (Q\V2\ JkO)y {6\V2\ jkmS), and (d\ V2\jkmn6) 
are of order TV2, N, N, N112, and 1, respectively. In order 
that the \H contributions not be made negligible as 
N —> oo, it must also be true that (0 \ V2 \ 6) is of the same 
order as XV (0| V2\6f). That this is true is readily 
verified. 

With these results, the rate equations may be ob
tained in a manner similar to that in the preceding 
section, and we need not repeat the details. One obtains 
precisely the same equations for (6 \p(t)\ 6) and (6 \p(t)\ jO) 
as by the earlier considerations of this section involving 
use of the partial random phase assumption on the 
initial density matrix elements. 

I. INTRODUCTION 

AS a result of extensive experimental and theoretical 
efforts, the main features of the tunneling process 

in Esaki tunnel diodes1 have been clearly established. 
However, since it is difficult to assess the validity of 
some of the simplifying assumptions and approxima-. 

* The research reported in this paper was sponsored by the Air 
Force Cambridge Research Laboratories, Office of Aerospace 
Research, under contract AF-19 (604)-6623, and also by the Air 
Force Office of Scientific Research through grant number 
AFOSR62-178. 

1 J,, Esaki, Phys. Rev, 109, 603 (1958), 

IV. DISCUSSION 

For each of the perturbations considered in this paper, 
we have obtained in the weak-coupling, long-time ap
proximation, Pauli equations for the diagonal density 
matrix elements, and equations of the type (9) for the 
off-diagonal elements. For the random perturbation of 
Sec. I I , no initial random phase assumption was needed 
in the derivation of these equations. A partial random 
phase assumption, in the case of spin-spin interactions, 
was shown to be a sufficient condition for obtaining 
these equations. Alternately, it was shown, for spin-spin 
interactions, that no initial statements need be made 
about the density matrix elements, if one accepts the 
assumption that the phases in the perturbation matrix 
elements can be treated as random. 
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tions which underlie our present theoretical under
standing of this process, it is not clear to what extent 
the existing theories2'8 should explain the finer details 
of the experimental observations. This problem is par
ticularly difficult to resolve because tunnel diodes can 
only be made in highly impure materials. This fact 

2 L . V. Keldysh, Soviet Phys.—JETP 6, 763 (1958); 7, 665 
(1958); W. Franz, Z. Naturforsch. 14a, 415 (1959); E. O. Kane, 
J. Phys. Chem. Solids 12, 181 (1959); P. J. Price and J. M. Rad-
cliffe, IBM J. 3, 364 (1959); W. P. Dumke, P. B. Miller, and 
R. R. Haering, J. Phys. Chem. Solids 23, 501 (1962). 

3 E. O. Kane, J. Appl. Phys. 32, 83 (1961), 
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Effect of Elastic Strain on Interband Tunneling in Sb-Doped Germanium* 
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The effects of uniaxial compression and of hydrostatic pressure on the direct and indirect tunneling 
processes in germanium tunnel diodes have been studied experimentally under forward and reverse bias at 
4.2°K and compared with Kane's theory. The diodes were formed by alloying indium doped with f% 
gallium on (100) and (110) faces of germanium bars containing an antimony concentration of 5.5Xl018/cm3. 
The first order change of the tunneling current with stress was measured at fixed bias voltages. For biases 
smaller than 8 mV the current is direct and not affected by the relative shifts of the (111) conduction 
band valleys. In the bias range of indirect tunneling the anisotropic tunneling from the (111) valleys was 
observed in agreement with theory. In the range of direct tunneling to the (000) conduction band the 
current change is correlated with the stress induced change of the direct band gap and of the energy separa
tion between the (111) and (000) conduction bands. This separation was found to be 0.160±0.005 eV at 
zero stress in agreement with optical measurements on degenerate germanium. Some details of the bias 
dependence of the pressure effect including some fine structure at small biases remain unexplained. 
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