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Ferromagnetic Relaxation. III. Theory of Instabilities* 
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In this paper a quantum-mechanical model is used to investigate various instability processes in ferro­
magnetic insulators. Time-dependent perturbation theory is employed to find the condition for which the 
rate of energy flowing into a magnon or phonon is equal to the rate at which it relaxes. This leads to a general 
instability criterion for various magnon-magnon, photon-magnon, and magnon-phonon processes. 

I. INTRODUCTION 

IN 1953, Damon1 and Bloembergen and Wang2 ob­
served that the microwave resonant susceptibility of 

ferromagnets decreased at a power level which was lower 
than that predicted by the Bloch-Bloembergen equa­
tions. They also observed the presence of a subsidiary 
absorption peak at a dc field below that required for 
resonance. These effects were explained by Suhl3 as 
arising from the unstable growth of spin waves. In 
particular, the subsidiary absorption peak is due to a 
process in which the unstable spin waves have a fre­
quency co& = to/2, where co is the frequency of the applied 
microwave field. Similarly, the resonant susceptibility 
decline is produced by a process in which co& = co and is 
called the second-order process. Recently, another 
process has been found4,5 in which unstable spin waves 
with o)k=co/2 are produced by means of a microwave 
field at a frequency co which is applied parallel to the dc 
saturation field. This is called the first-order parallel 
pump instability. 

These instabilities have all been studied classically by 
considering the coupled differential equations of motion 
for the uniform precession and the spin waves. In these 
previous analyses the nth order process is a parametric 
process arising through nonlinear terms in the spin wave 
equations of motion which depend upon the nth power 
of the amplitude of the driving mode. In the present 
paper we reformulate this problem in field variables by 
quantizing the Hamiltonian. This treatment is essen­
tially a rate-equation formulation, the relation of which 
to the amplitude formulation has been discussed by 
Suhl and Fletcher.6 In this formalism the nonlinear 
classical terms are interpreted as scattering processes. 

This physical picture was first mentioned by Suhl.7 A 
similar quantum-mechanical interpretation has also 
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Advanced Research Projects Agency through the Center for 
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been applied to the Manley-Rowe relations by Weiss.8 

This approach is suggested here by the fact that it has 
proven so fruitful in dealing with the relaxation mecha­
nisms of ferromagnetic insulators.9 This technique leads 
easily to various additional instability processes. Al­
though these additional processes may also be obtained 
from equations of motion, their solution is often more 
cumbersome, especially in the case of higher order 
processes. A somewhat similar approach was used by 
Loos10 to obtain the second-order Suhl threshold. How­
ever, his treatment of magnon loss is not consistent with 
the classical approach and therefore his answer does not 
compare with SuhPs. Furthermore, Loos's approach is 
confined only to this magnon instability, whereas our 
development applies to any boson-boson process. 

II. GENERAL FORMULATION 

Before considering particular interactions, let us as­
sume we have an interaction Hamiltonian 3C which in­
volves products of boson operators. The eigenfunctions11 

l^fcu*' 'ynka'' •) of such a Hamiltonian are represented 
by the number of bosons in each state. From the well-
known commutation properties it can be shown that 
these operators have the following nonvanishing matrix 
elements: 

(nkl, • • •»*<—1, • • • \cki\nkv - - -nki,- • •>=(»fti)
1/2, (la) 

<»*i, * • •»*,-+1, *' * \ck?\nkl,- • -nk.,' • •) 

= (»*<+1)1'2. (lb) 

From time-dependent perturbation theory we find 
that the probability per unit time, TP, that a system 
initially in some state ] nkl,nk2, - • >nki, •••)==]£) makes a 
transition to another state \nk'17n^2- • * ^ v ' ' ) = W) *s 

TP = — / | (V13C1 k) 12p (E)d {Ek> - Ek)dE, (2) 
nJ 

where p(E) is the density of states. 

8 M. T. Weiss, Proc. IRE 45, 1012 (1957). 
9 See, for example, Parts I and II of this series: I. M. Sparks, 

R. Loudon, and C. Kittel, Phys. Rev. 122, 791 (1961). II . P. Pin-
cus, M. Sparks, and R. C. LeCraw, ibid. 124, 1015 (1961). 

10 J. Loos, Czech J. Phys. 11, 490 (1961). 
11 In this section k characterizes any boson state. In subsequent 

sections, however, we shall characterize magnons by k, photons 
by v, and phonons by a. 
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In general, p(E) is the product of the density of initial 
and final states. When the initial or final state consists 
of only one state, then 

f P(E)dE=l. 
/initial 

or final 

In radiation theory this is known as the line-shape 
factor. In the problems dealt with in this paper both the 
initial and final states consist of one state. However, the 
initial state is either a high Q electromagnetic mode or a 
magnetic mode driven by such an electromagetic mode. 
Therefore, compared with the final state, this initial 
state is taken to be discrete. 

Now consider the density of final states. In the equa­
tion of motion approach to these problems the relaxation 
of the mode amplitudes is included by adding an imagi­
nary part to their frequency. I t can be shown that this is 
mathematically equivalent to assuming that their line 
shapes are Lorentzian. Therefore, since we want to be 
able to compare some of our results with those obtained 
from equations of motion, we shall assume that our 
final-state density has the Lorentzian form 

1 f\k' 
p(E) = _ ; (3) 

wn r}k'2+(^k'—ook)2 

where v\k> is the relaxation frequency of the final state. 
In the cases studied in this paper the final state consists 
of two bosons each having equal and opposite wave 
vectors. If we assume that their relaxation frequencies 
are independent of the direction of the wave vectors, 
then 

Vk' = rjk+V-k=2r]k. (4) 

In general, 3C produces scattering between various 
states, thereby changing their occupation numbers. In 
particular, we are interested in the part of 3C which 
produces scattering between the initially excited mode 
(microwave field, uniform precession, etc.) and the mode 
which goes unstable (magnon, phonon, etc.). If we de­
note the number of quanta in the initial mode by no, 
then the rate at which energy is scattered into the 
eventually unstable modes is 

/dn0\ 
fioool J 

\ dt /scat 

= AWo^Wo[TP n o -> n o +Awo~ TP n o _* n o _Ano] - (5 ) 

The change in the number of quanta, Atio, depends upon 
the order of the scattering. Thus, for example, in any 
first-order process, An0= 1. 

If the relaxation of a potentially unstable k mode can 
be described by a relaxation frequency rjk, then the rate 
at which energy leaves this mode is 

h^k{2y]k){nk—nk), (6) 

where nk is the thermal equilibrium occupation number 
and the factor of 2 reflects the quadratic relation be­
tween mode amplitude and energy. Instability occurs 
when the number of quanta in the k mode required to 
maintain equilibrium becomes infinite. This physical 
condition was first applied classically to the parallel 
pump instability by Kittel.12 

Since we are interested in the lowest threshold, we 
take the maximum value of TP , which occurs for 
a>fc' = a)fc. This provides us with a general criterion for 
any boson-boson scattering. In the following sections 
we shall consider particular examples of this. 

III. MAGNON-MAGNON INSTABILITIES 

The Hamiltonian giving rise to magnon-magnon scat­
tering consists of the magnetic Zeeman, dipolar, and 
exchange interactions. In subsequent sections we shall 
deal with certain interactions phenomenologically. For 
this purpose it is convenient to use the continuum de­
scription of the magnetization M(r). The magnetization 
is then an operator, related to a spin S»- at the point 
r = r t by M(r) = 2/z £ ] ; S»5(r—rt-) and obeying the com­
mutation rules 

[_Mx(r),My(r
f)-l=i2»Mz{x)b{T-T'). (7) 

The effective moment ju is defined in terms of the spec­
troscopic splitting factor, g, and the Bohr magneton, 
/*#, as n = giJLB/2. The Hamiltonian is 

r 1 /TM(r ) -M(r ' ) 
5C= - H o / Mz(r)dr+- / 

J 2J L | r - r ' | 3 

M ( r ) - ( r - r O M ( r O - ( r - r O - l D 
— 3 dr'dH 

| r - r ' | 5 J 2yfi 

X / [(VAf,)2+ (VMyy+ (VMzy]dr. (8) 

Here, H0 is the applied dc field, D is a phenomenological 
exchange parameter, and y is the gyromagnetic ratio. 
This Hamiltonian is simplified by making a series of 
transformations. These were first applied to the discrete 
Hamiltonian by Holstein and Primakofi.13 The resulting 
diagonalized Hamiltonian responsible for scattering of 
the uniform precession is 

3C=J^-ha)kckkk+% £ ftifkCoCkk-k^+c.c.) 
k fc?^0 

+ § ]C ^(gkCoCoCkk-^+c.c.) 
k^O 

+ i L A(&fcCoCoCoCjfetc_Ai
t+c.c.), (9) 

12 C. Kittel, "Lectures on Magnetism," University of Paris, 
College of Science, Orsay, France, 1960 (unpublished). 

13 T. Holstein and H. PrimakofT, Phys. Rev. 58, 1098 (1940). 
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UP 

(a) (b) (c) 

FIG. 1. Representations of the lowest order magnon-magnon 
instabilities t (reference 15). (a) First order, cpCkfc-J; (b) second 
order, CQCQC^C-^'; (c) third order, C^CQC^CJ. 

where Ck and ci? are the magnon annihilation and 
creation operators and 

o>k=\UH+-k^(yH+-V+uM sin% j 
1/2 

(10) 

/ An \1/2 [7ff+(/>/*)#+«*] 
O)M~ 

2uk 

Xsin(9/ccos(9^~^&, (11) 

4M 1 
g ^ - Î COA;—coo+ (2 — 3 sin2<9/b)coM] 

AfsF8cofc 

r / sin40/c \1 / 2 1 -1 
X o ) f c + U H COM2] +-W 8 s in 4 0 f c L (12) 

/ 4M \ w <aM / D 1 \ 
hk= I yH-\—k2+-o)M sm2dk+o>k 

\MSVJ 16coA ft 2 J 

Xsin0fccos0fc<r***. (13) 

In these expressions H^EHO—4:WNZMS, COM^^JMS, and 
6k and <t>k are the polar angles of the magnon k vector. 

I t should be noted that the canonical variables Ck and 
Ck' are not the same as SuhPs classical amplitudes (3k but 
are related in the small amplitude approximation by 

ck^{Msv/^y^k. 

Using this fact with Hamilton's equations, the classical 
equations of motion could be obtained from (9). In fact, 
the general problem of ferromagnetic resonance at high 
power levels has also been analyzed in this fashion by 
Schlomann.14 

We are now able to apply the general theory of Part I I 
to various magnon processes. 

A. First-Order Process 

The first term fk of the third-order term in the Hamil-
tonian (9) is represented schematically in Fig. 1(a).15 

Since this term depends linearly upon the k = 0 or uni­
form precession (UP) mode, it corresponds to a first-

14 E. Schlomann, Technical Report No. R-48, Raytheon Com­
pany, 1959 (unpublished). 

15 In the figures of this paper, magnons are represented by 
straight arrows, photons by zig-zag arrows, and phonons by wavy 
arrows. 

order process. By using this term as the interaction 
Hamiltonian in (2) and (5), we have, for the rate at 
which energy is scattered into the k, — k magnon pair, 

o o f -
(dn0\ 

no)0{ — J = 
CM ' scat 

2&coo 

2rjk 

\h 

X[(w0+l)»fc»-fc-»o(»*+l)(»-fc+l)] , (15) 

where 2r\k is appropriate to an energy relaxation and 
2̂ o?o is the uniform precession energy involved in the 
process. Just prior to the onset of instability, we have 
l<^(nk,n-k)<^ino. Therefore, the only term of importance 
in the bracket of (15) is no(fik+n^.k)-

The rate at which energy leaves the k, — k pair by 
relaxation is 

(a 
hud ) =nwk(2r)k)£(nk—nk)+ (^_fc—n_fc)]. (16) 

fdnk\ 

(M ' re las 

Upon equating (15) to (16) and recalling that conserva­
tion of energy requires cofc = co0/2, we find 

where 
nk=[nc/(nc—no)^nk, 

nc=y)k2/\fk\2. 

(17) 

(18) 

Therefore, instability occurs when no=nc. 
The relation between the number of UP magnons 

excited and the amplitude of the circularly polarized 
transverse microwave field is found by equating the 
power absorbed to nohoj(2rj0). The result is 

/2&[(Wo-w)2+w*>o\ 

\ yM.V ) 

1/2 

(19) 

Therefore, the magnon with the lowest threshold goes 
unstable when the microwave field reaches the value 

(<A\ ( 2a>^[(a) 0 -a>) 2 +? ? o 2 ] 1 / 2 

K1V Ao„ r it=min •— 
\ Y C O M [ T # + (D/n)k2-\-uk] sindk cos9k 

(20) 

where min implies minimizing the expression in the 
brackets with respect to h and 0k subject to the con­
servation of energy condition cok = ojo/2. This tells us 
which pair of magnons goes unstable first. This expres­
sion agrees exactly with that obtained by Suhl from the 
spin wave equation of motion. This process is responsible 
for the subsidiary absorption peak mentioned in the 
Introduction. 

B. Second-Order Process 

Figure 1 (b) shows the magnon scattering process that 
leads to the second order instability which arises from 
the fourth-order term of Eq. (9). In this process con­
servation of energy requires that G>fc=w0. This produces 
the premature saturation of the main resonance. By 
proceeding as in Sec. I l l A, we find that instability 
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occurs when 

. 2^ [ (coo-co) 2+i 7o 2 ] 1 / 2 

For COM/CO<1 the expression for gk, with o)k—co, may be 
approximated by 

4/x COM 

gk^ ( 1 - f sin%). (22) 
M S F 2 

Therefore, ^0crit
 w m be a minimum for a magnon 

having fl^O, corresponding to a s-directed magnon. 
The critical field at resonance is then 

*aTit=-( —) • (23) 

This threshold also agrees exactly with that obtained by 

In order to observe this process the experimental 
conditions should forbid the first- and second-order 
processes. This can be accomplished by operating at a 
microwave frequency which is below the magnon dis­
persion curve where there are no magnons degenerate 
with the pump frequency. However, the uniform pre­
cession resonant frequency cannot lie below this curve. 
This means that one must operate at a dc field higher 
than that required for resonance, thus driving the uni­
form precession off resonance. Although magnons could 
be excited by the first- and second-order processes under 
these conditions, the fact that these magnons are far off 
resonance greatly increases their thresholds. In order to 
make the (co0—co) factor in Eq. (24) as small as possible, 
the optimum experimental condition for observing this 
third-order instability should, therefore, employ a thin 
disk magnetized perpendicular to its plane. 

IV. MAGNON-PHOTON INSTABILITIES: 
PARALLEL PUMPING 

In the small signal region a microwave field applied 
parallel to the dc saturating field of a ferrite exhibits no 
absorption. However, at a certain threshold field the 
transverse susceptibility increases abruptly. This mag­
netic instability was suggested independently by 
Morgenthaler4 and Schlomann et al.5 The particular 
instability discussed by these authors corresponds to the 
case in which one photon excites two magnons, i.e., a 
first-order photon-magnon instability. In this section, 
we shall rederive this threshold, and also show that it is 
possible to have a second-order instability in which two 
photons excite two magnons. Evidence for such a 
second-order process has not as yet been observed 
experimentally. 

Suhl and gives the value at which the resonant suscepti­
bility begins its premature decline. 

The agreement between our approach and that of 
Suhl for these processes is expected since both are 
essentially first-order analyses of the same Hamiltonian 
and have the same physical content. 

C. Third-Order Process 

The two processes discussed above have had direct 
experimental implications. We now consider the third-
order process, the direct evidence for which has not as 
yet been observed. In this process energy conservation 
requires that the unstable magnons have a frequency 
cok=3oo/2. The possibility of this third-order instability 
has been discussed by Morgenthaler.16 

The third-order process arises through the fifth-order 
term in the Hamiltonian, the first term of which is 
represented in Fig. 1(c). Proceeding as above, 

We begin by quantizing the macroscopic microwave 
Zeeman interaction for the case in which the microwave 
field is applied parallel to the saturating dc field. This 
will entail quantizing the electromagnetic field to which 
the sample is exposed. Since the magnetic sample is 
usually placed in a cavity, the field quantization is 
carried out17 in a slightly different manner than that 
for free space. In this case we expand the field in terms 
of the normal modes, e„, h„ of the cavity, 

h(r,0 = (47I-)1'2 £ , co^(/)h„(r), (25) 

c(r,0 = (4 i r ) 1 / 2 E,M0e , ( r ) , (26) 

which are orthogonal and normalized to the cavity 
volume Vc. The expansion parameters qv(t) and pv(t) 
are related to the photon field operators by 

qv=ilh/2uvJi\cv-cf)y (27) 
and 

pv=(2ka>vy'2(cy+cj). (28) 

The c 's have the properties described by Eq. (1) with 
the nv's now referring to photons. These relations are de­
fined such that the field energy, E= (l/Sir)tf(e

2+h2)dry 

takes the form (neglecting the zero-point energy), 

E = E v ^ ^ + c . (29) 

In writing the interaction between the field and the 
magnetic modes, let us consider, as an example, a small 
sample placed in a cavity which supports a mode v. If 
the sample is small enough, only this mode will be 

16 F. R. Morgenthaler, J. Appl. Phys. 33, 1297 (1962); and Air 
Force Cambridge Research Laboratories Technical Memorandum 
CRRD-54 (unpublished). 

17 See, for example, E. T. Jaynes, Microwave Laboratory 
Report No. 502, Stanford University, 1958 (unpublished). 

^ocr i t=mm 
160)k7}k 

,coMpyfi'+ (D/fi)k2+^o)M sin^/c+cofc] sin0fc cos#& 

\1/3/(co0-a))2+7?o2\ i 

J \ Y2 / 
(24) 
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FIG. 2. Representations of the first- and second-order parallel 
pump instabilities (reference 15). (a) First order, Crcjc-J; 
(b) second order, cvcvcjcj \ (c) second order, cvc-k>ch^cvcjcj. 

excited. Also, the field at the sample will be uniform and 
equal to ho, which is some multiple of the normalization 
A. Therefore, we have 

o=i(2irftwv)
1l2A(cy-cJ). (30) 

The macroscopic-microwave Hamiltonian is J*hoMzdt, 
which, after applying the first two Holstein-Primakorl 
transformations, becomes 

3C= \hlM.—-Z eW-V'tfaWk'^dr. (31) 
J \ Vs **' / 

Since ho is uniform, when the second term is integrated 
over the sample, it gives the Kronecker delta 
A(k'—k)F s , where Vs is the volume of the sample. 
Therefore, the Hamiltonian is 

W^iAMsVs{2Trfiuv)
li\cv-c?) 

-i2liA(2<irfiuvyi2 E * ( c , - * W i * . (32) 

Upon making the third Holstein-Primakoff transforma­
tion, this becomes 

W=iAMsVs(2>irfiG>vyi\cv-cf) 

— i2fiA (2irhuv)
112 ^2jc(uJc

2cvCkCk
1'—ukvk*cvckC-k 

— UkVkCJ,Ck[C-kf+ | vk 1
2cvc-jec-k1[+c.c), (33) 

where 

Uh~ 
/yH+ (D/h)k2+^M s in2^+co,y / 2 

\ 2co& / 
(34) 

and 

Vk 

^ /yH+ (D/fi)k2+^M $itfdk-o>k\112 

\ 2cok / 

A. First-Order Instability 

The terms of Eq. (33) having the form CvCjJc-.jp are 
responsible for a first-order instability. This process is 
shown in Fig. 2(a). Using the theory of Sec. I I , the rate 
at which energy is scattered from the photon field into 
the k, — k magnon pair is 

flu 
\dtJt 

8%a>v[2fxA (2wtia)v)
1/2(ukvk)J 

scat ^(2r}k) 

XZ(nv+l)nkn-k~nv(nk+l)(n-k+l)l. (36) 

By retaining only the nP(nk-\-n-.k) term for the same 
reasons used above and equating this to ho)k(2rjk) 
XZ(nk—nk)+(n^k~-nk)li, we find that magnon insta­
bility occurs when the number of photons reaches the 
value 

-Hk* 

nv= 
4:fj2A2(87rfio)P)(ukVk)2 

(37) 

Upon comparing the field energy (l/8ir)(h0
2A2) with 

(29), we see that the amplitude of the magnetic field at 
the sample is related to the number of photons in the 
cavity by 

h=(8<trfia)vA
2nv)

112. (38) 

Therefore, we have 

^0 c r i t = min -
20) pflk 

Lyo)M sin2dk J 
(39) 

Equation (39) agrees with the results of references 4 
and 5. 

B. Second-Order Instability 

By analogy with the second-order Suhl instability we 
can see that a second-order parallel pump instability 
should involve two photons. However, the Hamiltonian 
(33) does not involve any such terms. Therefore, we 
must employ second-order time-dependent perturbation 
theory. The second-order matrix element has the form18 

k,f 

{W\W.\k"){k"\X.\k) 

Ek—Ek" 
(40) 

where \k) is the initial state, \k') the final state, and 
\k") an intermediate state. In particular, the second-
order process involves the destruction of two photons 
and the creation of two magnons with equal and op­
posite k vectors. Such a process involving the product of 
the linear terms of 3C with the cubic terms is shown in 
Fig. 2(b). Products among the cubic terms themselves 
can also produce such a process. This is illustrated in 
Fig. 2(c). The "loop" corresponds to the virtual creation 
and destruction of a magnon with any k. I t can be shown 
that the threshold for the process shown in Fig. 2(c) 
compared to that shown in Fig. 2(b) is larger by the 
factor N/YLk^k. At room temperature this is much 
larger than one. Therefore, we shall consider only the 
process of Fig. 2(b). As in the previous cases we will 
consider only those magnons which go unstable first. 
This eliminates the sum over k in the cubic part of the 
Hamiltonian as well as the sum over the intermediate 
states in (40). The linear part of the Hamiltonian must 
also be written in the "per mode" form by dividing it by 
the number of magnon mode pairs, N/2. Therefore, the 

18 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York), 2nd ed., p. 202. 

CvCjJc-.jp
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matrix element for the second-order instability becomes 

\i2AM.V 
l(nv -2, ttk+1, » - * + ! 

N 
-{2Thuv)

li2cv 

x k - 1 , »fc+l, w-*+l )<* , - ! , »jb+l, »_fc+l| 

X^4/^4 (27r^o?^)1/2(^^A;)c^A;
tc_A;

t | nvnw-k) 

Xtyo>v-2fio)v)-
1. (41) 

By proceeding with the theory of Sec. I I , we find 

r 2co„ /Vh\1I2l , x 

Aa„it= min — - — ( — ) • (42) 
L7 sin0/c\COM/ J 

This result agrees with unpublished equation of motion 
calculations by Morgenthaler4 and Joseph et al.19 How­
ever, the classical approach to these higher order proc­
esses involves certain mathematical difficulties as dis­
cussed in reference 19 which complicate their physical 
interpretation. In such cases a quantum-mechanical 
approach may be more illuminating. 

V. MAGNON-PHONON INSTABILITIES 

In this section we shall investigate the possibility of 
uniform precession magnons (excited by a transverse 
microwave field) producing phonons in a threshold 
process. This possibility was first suggested independ­
ently by Auld20 and by Morgenthaler.20 

For the purposes of this paper, we shall deal with the 
magnon-phonon coupling in a phenomenological fashion. 
In addition to the Hamiltonian (8) there are also ani-
sotropy and elastic contributions: 

<^elasti< 

X KNN,MNMN'-\ , 
NNf 

ijkl 

is defined as 

dui duj 
€ ij ~ 1 , 

(43) 

(44) 

(45) 

where u(r) is the vector displacement operator in the 
continuum crystal. 

In general, the anisotropy constants KNN* will be 
functions of the strain. Therefore, if we make a Taylor 
series expansion, the anisotropy Hamiltonian takes 
the form 

5Ca= X KNN,«»MNMN,+ £ b 
NN' ijNN' 

+ X gijkWN'wMNMN>eijeki-\ 
ijklNN' 

(46) 

19 R. Joseph, E. Schlomann, and R. M. White (to be published). 
20 See R. M. White and E. Schlomann, Microwave Laboratory 

Report No. 909, Stanford University, 1962 (unpublished). 

The second term in this expansion is the familiar mag-
netoelastic interaction while the third term leads to 
the "intrinsic effect."21 

Similarly, the elastic constants in (44) will be func­
tions of the magnetization. By expanding these and 
using the fact that the terms must be invariant with 
respect to time reversal, we have22 

3Ce= X CijkliQ)€ij€kl 
ijkl 

+ X giWNN* MMNMN> 6tf€fcH . (47) 
ijklNN' 

Notice that the second term in this expansion has the 
same form as the intrinsic term above. However, its 
origin is quite different and is referred to as the 
"morphic effect." 

The transformation to elastic collective mode vari­
ables which reduce the elastic energy to the form 
X<z fto)qCq

fcq is 

e ^ F - ^ X ) (Pqs-%l)qm(cqs- sty*-r 

/ h \1 / 2 -| 
+ ( ) (pqs'^m)qi(cqs-C-.qs^)ei^T , (48) 

where q and 00 qs are the wave vector and frequency of 
the lattice vibration with polarization s, pqs is the phonon 
polarization vector, cqs* and cqs are the phonon creation 
and annihilation operators, and p is the density. The 
operators cqs

f and cqs act on phonon states in accordance 
with (1). 

The magnon-phonon interaction is quantized by ex­
panding the magnetization in magnon operators and 
the strain according to (48). We can see immediately 
that the strain is linear in phonon operators. Therefore, 
the magnetoelastic part of (46) describes one-phonon 
processes. Since we are interested in phonons which are 
produced from a uniform precession, momentum con­
servation would require q = 0 or fouq=0, thereby vio­
lating energy conservation. Consequently, this inter­
action does not lead to instabilities and we must either 
go to the next higher order terms in the expansion (the 
intrinsic and morphic terms) or apply second-order 
perturbation theory to the magnetoelastic part. Which 
process produces the lowest threshold depends upon the 
relative magnitudes of the coefficients in (46) and (47). 
An equation of motion calculation using the magneto­
elastic and elastic interactions has been made by Auld 
et al.22 A similar calculation using the combined morphic 
and intrinsic effects has been carried out by Morgen­
thaler.23 To further illustrate the techniques developed 
in this paper, we shall investigate the instability thresh-

21 H. Sato, J. Appl. Phys. 29, 456 (1958). 
22 B. Auld, R. Tokheim, and D. K. Winslow, J. Appl. Phys. 

(to be published). 
23 F. Morgenthaler, Proc. IRE 50, 2139 (1962). 
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UP 
FIG. 3. Representation of 

the transverse phonon in­
stabilities (reference 15). 
(a) First order, ctfqC-q\ 
(b) second order, CQCQC^C-J . 

(a) (b) 

olds for certain particular phonons excited through the 
morphic and intrinsic effects. 

A. First-Order Transverse Phonon Instability 

Consider first a transverse phonon linearly polarized 
in the x direction propagating in the z direction. For 
such a phonon, only e^^O. Therefore, we have 

(49) 3C= / gijxMiMjeJdr, 

where gijxz is the appropriate constant containing both 
intrinsic and morphic contributions. The first-order 
process arises when i or j in (49) is z. In particular, let 
us consider i—x and j=z. Expanding the magnetiza­
tions and strains gives 

3C = 
qq' fiMsg/fiMs\^ 

V J * « ' (CO,OV)1/2 2p 
(6*+ft_*t) 

X (cq-c^)(cq>-c^)A(k+q+<i')- (50) 

In this expression the third Holstein-Primakoff trans­
formation has not been applied to the magnon operators, 
bk, since we shall only be interested in the uniform pre­
cession which we shall assume to be circularly polarized. 
Retaining only the terms in which a uniform precession 
magnon scatters with the phonons gives 

1 MsgqrixMs 

w=-Zh—H 
2 « pvq L V 

i l /2 

(ftoCfl^-^+cc), (51) 

where vq=oiq/q is the phonon velocity. This interaction 
is shown in Fig. 3(a). By using the methods of Sec. I I , 
we find 

/dno\ ho)<rMsgqfixMs\-]
112 

W —) = — — ( — 
\ dt /SCat 7}qL pVQ \ V / J 

X[(«o+l)»«»-fl—Wo(w f l+l)(»- f l+l)]. (52) 

The phonon relaxation is often conveniently described 
by an effective "Q" defined as 

ve=v««. (53) 
Therefore, we find that the number of UP magnons 
producing phonon instability is 

^o=I —^—(—— ) I , (54) 
lMsgQ\ixMsJJ 

or, by (19), 

y\M*gQ/ 
[(Wo-o))2+^o2]1 /2 . (55) 

B. Second-Order Transverse Phonon Instability 

If neither i nor j are z in (49), we can have a second-
order process. For example, consider i— j=x: 

(56) W=g\M*e9M*di. 

After expanding and retaining only those terms involv­
ing two uniform precession magnons, we have 

/2 M MA 2 1 1 J H / W . V 

2 « lpvq\ V ) 
[WoCgC-g+cc,]. (57) 

The first part of this interaction is represented in 
Fig. 3(b). By proceeding as above, we are led to 

^Oorit — " 
LMs*gQ_ 

[ (coo-a^+iyo 2 ] 1 / 2 . (58) 

Similar results could also be obtained for longitudinal 
phonon instabilities. 

VI. SUMMARY 

We have shown that if a material involves anon-
linear" interactions among boson collective modes, it is 
possible to obtain instabilities. These processes are 
characterized by a growth of the number of bosons in 
the unstable mode, which in turn alters the nature of 
the energy absorption. In particular, we have discussed 
the various processes occurring in ferromagnetic in­
sulators. Similar processes should be possible in other 
media. For example, other nonlinear quantum effects 
such as the Raman process in a two-level maser may be 
analyzed as inelastic photon scattering processes. Also, 
nonlinear processes in plasmas involving the interaction 
between plasmons and photons may lead to instabilities 
which could be predicted by the technique used in this 
paper. 

We would like to emphasize that in this paper we 
have restricted ourselves to finding the threshold con­
dition. Nothing has been said about the behavior above 
the threshold. In this region, the rate at which energy 
enters the unstable mode exceeds its relaxation rate; 
therefore, the number of bosons will grow. A quantum 
mechanical analysis of this situation may lead to a 
better understanding of the behavior of such systems 
above their threshold. 
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