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FIG. 3. Comparison of present analysis with that of Robinson 
and with the experimental results of Brode and of Chen and 
Raether. (Atomic units, k = \Ze.) 

( < 0 . 1 % of the incident energy). The total cross sections 
were then obtained using the expression 

a = ( 4 x A 2 ) E K 2 / + l ) s i n 2 ^ (4) 

IV. RESULTS 

In Fig, 1 the Hartree potential function is plotted and 
compared with the total potential including polarization. 

From this figure we see that the polarization contribu

tion is very much larger than the Hartree potential in 
the region r>3, and hence the statement that small 
errors in VH{T) should be negligible as compared with 
Vp is justified. The change in the potential function due 
to a small change in the parameter fro is also shown. I t 
was found that in the low energy region the cross section 
varied over a wide range of values with small changes in 
the cutoff parameter. This indicates a strong dependence 
on the polarization contribution to the potential for 
values of r comparable to the atomic radius. In Fig. 2 
the cross section for various values of a and fr0 are 
plotted. We note that in the energy region e>0.4 
(E>11 eV) little change is produced in the total cross 
section by small variations in the cutoff parameter. In 
Fig. 3 the theoretical cross section which best fits the 
experimental values given by Brode9 as well as more 
recent values given by Chen and Raether10 is given. 
We see that a good fit to Brode's values is achieved in all 
but a very small region in the low energy range, and an 
almost perfect fit to the values of Chen and Raether in 
the thermal region is obtained (E~0.06-0.075 eV). 

V. CONCLUSIONS 

From the results obtained it appears that the model 
discussed describes the collision process. Clearly, if the 
method used for selecting the value of fro is valid for 
different atoms, then a simple model may be used to 
describe low energy electron scattering as only the ex
perimental polarizability is required. 

9 R. B. Brode, Phys. Rev. 34, 673 (1929). 
10 C. L. Chen and M. Raether, Phys. Rev. 128, 2679 (1962). 
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The spectrum of electrons at low energies and large scattering angles resulting from the scattering of high-
energy electrons on bound atomic electrons is calculated to lowest order in aZ and highest order in the 
incident energy. Relativistic Coulomb field effects are included by the use of wave functions correct to two 
orders in aZ. Inclusion of these relativistic Coulomb effects leads to a cross section significantly different 
from that obtained previously by the use of the plane wave approximation. The results show that the low-
energy spectrum of electrons scattered on bound atomic electrons completely dominates the peak predicted 
by Parzen and co-workers in the low-energy spectrum of bremsstrahlung-producing electrons. 

I. INTRODUCTION 

IT has been pointed out by Parzen and co-workers1 

that the measurement of the energy spectrum of the 
electrons which have lost energy in bremsstrahlung pro-
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t Present address: Institute for Atomic Research and Depart

ment of Physics, Ames, Iowa. 
{Present address: Bartol Research Foundation, Swarthmore, 

Pennsylvania. 
1 D. G. Keiffer and G. Parzen, Phys. Rev. 101, 1244 (1956); P. 

T. McCormick, D. G. Keiffer, and G. Parzen, ibid. 103, 29 (1956). 

duction would complement the direct measurement of 
the bremsstrahlung energy spectrum and thus provide a 
check on the Bethe-Heitler formula. Of particular 
interest is the form of the bremsstrahlung spectrum near 
the high-energy limit. This portion of the bremsstrahlung 
spectrum corresponds to the low-energy spectrum of the 
scattered electrons. Using the Bethe-Heitler formula, 
Parzen et al. have shown that there is a peak in the 
spectrum of electrons for very low energies and large 
scattering angles. 
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As pointed out by Ford and Mullin,2 there are two 
other processes which may mask the Parzen peak. First, 
there is the process of a single Moller scattering followed 
by a nuclear Coulomb scattering into large angles. Since 
this is a multiple scattering, it depends on the thickness 
of the scattering foil. Second, there is the single scat
tering of an electron on a bound atomic electron. Since 
there is the nuclear recoil to conserve momentum, this 
process can give rise to low-energy electrons at large 
scattering angles. Ford and Mullin evaluated this cross 
section by using a Dirac plane wave description of the 
incident and outgoing electrons and a "nonrelativistic" 
description of the bound electron. However, for large 
angle scattering it is important that large momentum be 
transferred to the nucleus. Since it is the high-mo
mentum components of the bound state which produce 
this momentum transfer, a more accurate description of 
this state is necessary. Further, since the collisions 
which produce large-angle scattering must occur very 
near to the nucleus, the low-energy outgoing electron is 
strongly influenced by the retarding field of the nucleus. 
Consequently, it is to be expected that relativistic 
Coulomb effects must be included in the description of 
the low-energy outgoing electron and the bound target 
electron. 

We have re-evaluated the spectrum of low-energy 
electrons which have been scattered through large 
angles on bound atomic electrons. The motion of the 
electrons has been described by using the first Born 
approximation for the scattering wave functions. In this 
way, the first-order relativistic Coulomb effects on the 
motion of the incident and scattered electrons have been 
included. First-order relativistic Coulomb corrections 
have been included in the description of the bound 
target electron. For high energies, we find that the inci
dent electron and the high-energy outgoing electron are 
accurately described by plane waves. However, rela
tivistic Coulomb corrections to the wave functions of 
the slow outgoing electron and the bound target electron 
make contributions to the scattering matrix element 
which are of the same order as the contributions from 
the plane wave term of the wave function of the slow 
outgoing electron and the "nonrelativistic" term of the 
wave function of the bound electron. We have evaluated 
the cross section to lowest order in aZ for high-energy 
incident electrons and have found that the inclusion of 
the Coulomb effects gives a cross section that is of order 
aZ lower from that obtained by Ford and Mullin. How
ever, the low-energy spectrum of the electrons scattered 
through large angles on bound atomic electrons remains 
dominant over the corresponding spectrum of brems-
strahlung producing electrons. Thus, the peak predicted 
by Parzen et al. in the low-energy spectrum of brems-
strahlung electrons will not be detectable even if the 
scattering foil thickness is sufficiently reduced so that 
multiple scattering processes are neglectible. 

II. SCATTERING OF ELECTRONS ON 
BOUND ELECTRONS 

The matrix element for electron-electron scattering is3 

Mfi=a drdr' | r - r ' l " 1 e x p p ( I F i - I F i O | r - r ' | ] 

X ^ ( r ) 7 ^ i ( r ) ^ ( r 0 7 ^ 2 ( r 0 - ( 1 , ^ 2 0 . (1) 

Here the initial and final states of the two electrons are 
denoted, respectively, by the unprimed and primed 
subscripts 1 and 2. The initial state \f/2 describes the 
bound electron. The bracket ( l / ^ ± 2 / ) represents the 
exchange term obtained by interchange of V and 2'. The 
following discussion will be restricted to the case of 
large-angle scattering. In particular, we take electron 2' 
to emerge from the scattering center at an angle relative 
to the incident direction exceeding TT/2. The differential 
cross section for scattering into state 2' is 

d*B= (2w)-5(W1/p1)dn2fdW2W2'p2' fdpv i E \Mfi\> 

Xd(Wi+W2-Wv-Wr), (2) 

where J X) represents the average over initial and sum 
over final spin states. 

In order to obtain the matrix element correct to the 
lowest nonvanishing order in aZ, we use the first Born 
approximation for the continuum states 1, 1', and 2'. 

^ ( r ) = e*-r [ H 0 ( r ) + J T ] 
4TT 

X 
/

e±ip\T-x'\ 
V{r')e^^dtf | J7(p), (3) 

| r—r'l 

where the sign of the exponent in the integrand is de
termined by the boundary conditions. For a Coulomb 
potential, V(r)= — (aZ/r)e~*ir, where /x is a positive 
parameter which is allowed to vanish at the end of the 
calculation. 

For the bound state, the wave function of a hydrogen
like atom is used. The greatest contribution to the cross 
section will come from the iT-shell electrons since large 
momentum can then be transferred to the nucleus. The 
hydrogen-like ground state is exactly 

^2(r) = iVe-Xrr'y-1 
i\ 

1-

with 
L m(l+y) 

X = aZni, 

W2=my=m (1—o?Z2)1/2, 

- a - r k/(p2) (4) 

2 G. W. Ford and C. J. Mullin, Phys. Rev. 110, 520 (1958). 

3 See, for example, J. M. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1955), p. 146. 
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and 

|iVl2 = -
(1+T)(2A)W 

87rr(27+l) 

which 

This wave function has been expressed in terms of the 
plane-wave spinor Ufa) to facilitate the evaluation of 
the spin summations. In all results the momentum p2 is 
set equal to zero. Neglecting second-order terms, y can 
be approximated by unity and 1̂2 (r) can be written: 

iMr) = i\T<f r X rH OL'f 
L 2m J 

Ufa). (5) 

Note that the bound state energy, W2, can be described 
accurately to two orders in aZ by the rest mass 
energy, m. 

An expansion of ^2(1*) in powers of aZ can be made in 
the form 

\p2(r)-=limNe-er(l-aZmr+^iaZa'f)Ufa)J 

where the factor e~er is included to insure the conver
gence of the resulting integrals. Indeed, McVoy and 
Fano4 have shown that the first two terms in the ex
pression of the matrix element in powers of aZ are 
properly obtained by expanding the wave function in 
this form. However, although this form does lead to an 
expression for the matrix element which is formally 
correct to order aZ, it is not applicable for our purposes 
because it gives rise to a factor of the form 

{ [ ( p i - P i O ' - M P + ^ V } " 1 

in the square of the matrix element. Since fa—p/)2 

—p2/2 has a zero for 2pi-pi / = £i2+^i'2—p2'2 , this factor 
leads to a singularity in the subsequent angular inte
gration in the limit that e vanishes. If the factor e~^r is 
not expanded in the bound-state wave function, e is 
replaced by X and the divergence in the angular integra
tion is replaced by a finite term of order 1/X. Thus, we 
obtain an unexpected lowering in the order of the 
differential cross section. 

The zeroth-order matrix element results from (1) with 
the wave functions as given in (3) and (5) evaluated in 
the limit that aZ and X approach zero.5 In this limit 

Mfi= 2 (2iryaN(Pi-Pv)-2 

X 3 ( p i - P i ' - P 2 ' ) - ( 1 , ? = ± 2 ' ) , (6) 
where 

( P i - P i 0 2 = (P1-P1O2- (W1-Wv)\ 

This term vanishes identically for the case of large-
angle scattering since the argument of the 8 function is 
nonzero. The matrix element is thus of first order in aZ. 

The matrix element to first order is rather compli
cated. Since, however, we are interested in the case for 

4 Kirk W. McVoy and U. Fano, Phys. Rev. 116, 1168 (1959). 
5 The over-all factors a and N which multiply the matrix 

element M/i are disregarded in classifying terms in M/t- according 
to "orders of aZ." 

Wh Wvy>Wy, m 

the matrix element can be considerably simplified by 
retaining in it only those terms which contribute the 
highest power of Wi/tn in the cross section. With the aid 
of the energy relation 

W1+m=Wv+W2>, (7) 

we find after angular integration over dtty that terms in 
the squared matrix element which involve the denomi
nator (Pi—Pi')4 exceed all remaining terms by two 
powers of Wi/m. Since this denominator occurs only in 
the square of the direct term of the matrix element in 
(1) and arises solely from the plane-wave terms of the 
wave junctions describing the high-energy states 1 and 
1', it follows that the cross section is determined to the 
accuracy desired by the matrix element 

Jf / , = 4 i r a ( P i - P r ) - 4 l 7 ( p 1 0 7 ^ ( p i ) 

X M r fa, (r)7M*2(ry<»*-w'> -r. (8) 

The remaining integration of the matrix element is 
conveniently carried out in momentum space. Intro
ducing the Fourier transforms 

(9) 

M r ) = /x2'(pVp-r<*P, 

fc(r)= / x 2 ( q y q ^ q , 

the matrix element becomes 

Mfi=2(2irya(P1-P1,)-
2Ufa>h»Ufa) 

X / dp X2 ' (p)7/ .X2(p+Pi '~Pi) , (10) 

wi th 

X2'(p) = 5(p2 '~p)C r(p2 ' ) 

aZ a-p+jftw+PFV 

2TT2 [ ( P 2 ' - P ) 2 + M 2 ] ( ^ 2 - ^ 2 ' 2 + ^ ) 

N X N a-p X 
X2(P) = — " T ^ ( P 2 ) + — , , . . ^ ( P 2 ) . 

Vfa'\ 

7T2 ( £ 2 + X 2 ) 2 2x2 m (p2+\2)2 

The matrix element can now be written to first order in 
aZ in the form 

Mfi=M1+M2+Ms, (11) 
where 

Mx=-
32T2CXN 

(P1-P1O2 C^2+X2)2 

XUfa'h.UfaWfa'h.Ufa), (12a) 
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Af 2=-
16AxN 

« ( P i - P i O * (-K2+X2)2 

Xf7(Pr)7^(Pi)t7(P2')T,«-KC/(p2) , (12b) 

and 

M,=-
16a («Z)iV 

(Pi-Pv) 
U(vr)y,U(Vl) 

:/° x MP-

x-

with 

[ ( P - P x + P r ^ + X 2 ] 2 

U(BvX-«-V+Pm+Wrh,Ufa) 

K=Pl—Pi ' - P2 ' . 

(12c) 

M 3 is of the same order in aZ as Mi and i f 2, although it 
appears to be of higher order. This can be seen by noting 
that, in evaluation of M3 to first order in aZ, the ex
pansion to lowest order in X of the factor X/[(p—pi 
+ p i ' ) 2 + ^ 2 ] 2 gives rise to a delta function via the 
relation 

HmX/(p2+X2) = 7r25(p). (13) 
X->0 

I t follows that the integral in (12c) to zeroth order in X 
is nonvanishing, and M 3 is of order aZ. 

The use of relation (13) in evaluation of M% requires, 
however, an implicit expansion of the integrand in X. 
Since an expansion in X before integration is to be 
avoided, and since, moreover, a finite value of X is re
quired to insure convergence of the subsequent angular 
integration of | M"31

2, we do not make use of (13) in the 
explicit evaluation of M%. The exact integrals involved 
in (12c) are 

040,A)= dp 
U,P) 

C ( p - P 2 0 2 + M 2 ] C ( p - P i + P r ) 2 + X 2 ] 2 ( ^ 2 - ^ 2 - i 5 ) 
(14a) 

To lowest order in aZ, these integrals are given by6 

(AA)=-
(1, p i - p i O 

(14b) 
\K2 ( p i - p i 0 2 - * a ' 2 - 2 # 2 ' X 

With this result we find 

Sir2aN X 
M 3 = t/(pi07M^(Pi) 

fnp2>(Pi-P2>)2K2 s-i\ 

X f f ( p 2 0 [ - « - ( P i - p i 0 + / 3 w + ^ 2 ' ] 7 ^ ( p 2 ) , (15) 

where 

s=-
(Vi-Vr)2-p2'2 

2p2> 

Carrying out the integration over Wv, the cross 
section given by Eq. (2) can be rewritten as 

d*B = (2T)-*(Wdpdpi>pvWvWvdWrda*> 

X AzQi'iEI^M2, (16) 

where to lowest order in aZ, 

\Mfi\*=\Mi\*+\M*\*+\M*\* 
+2 Re(M1M2

f+MiMz*+M2Mj). (17) 

All terms on the right-hand side of Eq. (17) apparently 
contribute to the same order of aZ in the cross section as 
expressed in Eq. (16). However, it is found that the 
contribution of the term | M% |2 is actually one order of 
aZ lower than that of the remaining terms in Eq. (17). 

6 See, for example, Mihai Gavrila, Phys. Rev. 113, 514 (1959). 

This follows from the fact that as X approaches zero, the 
factor 

(lA)[A/(*2+X2)] (18) 

which occurs in IM3I2 becomes the 5 function, 8(s). 
Since the integration over dQ, 1 in (16) is expressible as an 
integration over the argument s, the range of which 
includes the point s = 0 , the delta-function character of 
the factor (18) reduces the IM3I2 contribution to order 
aZ. The factors X2/(K2+X2)4 which occur in (17) from 
the contributions of M\ and M2 do not cause a similar 
reduction in the order of aZ since K is never zero. Thus, 
only Mz contributes to the cross section to the lowest 
order. Indeed, this fact is verified by a more detailed 
investigation of the terms in (17). As a consequence, we 
replace | M/»• |2 in the cross section by | M% |2. 

After evaluation of the sums over the spins in | M312, 
the cross section in this approximation becomes 

a2 (aZ) INI *pvdWvdCh' f 1 X 

KWPPXPV J Z 4 ( P l - P l 0 4 ^ + X 2 

X{{Vi-Vv)2lmWvPyP2>+mW1Pv-P2> 

+4ttnWvWiW2> - m*W2> - m2Pi • Pv - 2mf\ 

+ P 2 " ( p i - p r ) [ - 2 w W i P r • ( p i - p r ) 

-2mWvVv {Vi-Vv)+kmWvW2>Wl 

- 2 m W 2 ' + 2 w 2 P i - P i > + 4 w 4 ] 

-2{W2?+m2)[mWm>' (P1-P1O 

+Wvm$v ( P i - P r ) ] 

~P2'2[mW,Pv• Pv+mWvPvPvH 

+PvPr(3m2W2'2+mA)+m2lSmWxWvW2' 

w J T V + 2 w 4 ] } . (19) 
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The angular integration in (19) can be simplified by 
elimination of angular-dependent terms from the nu
merator. This can be accomplished by expressing the 
latter in terms of factors occuring in the denominator; 
the resulting cancellations then leave the numerator 
independent of the p r direction. Using the relations 

( p i - P i 0 2 = O P i - i V ) 2 + * 2 , 

2 ( p i - p r ) - p 2 ' = (Pi-Pv)2-K*+2xW2>, 

2(vi-Vi>)'Vv = 2x(W1-x)-(P1-P1>)2, 

2(vi~Vv)'Vi=2xW1+(Pi-Pv)% 

2Pv-Pv^K*-(P1-Pv)'1+2PvPv, 

2 P r P r = - ( P i - P r ) 2 - 2 w 2 , 

where x=W2> — m, we obtain 

c?(aZ)\N\*pi>dWvdQ2> 
daB = {(%— WI)IQA 

2-irpypi 

+ (W1+m-x)I22+2(-2mW1
2+mxW1+m2x)h2 

+2[6MW1
2+4XW1

2+PVP2>(2W1-X)--4:XW1 

~5mxWi+2x*+tnx2-~4:xni2—4:fnz2lM 

+2[~2mxP1'P2>(2Wl-x)+±ni2W1
2(x+2m) 

- 2m2xWi (3x+4m) - 4mzx2 - 4m2xz~]Iu}, (20) 

with 

• = / dtiv ( 5 2 +X 2 ) - 1 (P i -P iO~^~ M . (21) 

I t remains to evaluate the integrals Inm to lowest order 
in aZ (or X). Using d£li> = p2'(pipi>)~ld<pi>ds we can 
write 

/.2TT 

Inm^pripipv)"1 I d<pi>Snm, (22) 
J 0 

where 

and 
/

«2 

-s 

ds (s2+\2)-1(Pi-P1>)-nK-

p2>2-(pi-pi>y 
Si = >o, 

* 2 = 

2^2' 

(Pl+pl')*-p¥* 

2p* 
>o. 

We wish to evaluate Snw to lowest order in X. However, 
X2 cannot be neglected compared to S2, since s has a 
zero in the range of integration. In order to extract the 
lowest order term we express Snm in the form 

hnm— &nm 
/

«2 

-8 

ds ( ^ + X 2 ) - 1 [ ( P i - P r ) - ^ -

where subscript 0 denotes the value of the quantity for 
s=0 and 

ds L^+X2]-1, 

= X - 1 ( i J i - i > r ) o - ^ o — n J(—m 

XU+ifln-
(sL+i\)(s2 + i\) 

I 

(si—i\)(s2—i\) 

The second integral in Eq. (23) is now finite as X —> 0 
and the term of lowest order in X is contained in $nm'> 
Therefore, 

Inm= (\plpv)~1Tp2'(Pl-Pr)o~n 

K0
m 

The remaining <pi> integration is easily carried out. Re
taining only the highest power of Wi we obtain 

1 
(24a) 

\Wi2 \2m{Wv-m)Yl2(yV2>-m>-p2' cos02') 

1 Tr2(W2'-m)(Wr+m--p2^ cos02') 

\WX
2 2[2m(Wr~m)~]n/2(W2r~m-p2' co^Ypv2 

(24b) 

Using these results in Eq. (20), the differential cross 
section to lowest order in aZ and highest order in W\ is 

daB~-
(aZ)WniddQ2>dW2> 

2pv{W2>-m)2iyV2'-m-py cosfli') 

r 2W2>
2{Wv\-m-pv cos02') 

.(W2>+ni)(W2>'-<M-p2> cos02')
2 

, (25) 

•(Pi-Pi>)<rnK<rm], (23) 

where ro—a/ni, the classical radius of the electron. This 
cross section is independent of the incident energy W\. 

By retaining the terms M\ and M2 in the matrix 
element M/i, it is possible to exhibit the energy de
pendence of the next lowest order term in the aZ ex
pansion of the cross section das. Although terms 
proportional to the first and the second powers of the 
incident energy occur in this order in the squared matrix 
element, an exact cancellation of these terms takes 
place after angular integration over dQi>, and the cross 
section is found to have at most a logarithmic depend
ence on the energy W±. A contribution to this next 
lowest order aZ term in the cross section can also arise, 
however, from the next aZ correction to the wave func
tion of Eq. (3) as a result of a lowering in the order in 
aZ of this correction term after the angular integration 
over dtii'. This contribution can have again at most a 
logarithmic dependence on the energy. 

III. DISCUSSION 

A comparison of the value of dan given by Eq. (25) 
with the value obtained for this cross section in reference 
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2, shows the importance here of relativistic Coulomb 
field effects. The neglect of these effects in reference 2 is 
equivalent to the approximation of the matrix element 
M/i by the term Mi of Eq. (12a). This term gives a 
cross section proportional to {aZ)h and Wi2. The first-
order relativistic correction to the wave function of the 
bound electron and the first-order relativistic correction 
to the wave function of the slow outgoing electron are 
associated, respectively, with the terms Mi and if3 in 
the matrix element. These terms make contributions to 
Mfi which are of the same order in aZ as Mh and result 
in a cancellation of the terms involving Wx

2 and W\ in 
the cross section. The term M% gives, in addition, the 
contribution of order (aZ)4 in the cross section which is 
calculated in Sec. I I . Although it is at first surprising 
that this dominant contribution to the back scattering 
cross section arises from the Coulomb correction term 
in the wave function of the back scattered electron, this 
result is not unreasonable in view of the fact that it is 
the Coulomb coupling between the electron and the 
nucleus which allows momentum to be conserved for the 
large-angle scattering. 

The energy spectrum of electrons which have lost 
energy in bremsstrahlung production has been given by 
McCormick, Keiffer, and Parzen.1 Since the general 
result is rather complicated, only the result in the limit 
of high incident energy and low final electron energy 
will be given here.7 

aZ2ro2m2 / 
dap— ( — cos02' 

2irWi(W2>-p2> cos02')2\ 

p2' + W2> COS02' W2' + p2'\ 
+ i n )dWv<Kl2>. (26) 

pv m J 

For purposes of comparison, we introduce the di-
mensionless quantity 2 related to the differential cross 
section da by the definition 

4:Trm da 
2 = . (27) 

r0
2Z2 dWvdtir 

Results of numerical evaluation of 2 ^ and 2p for inci
dent energies 4.123 and 60 m, for the scattering angle 
120° and for Z—13 and 47 are presented graphically in 
Fig. 1. I t is clear from the figure that the peak in the 

7 Here the notation is made to conform with that used in the 
calculation presented in this paper. Thus, Wi refers to the energy 
of the electron in the initial state and Wv to the energy of the 
electron in the final state. 

lo-' : 

I \ 0t<= 120' 

io2 L\-
J- \ > 

J ^ L \ £P,W, = 4.l23m 
io L \ v ~ - •— "— 

2 \ \ 

10 r \ \ 
\ ^ " N T " - - - ^ ^ W , s 60 m 

iOT \ \ 

10 I I L_JS 1 1 I 
1.0 L5 2.0 2.5 3.0 

Wt,/m 

FIG. 1. Sp and 2# as functions of Wr for the scattering angle 
02' = 120°. 2j? is given for one iT-shell electron. 

energy spectrum of bremsstrahlung-producing electrons 
is completely masked by the energy spectrum of elec
trons scattered on bound atomic electrons. 

The process of a Moller scattering followed by a 
nuclear Coulomb scattering which competes with the 
processes considered here is dependent on the target foil 
thickness, whereas daB and dap are not. The values of 2 
for Moller scattering followed by a nuclear Coulomb 
scattering calculated in reference 2 for a foil thickness of 
5X1018 atoms/cm2 show that both 2 B and 2 P will be 
dominated by this process in the region of the Parzen 
peak. I t is clear that the foil thickness must be drasti
cally reduced in order that 2# and 2 P be significant in 
this region. 

The low-energy spectrum of positrons obtained in 
pair production by high-energy y rays is closely related 
to the low-energy spectrum of bremsstrahlung-pro
ducing electrons. By using coincidence techniques the 
background due to various scattering processes can be 
greatly reduced and the low-energy region of the 
positron spectrum should be observable.8 

8 C. L. Hammer (private communication). 


