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agreement with the present value. The preliminary 
value was obtained before the rectangular glass cells 
were fabricated, and was based on spectra obtained with 
a single glass cell of circular cross section. The circular 
cell has a filling factor of about § and a correspondingly 
small signal-to-noise ratio. 

The present value is in good agreement with the 
value of 1.54 D obtained by Madden and Benedict15 

from the infrared emission spectrum of an oxy-acetylene 
flame and estimates of the O H : H 2 0 concentration 
ratio. Although the concentration ratio estimates now 
seem to have been quite accurate, this was not known 
at the time they were made, and Madden and Benedict 
were not able to assign an experimental error to their 
value of dipole moment. 

The present value is also in good agreement with the 
value of 1.65±0.25 D recently obtained by Meyer and 
Myers, using microwave spectroscopy.16 They used 
square-wave Zeeman modulation to facilitate detection 
and observed the Stark shift due to the application of 
a dc electric field between two parallel aluminum plates. 
Their observations were made on the 27T3/2, 7 = 9 / 2 
A-doubling lines. The experimental error they quote is 
somewhat greater than ours, probably due to the fact 
that their maximum observed Stark shifts were about 

15 R. P. Madden and W. S. Benedict, J. Chem. Phys. 23, 408 
(1955). 

16 Richard T. Meyer and Rollie J. Myers. J. Chem. Phys. 34, 
1074L(1961). 

I. INTRODUCTION 

AS refined experimental procedures continue to 
probe more deeply the mechanisms underlying 

maser action1 in spectral regions ranging from micro
wave to optical frequencies, it has become increasingly 
more important to scrutinize the simple approximations 

1 J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 95, 
282 (1954); 99, 1264 (1955). 

1.2 Mc/sec—somewhat smaller than ours (see Fig. 5). 
Meyer and Myers also point out that their experi

mental results indicate that the OH dipole moment is 
close to the OH bond moment found in water, 1.53 D, 
but outside the range of the most complete theoretical 
calculations, which give values between 2.1 and 2.7 D. 
This is confirmed by the present results. 

V. CONCLUSIONS 

The electric dipole moment for OH has been found 
to be 1.60±0.12D. 

Four main lines (two doublets) of the 017H hypernne 
structure for the 27r3/2, J =7/2 A-doubling transition 
have been observed. The doublet splittings are in agree
ment with doublet splittings computed from hypernne 
structure constants obtained from experiments on 016H. 
The separation between the doublets gives a value of 
d= — 415.3±2.0 Mc/sec, in good agreement with a 
simple model that assumes one unpaired pir electron 
about the O17 nucleus. 
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which underlie the existing mathematical analyses2 and 
to develop generalizations which are valid for broad 
classes of maser systems. In this context the present 
paper has three basic objectives: to determine un-

2 A survey of a number of approaches with an extensive an
notated bibliography has been given by W. E. Lamb, Jr., in 
Lectures in Theoretical Physics\II, University of Colorado Summer 
School 1959, edited by W. E. Britten, B. W. Downs, and J. Downs 
(Interscience Publishers, Inc., New York, 1960), p. 435. 
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Simple interference experiments identify correlation functions which describe the response of maser 
amplifiers and the output of maser oscillators. General operator techniques are used to evaluate these 
functions in cavity maser systems for which the coupling of the maser electromagnetic field to external 
energy sources or sinks is mediated by systems whose short-term response depends primarily upon average 
or macroscopic system properties. The dielectric theory which results includes only those short-term non-
linearities associated with the external pumping fields. In the long term both the external and the cavity 
fields can modify the susceptibility functions. The techniques utilized permit a detailed analysis of approxi
mations and suggest generalizations for increased precision. As one important result of this type the theory 
indicates that macroscopic rate equations are valid if modulation frequencies are much less than the width 
of the narrowest coupling system spectral line. 
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FIG. 1. Schematic diagram of typical maser systems. Direct 
interchannel interactions have been excluded for simplicity. 

ambiguously by the analysis of simple experiments 
which mathematical functions describe properties of 
maser systems; to commence a general systematic 
computation of the functions of interest in terms of 
universal functions which characterize (perhaps phe-
nomenologically) specific maser components; and to 
present a number of results which pertain to a par
ticularly important approximation, the dielectric ap
proximation. Our emphasis shall be directed primarily 
towards the energy spectrum of the free-running maser 
oscillator and the frequency dependence of the linear 
response of the maser amplifier. By a simple extension 
of our steady-state arguments, however, we shall also 
be able to determine an ultimate upper limit on the 
range of validity of thermodynamic energy-rate 
analyses of maser relaxation which do not take into 
account detailed spectral features.3 In all cases by 
focusing our attention on properties of the electro
magnetic field rather than on the quantized subsystems 
which generate that field, we are able to achieve a unity 
of description which emphasizes similarities between 
different maser realizations. 

The maser systems to be considered consist of a 
confined electromagnetic photon field dynamically 
coupled to various external pumps—that is, energy 
sources or sinks—which drive and dissipate the photon 
field through different coupling channels. A typical 
system is illustrated schematically in Fig. 1. In the 
first (microwave) maser1 the excitation "channel" 
consisted of a beam of excited NH 3 molecules which 
had been selected ("pumped") prior to their traversal 
of the maser cavity. The cavity walls and the load 
constituted the dissipation "channels." 

The electromagnetic fields generated by maser 
oscillators are noteworthy for their coherence—that is, 
for narrowness of the band of frequencies contained in 
their Fourier decompositions. Similarly, maser ampli
fiers are noted for their narrow amplification band, for 
their low effective noise temperature, and for their 
consequent low total noise power. As we shall establish 
by the analysis of rudimentary experiments in Sec. I I , 
these spectral features manifest themselves in the 
Fourier-integral representations of certain photon-

3 H. Statz and G. de Mars, in Quantum Electronics, edited by C. 
H. Townes (Columbia University Press, New York, I960), p. 530. 

amplitude correlation functions. Since the formal 
structure of the photon functions is independent of the 
specific details of the coupling channels, they are con
venient functions upon which to base a general maser 
analysis. 

To avoid unnecessarily restrictive assumptions about 
the details of the pump-photon coupling channels, we 
develop mathematical representations of the photon 
correlation functions from integrated rather than 
differential equations of motion. This leads us in a 
completely rigorous but straightforward fashion to 
isolate channel correlation functions which embody the 
relevant features of the pump-coupled channel systems. 
The most important set of such correlation functions 
are the analogues for the driven maser system of 
familiar dielectric or susceptibility functions. Such 
functions can be parametrized phenomenologically or, 
if a model for the pump-coupled channel systems is 
assumed, mathematically. We shall not pursue this 
latter aspect of maser analysis in this paper. 

Steady-state susceptibility functions contain the 
coupling channel information most relevant to the 
photon-field analysis when the short-term dielectric 
response of the channel is a macroscopic property of 
the channel system. Assuming that the channel suscepti
bility is indeed independent of the instantaneous photon 
field strength in the short term—in the long term the 
field strength affects the channel "populations" and, 
consequently, the response characteristics—we consider 
in some detail the calculation of various expressions of 
relevance to masers: the energy spectrum of the maser 
oscillator, the frequency dependence of the maser 
amplifier, and rates of energy transfer between photon 
and channel systems. I t is an interesting result that the 
free-running maser oscillator is in many respects a 
noise amplifier. The noise signal results from spon
taneous emission of radiation from excited channel 
states. For passive or dissipative channels that ex
citation is determined by the usual temperature-
dependent population factor, a manifestation of the 
fact that so-called thermal noise is simply spontaneous-
emission noise from systems that are thermally excited. 

Following our discussion in Sec. I I of rudimentary 
experiments which serve to identify relevant photon 
correlation functions, we outline in Sec. I l l the proper
ties of the statistical ensemble which characterizes the 
steady-state maser. In Sec. IV we define with somewhat 
greater precision than in Sec. I I the operators which 
describe the photon field within the maser cavity and 
indicate a general form for the photon-channel coupling. 
In the next section we introduce two mathematically 
convenient photon correlation functions and indicate 
their connection to the physical observables of Sec. I I . 
We also indicate symmetry properties of these functions 
and present the first two steps in their computation. In 
Sec. VI we discuss the factorization leading to the 
dielectric approximation. In Sec. VII we use this 
approximation to complete the computation of one of 
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the photon correlation functions. The other correlation 
function, since it depends upon unknown ensemble 
expectation values, cannot conveniently be calculated 
by the same technique. Instead, we use the stationary 
property of the ensemble describing steady-state maser 
operation to establish a rudimentary fluctuation-
dissipation theorem by means of which the second 
correlation function may be computed. In Sec. I X we 
derive expressions for the rate of energy transfer 
between photon and channel systems in the dielectric 
approximation. These are used in Sec. X to draw certain 
conclusions about thermodynamic energy-balance treat
ments (rate equations3) of masers. In Sec. X I we 
consider an especially simple two-channel system, 
indicate typical maser properties, and conclude by 
illustrating graphically how the output spectrum of a 
maser oscillator and the response of a maser amplifier 
vary as the operating conditions of the maser change. 
In the final section we briefly recapitulate the important 
features of our presentation. 

II. CORRELATION FUNCTIONS FOR THE 
ELECTROMAGNETIC FIELD 

As we have remarked, the distinctive aspects of maser 
systems manifest themselves in the properties of the 
electromagnetic (photon) field generated or amplified 
by the maser. These properties are in turn reflected in 
correlation functions of photon operators. Those cor
relation functions which are most relevant can easily 
be seen if we consider a few simple experiments appro
priate to an optical maser.4 

In Fig. 2(a) we have indicated a simple interference 
experiment to measure the spectral properties of the 
output of an optical maser oscillator. The output beam 
is split by a mirror arrangement into two beams which 
are again brought together on an interference plane. 
If a is an operator representing the total photon 
amplitude at the interference plane, then a is equal to 
the sum of the amplitudes from the two different paths. 
Because the path lengths may be different, those two 
amplitudes involve the cavity photon amplitudes ax 00 
at different times: 

^(x,0 = E x l^lx(x)a-K(t—d1(x)/c) 

+ctix(x)ax(f-di(x)/cy\. (2.1) 

As we shall discuss further in Sec. IV, the parameter X 
distinguishes the modes of the radiation field within the 
cavity. For convenience the phases of the coefficients 
«ix, «2X are chosen such that aix*«2X' is real for X=X'. 

The detected intensity J(x) of the light at the inter
ference plane is proportional to the average number of 
photons reaching the plane—that is, to the expectation 
value at a at the point x: 

I(x) = <at(X)*)a(x,0>. (2.2) 

Since the emission from each cavity mode is character-
4 M. Born and E. Wolf, Principles of Optics (Pergamon Press, 

New York, 1959), Chap. X. 

MASER 
OUTPUT BEAM 

INTERFERENCE PLANE (a) 

INTERFERENCE PLANE (b) 
FIG. 2. Schematic diagrams of simple optical interferometers 

by means of which radiation coherence may be measured, (a) Ar
rangement for determining the energy spectrum of a free-running 
optical maser (oscillator), (b) Arrangement for measuring the 
amplitude response characteristics of a driven optical maser 
(amplifier). The short solid bars in each diagram represent mirrors. 

ized by a definite radiation pattern, the interferometer 
geometry will usually insure that all but a few a*x in 
(2.1) are zero. If, in fact, only one mode X is relevant, 
we find upon substituting (2.1) into (2.2) that 

I(x) = (|o:ix|2+ |a2x|2)(ax tax)+ (ai\*a2x| 

x \ x+v )a*+aM ))• (2-3) 

Except for the known x dependence of ceix and a2\, the 
first term of (2.3) represents a constant background 
intensity upon which the physically interesting modu
lations of the second "cross" term are imposed. That 
term depends upon the pathlength difference (^1—^2), 
a function of position on the interference plane. Note 
that the modulation expression is symmetrized: The 
first term within the expectation value is the Hermitian 
conjugate of the second, and the two are joined by a 
plus sign. We shall identify the positive-definite even 
Fourier transform of that modulation term with the 
energy spectrum5 5C\ (co) of the X mode of the free-running 
maser: 

/

CO 

dTei(aTW(t+T)a^(t) 

+ax t(0*x(H-r)>. (2.4a) 

The normalization is such that 

L 
>d<a 

0 2w 
-5CX («) = cox^x^x) - (HQ*P) - icox, (2.4b) 

* N. Wiener, Acta Math. 55,117 (1930); S. O. Rice, Bell System 
Tech. J. 23, 282 (1944); 24, 46 (1945). 
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the total X-mode cavity energy exclusive of the in
accessible zero-point energy. 

A different experimental situation is illustrated in 
Fig. 2(b). We again have an interference experiment, 
but only one of the interfering beams is from the maser 
output. The other derives from a signal which is 
amplified by the maser. We are measuring in this case 
the correlation between the input and the output 
amplitudes of a maser amplifier. The intensity relations 
are essentially as before: The intensity at any point x 
is proportional as in (2.2) to the number of photons 
reaching that point; the total amplitude is the sum of 
two beam amplitudes, 

d(x,f) = as(t— Ja(x)/c)+5]x«ox(x)axO— d0(x)/c); (2.5) 

and the resulting expression contains constant terms 
plus a symmetrized interference term. If we indicate 
the signal-perturbed maser ensemble by the ^-indexed 
single brackets (•••)* and the normalized stationary 
signal ensemble5 by the double brackets ((•••)), then 

J(x) = «J . (x)» , (2.6a) 

where 

I8(x) = aJ(t—ds/c)as(t— ds/c)+Y,\ \a0\(%) \2(a^a\)s 

+ E x {ao\asi(t—ds/c)(a\(t—do/c))s 

+ a o x W {t- d0/c))sas (t- ds/c)}. (2.6b) 

I t remains to determine how the cavity expectation 
values {d\(t))s are perturbed by the incident signal field. 

If the signal is sufficiently weak, so that the response 
of the amplifier is linear, that expectation value may be 
represented as the sum of two terms: 

<ax(O>.=<*x(0>.-o-*£ / dtr{ax{t)a^{t') 
* ' 7-00 

-a^(t'W(t))s^s^as{tf). (2.7) 

The first term is the average amplitude when the signal 
field as{t) is absent. In all situations of interest to us 
here it will be zero. The important contributions to 
(2.6) will derive from the second or linear-response 
term of (2.7). Since it is not an object of this paper to 
analyze the coupling of the electromagnetic field within 
the maser cavity to that outside the cavity, we shall 
not discuss in detail the simple but plausible model 
upon which the specific linear-response term (2.7) is 
based. For different models that term will take slightly 
different forms. However, all forms will involve an 
integration kernel closely related to the function 

1 

i 

r°° do) 
= _rf-*«(f-«')r(xy;w), (2.8) 

7—oo 27T 

which appears in (2.7). We shall call the amplitude 
correlation function (2.8) the linear-response function 
of the maser amplifier. [Observe that the tf integral of 
the linear-response term of (2.7) is retarded: tf<t.~] 
The commutator structure displayed in (2.8) is a general 
feature of linear-response functions.6-8 

In summary, we have indicated by the analysis of 
two elementary interference experiments that two 
functions of paramount importance for the description 
of masers (however they are constructed) are the 
elementary amplitude correlation functions (2.4) and 
(2.8). With little further difficulty one can envisage 
other experiments in which radiation intensity at one 
time is correlated with intensity at another time. The 
relevant correlation functions involve symmetrized and 
antisymmetrized products of the photon intensity 
(number) operator I~a^a. For example, if one were to 
measure with one photosensitive device the X-mode 
emission of an optical maser at time t> measure with 
another similar device the X'-mode emission at the time 
t', and pass the sum of the two measurements through a 
square-law device, one would record the average output 

< [ / x « + ^ ( 0 ] 2 ) = a x 2 ) + < / v 2 ) 

+</x(0/x<(O+A'(OA(0>- (2.9) 
That most experimental observables can be identified 
with properties of correlation functions is an important 
point to note, since such identifications often eliminate 
interpretive difficulties in other approaches and, more
over, make contact with an extensive body of (field) 
theory originally developed for other purposes. 

III. THE MASER ENSEMBLE 

In the preceding section we utilized without definition 
a normalized single-bracketed expectation value (• • •) 
based implicitly upon an ensemble of states character
izing the maser system. In this paper we restrict our
selves primarily to steady-state maser operation and 
do not consider the relaxation transients which ac
company the initial preparation of our system. The 
present state of the systems we treat derives from the 
continued stationary operation of the various channel 
pumps over a time interval T commencing in the distant 
past. The interval T is sufficiently large so that the 
initial transients have disappeared but not so large that 
the storage systems supplying power to the various 
pumps exhibit measurable depletion. With this upper 
limit upon T implicitly understood, we define in the 
usual manner for an arbitrary operator 0 and a finite 

6 H . B. Callen and T. R. Welton, Phys. Rev. 83, 34 (1951); 
H. B. Callen and R. F. Greene, ibid. 86, 702 (1952); H. Ekstein 
and N. Rostoker, ibid. 100, 1023 (1955); J. Weber, ibid. 101, 1620 
(1956). 

7 W. Bernard and H. B. Callen, Rev. Mod. Phys. 31,1017 (1959). 
8 R. Kubo, Can. J. Phys. 34, 1274 (1956); J. Phys. Soc. Japan 

12, 570 (1957); W. Kohn and J. M. Luttinger, Phys. Rev. 108, 
590 (1957); H. Nakano, Progr. Theoret. Phys. (Kyoto) 15, 77 
(1956); M. Lax, Phys. Rev. 109, 1921 (1958); P. C. Martin and 
J. Schwinger, ibid. 115, 1342 (1959). 
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"present" time t 

(0(O) = Av lim £ Pjifi{j'\ 6(t+T)\j), (3.1) 
pO y->oo jjf 

where p° is a normalized density matrix which describes 
the starting ensemble and where the average is over all 
such admissible ensembles. We assume that the ex
pectation value (3.1) exists and is unique. I t is, of 
course, independent of any specific starting ensemble. 
I t is also independent of any finite t. 

We wish to emphasize that the maser ensemble 
defined by Eq. (3.1) is not normally a thermal equi
librium ensemble. This is an important point because 
for equilibrium ensembles there exist general fluc
tuation-dissipation theorems6,7 which provide mathe
matical connections between symmetric and anti
symmetric correlation functions, only one of which is 
usually easy to calculate directly. For the maser 
ensemble such general theorems are not known; how
ever, we shall be able in Sec. VIII to exploit the t 
independence of (3.1) to derive a limited fluctuation-
dissipation theorem applicable to amplitude correlation 
functions of the driven maser ensemble. 

IV. THE CAVITY ELECTROMAGNETIC FIELD 

The narrow line shapes characteristic of the electro
magnetic field in cavity maser systems suggests that 
we describe the field within the cavity in terms of the 
denumerable eigenmodes of an ideal resonant cavity of 
finite volume V rather than in terms of the damped 
modes of the loaded but undriven cavity. Doing this, 
we treat those perturbations which damp the photon 
field and those which drive it on equal footing. We view 
both as resulting from the interaction of the photon 
field with the active media of appropriate energy-
transfer channels. The frequency-independent mirror 
losses, for example, associated with the Fabry-Perot 
etalon of an optical cavity maser can easily be incor
porated into such a scheme by the simple expedient of 
a broadband loss channel. 

For the electromagnetic field within the cavity we 
assume that there exists a complete set of orthogonal 
normal modes, each indicated by an index X, say, and 
each having its characteristic spatial configuration 
U\(r). The observable electric and magnetic fields are 
representable as a sum over modes: 

B(r,0 = £ v X u x ( r ) P x ( 0 ; 
x 

1 d 
€ ( r , 0 = — - £ u x ( r ) P x ( 0 

c dt x (4.1) 

cox2 

= Z—Ux(r)Gx(0. 
x c 

In a perfect cavity the time dependence in the Heisen-
berg representation of the conjugate variables P\(t) 

and Qx (t) is harmonic, a fact which leads one to identify 
these variables with the momentum and displacement, 
respectively, of a harmonic oscillator9: 

^o^JEx^+coxW); 
P\(t)°=Px coscox^-coxQx sincox*; (4.2) 

Q\(t)°=Q\ coscoxH- (l/cox)Px sina^. 

Quantizing the oscillator in the familiar manner, we 
have the canonical commutation relations ( # = 1) 

K x , Q x O = C A A O = 0 , K x , P v ] = i 8 x v . (4.3) 

I t is convenient for certain purposes to introduce the 
linear combinations 

1 
a\= (wxQx+iPx), 

(4.4) 
1 

a x t = («xQx—^Px), 
(2cox)

1/2 

which are, in fact, the amplitude operators we intro
duced in analyzing the interference experiments of 
Sec. I I . Their commutation relations follow immediately 
from Eqs. (4.3): 

[>x,#x']= [ a x W C H O ; [ax,av t] = 8xx'. (4.5) 

For the perfect cavity the eigenvalues cox and the 
eigenvectors U\(r) are determined by the Maxwell 
equations 

V-£(cox)-Ux(r) = 0, 

VXi*(cox)-1-CVXux(r)]-(cox2A2)£W-Ux(r) = 0, 

and by appropriate boundary and normalization con
ditions. In Eqs. (4.6) e(co) is a frequency-dependent 
dielectric tensor and y (co) a corresponding permeability 
tensor for the cavity interior exclusive of the active 
channel systems to be considered shortly.10 For mathe
matical simplicity we assume that the real cavity and 
the perfect cavity [upon which (4.6) is based] have the 
same spatial boundary conditions so that the eigen
vectors Ux(r) of the perfect cavity form a complete set 
of basis vectors for the real cavity. Likewise, in order 
not to obscure our analysis by extraneous geometric 
complications, we assume that the channel interactions 
with the radiation field are uniformly distributed 
throughout the maser cavity and that the eigenvectors 
of the real maser cavity are identical with the U\(r) of 
the perfect cavity. The precise mathematical meaning 
of these last statements will become clearer later. They 
may be applied to cavity wall losses only if the latter 
are so small that in the modes of interest many "re
flections" are required before the undriven field is 

9 P. A. M. Dirac, Quantum Mechanics (Clarendon Press, New 
York, 1947), 3rd ed., Chap. X. 

10 In a ruby maser, for example, the susceptibilities are those 
appropriate to the A1203 host lattice; the Cr3+ impurities con
stitute an active channel medium to be treated in further detail. 
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appreciably attenuated. If TW\ is the lifetime of the A 
mode of the empty cavity when dissipation results only 
from wall losses (and wall loading) and if D\ is the 
characteristic cavity dimension appropriate to the X 
mode, the systems for which our assumptions will 
apply are such that 

r„x>>ZV*. (4.7) 

This condition is clearly met for axial modes in optical 
masers of the Fabry-Perot type which have end 
reflectivities R^l, since in the Fabry-Perot masers 
rw\c/D\tt (1 — R)~l. The condition (4.7) is also met for 
lightly-loaded high-Q microwave maser cavities, since 
in the microwave cavity D\ is of the order of the 
radiation wavelength and consequently TW\C/D\ 
~QU,X^>1. The condition is not met by a long traveling-
wave maser amplifier for which the end surfaces are 
only weakly reflecting. I t is primarily for this reason 
that we have restricted ourselves in the title of this 
paper to cavity masers. 

The interaction of the electromagnetic field with a 
particle source field may be described by the interaction 
Hamiltonian 

= J - | WJ(r).A(r) 

- a s / " (dr)S(r).VXA(r)l 
J V J (1) 

+ ) - - / " (A-)P(r)A(r)-A(r)l , (4.8) 
[2cm J v J (2) 

where for the source field p(r) is the charge density 
operator, j(r) is the charge-current density operator 
(for A=0) , S(r) is the spin density operator, gJ3 is the 
gyromagnetic conversion factor, and q/m is the particle 
charge-to-mass ratio. The operator 

A(r,0 = Zxu x ( r )Px (0 (4.1') 

is the vector potential of the cavity electromagnetic 
field in the Coulomb gauge for which in the absence of 
a real net charge density the scalar potential vanishes. 
In maser applications channel systems composed of 
many weakly interacting identical quantized sub
systems excited or de-excited by an external pump are 
of interest only if the subsystems have large radiative 
transition probabilities (relative to other decay proba
bilities) between modes whose energy differences lie in 
the neighborhood of the relevant cavity frequencies co\. 
In such cases Hz{2) does not play a fundamental role, 
and we may include its effects in the "passive" cavity 
tensors y, e previously introduced. The important 
components are those of Hia) which, by using (4.1/), 
we may express in the form 

#z ( 1 ) = ZxYxPx, (4.9) 

where the Hermitian operator y\ typically has the 
structure 

7 x = - f W i W - u x W - g / ? / " (rfr)S(r)-VXux(r). 
c Jv J v 

I t measures the projection onto the X mode of the 
electromagnetic source densities j(r), S(r). 

In Raman-effect masers11 the situation is only 
slightly different. From one viewpoint Eq. (4.8) obtains 
essentially as before. I t describes the coupling of the 
cavity field A with the operators j(r), S(r), and p(r) of 
the pump-channel coupling system. As before, the 
second-order components Hi{2) in the cavity photon 
fields are negligible and Hi may be written in the form 
(4.9). The channel system is also coupled by an inter
action similar in structure to that in Eq. (4.8) to a 
pumping or source photon field As. The nonlinear 
interaction of this field with the channel will introduce 
modifications in the time dependence of y\ such that 
Yx will display sum or difference frequency components 
in the neighborhood of co=±cox which were not present 
either in the undriven channel or in the driving field As. 
In a somewhat more phenomenological approach to 
the Raman effect one would alternatively assume the 
structure (4.9) and define y\ to be an effective source 
operator containing the photon field of the pump as a 
factor. 

In what follows we shall assume that all photon-
channel interactions are of the type (4.9). We may 
readily demonstrate by combining the interaction (4.9) 
with the noninteracting Hamiltonian (4.2) that 

*\ *\ 

-<2x=iYfyx , -Px=-co x
2 Gx. (4.10) 

dt dt 

Integrating these Heisenberg equations of motion, we 
have 

P x « = PxW°-cox f dtf sincox (*-/') Yx(0, 
Jo 

(4.11) 

6x(0 = (M00+ f ^COSCOX^-OTX^O-
Jo 

The first term on the right-hand side of each of Eqs. 
(4.11) has previously been defined in (4.2). Those first 
terms describe the time evolution of the noninteracting 
cavity fields; the second terms describe the effect of the 
photon-channel interactions. 

V. THE PHOTON CORRELATION FUNCTIONS <P±(*) 

Rather than directly compute the amplitude cor
relation functions of Sec. I I , we find it somewhat more 

11 A. Javan, Bull. Am. Phys. Soc. 3, 213 (1958); J. Weber, 
Rev. Mod. Phys. 61, 681 (1959); G. Eckhardt, R. W. Hellwarth, 
F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, 
Phys. Rev. Letters 9, 455 (1962). 
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convenient to compute the anticommutator-com-
mutator functions 

(P±(XX'; T) = < [ P X ( H - T ) , P V ( 0 ] ± > . (5.1) 

The algebraic relations (4.4) and the equations of 
motion (4.10) insure that our results will be experi
mentally applicable. In fact, if we define the Fourier 
transforms p±(oi) such that 

<P±(XX'; r) = / — p±(M; c ) e - - , (5.2) 

then it follows from Eqs. (2.4), (2.8), (4.4), and (4.10) 
after some manipulation that 

1 
3Cx (co) = { (o>2+cox

2)£+ (XX; co) 
2cox2 

— 2axo\̂ >_(XX; co)} (5.3a) 
and 

1 (co+wx)(co+coxO 
r(XX';G>) = £_(XX';co). (5.3b) 

2 * (coxcox08/2 

Since the operators P\ are Hermitian, the anticom-
mutator function (P.f (r) is pure real and the commutator 
function (P_(r) is pure imaginary. If we explicitly 
restrict ourselves to "finite" times in the sense of Sec. 
I l l , then the functions (5.1) are independent of t and 

(P± (XV; T) = ± (P± (X'X; - r ) . (5.4) 

Observe that this symmetry obtains only for the t-
independent stationary ensemble. 

Substituting the first of the integrated equations of 
motion (4.11) into (5.1), we obtain 

< P ± ( X X V ) = <P±(XX';T)° 

- cox f ^ s i n c o x ( r - r 0 ( [ 7 x ( r 0 ^ v ] ± ) , (5.5) 
Jo 

where 

( P ± ( A X ' ; T ) ° = < [ P X ( T ) ° , P X O ± > . (5-6) 

We could have obtained the same result by using the 
operator identity 

e ( 0 = ©(00-* ' /" dt>{[_6{t-ty,Hi]}(t'), (5.7) 
Jo 

valid for an arbitrary operator 0. The time dependence 
of the various terms in (5.7) is governed for explicitly 
time-independent Hamiltonian operators Ho, Hi, and 
H (such that H=Ho+Hr) by the following conventions 
[consistent with Eqs. (4.2) and (4.11)] to be used 
throughout this paper: 

0 (t)°=eiHotQe-wot. Q(t) = eiHtQe-iHt; 

{0(t)°}(t') = eiHt'{eiH(>tOe-iHot}e-iHt'',etc. 

The identity (5.7) can be easily verified by differen

tiation. I t is also valid with the appropriate generali
zations of (5.8) when H0, Hi, and H are explicitly time 
dependent.7 In our case Hi is the photon-channel 
interaction (4.9) and H is the full Hamiltonian of the 
interacting photon, channel, and pump systems. 

Applying (5.7) to the operator YX(T') in the last term 
of (5.5), we obtain the following integral representation 
of the important expectation value of that term. 

<C7x(r'),Pv]±> = <[7x(r ')»,Px0±)-*Z: f dr" 
x " 7 0 

X<[{[Yx(r ' - r")° , YX"]iV} (r") , iV] ± >. (5.9) 

Although the solution of appropriate differential equa
tions of motion would provide a satisfactory alternative 
approach to this expectation value, we have chosen to 
use integrated equations of motion because they relate 
somewhat more directly to independently measurable 
channel correlation functions. Once these functions 
have been identified and been shown to be generally 
relevant, one can, if he so desires, assume specific 
channel models upon which to base further analysis. 
We wish to emphasize, however, that this subsequent 
analysis has less to do with maser action per se than it 
does with specific channel properties. Maser action— 
that is, the amplification of the electromagnetic field 
by the stimulated emission of radiation—depends in 
the abstract sense only upon properties of the relevant 
channel correlation functions and not upon other 
physical features of the channel systems. In this sense 
the discrete-level independent-particle model of the 
coupling channels which has characterized most past 
analyses is much too restrictive, as has been especially 
apparent since the discovery of Raman-effect masers.11 

In both of Eqs. (5.5) and (5.9) the first term on the 
right-hand side is particularly simple in the commutator 
(—) case. From Eqs. (4.2) and (4.3) it follows that 

6>-.(T)°= — icoxSxx' sincox*. (5.10a) 

From the intrinsic independence of the uncoupled 
photon and channel systems it follows that 

<[7X(T ' ) 0 ,PX<]>=0 . (5.10b) 

The anticommutator case is less simple because the 
operators within the expectation value do not reduce 
to numbers as in (5.10) but remain as operators which 
reflect the structural properties of the expectation 
value itself. 

VI. THE DIELECTRIC APPROXIMATION 

As is clear from its definition in Sec. IV, the operator 
7x is the source term in the Maxwell equations de
scribing the X-mode component of the cavity photon 
field. Using the identity (5.7) with y\(r), as we did to 
derive (5.9), we achieve a natural separation of that 
source term into a component YX(T)° which reflects the 
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intrinsic dynamics of the pumped channel systems and 
a second term which reflects the polarization induced 
into, the channel systems by the photon field12: 

YX(T) = Y A ( T ) ° - ; E f ^ ' [ Y X ( T - T ' ) ° , Y A ' ] ( T O 

X P v ( r ' ) . (6.1) 

The second term of (6.1) is the operator analog of the 
dielectric polarization familiar in classical theory. I t 
would have the linear classical form if we could 
identify the operator [y\(r— r ')0 , YX'](T0 with a 
numerical field-independent susceptibility function 

F O O / j r - r O r ' . 
The weak-field case has been extensively discussed 

in the literature for matter systems in thermal equi
librium.6-8 If one computes for such systems the linear 
polarization induced by a weak electromagnetic field, 
one finds [omitting effects of the £Tj(2) term of (4.8) 
omitted from (4.9)] that the matter susceptibility 
function is a multiple of 

F(XX'; r - r / ) 0 | t he r m a i=( [7x( r - r , ) ° , 7x']>th°, (6.2) 

where (• • • )th° is the thermal equilibrium ensemble 
average appropriate to the matter systems in the 
absence of photon perturbations. 

The operator relation (6.1) is general and independent 
of the ensemble definition. Approximations must take 
into account the properties of the ensemble, because an 
approximation valid in one expectation value is not 
necessarily valid in another. However, the classical-
dielectric thermal equilibrium ensemble and the maser 
ensemble have two important common features which 
make the classical equilibrium remarks relevent to the 
maser discussion. First, both ensembles are time 
independent or stationary. In both cases we expect the 
linear polarization induced by a rapidly varying 
electromagnetic field to be given primarily by a response 
function which depends only upon the average state of 
the system and not upon instantaneous microscopic 
distributions. In such cases the linear response is a 
macroscopic statistical property of the system. In 
signalizing the function (6.2), previous authors have 
recognized that the operator [y\(r— r ')0 , Yx'](T") is 
dominated by its (T—T') dependence and that the r " 
dependence enters only as a reflection of slow macro
scopic changes in the system. In fact, it is the rn-
independent component which is selected in the 
expectation value (6.2). (Compare the Hartree treat
ment of multiparticle systems where one similarly 
replaces the particle-density operator by its average 
value.) Second, in both the classical and the maser 
ensembles it is meaningful to view the matter and 
radiation subsystems as interacting but physically 
distinct components of the total system. While the 
photon-matter interaction may be sufficiently strong 

12 In writing [7(7— r')0, 73±( r0 f° r {Ly(T~r')°> y]±}0"')> we 
have eliminated a superfluous bracket from the (5.8) notation. 

so that the energy distribution within the two systems 
is appreciably perturbed over long periods of time, it is 
not so strong that the energy is significantly redis
tributed over the short correlation time (inverse line-
width) of the dielectric function. 

These observations suggest that the 77 commutator 
in (6.1) is not appreciably affected by the nearby 
photon operator P\> ( / ) and that as the first step of a 
systematic approximation procedure it may be replaced 
by its ensemble expectation value. However, this 
procedure is not fully satisfactory, as is apparent if we 
consider its application to the function ^ - ( r ) . We 
remarked in Sec. V that the function (P_(r) is pure 
imaginary and that it has the symmetry property (5.4). 
A naive average-value treatment of the 77 commutator 
will preserve the pure-imaginary character of (?-(T), 
but it will violate the symmetry property (5.4). Since 
the symmetry property is closely related to the time 
(t) invariance of the expression (5.1) and since we must 
exploit that time invariance to compute the symmetric 
function (P+(r), it seems reasonable to insist that at 
each step our approximations preserve the reality 
properties, the symmetry properties, and the time-
invariance properties. This will be the case if we replace 
the operator combinations 

[7x(r+0°,Tv(/+0°]±(O, (6.3) 
wherever they appear in our equations by numerical 
functions F±(XX/; T—T') independent of t, tf and having 
the same reality and symmetry properties as (?+(T), 
respectively. [The anticommutator ( + ) function is not 
needed for (5.9) or (6.1), but it will appear in our 
subsequent treatment of (?+(?")•] While these properties 
do obtain for the classical function (6.2) and its sym
metric analog, the symmetry and invariance properties 
do not generally obtain for the nonequilibrium (driven) 
maser expectation values of the operators (6.3). For 
this reason we define 

F±(AV; r)^([7x(r /2)o, 7 v ( - r / 2 ) ° ] ± > , (6.4) 

= \ — ; y ± ( A \ ' ; c o ) ^ - (6.5a) 
J _oo 27T 

with 
y±(\\f ;u) = y±(\\'; co)* = ±;y±(A'\ ; -a>) (6.5b) 

and use these functions as the basis of a systematic 
dielectric-constant approximation. 

Relative to making future systematic corrections to 
the present analysis, let us note somewhat more care
fully that (6.4) derives from the following two distinct 
approximations of (6.3): 

C 7 x ( r + 0 0 , T v ( r ' + 0 ° ] ± ( O 

T /T-T'\0 / T ' - T \ ° - 1 /T+T' \ 

- K — M — ) 1(—+,+'') (6-6a> 
~([r(~)°,y,(^Jl). (6.6b) 
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In (6.6a) we have assumed that, although the dynamics 
over the differential interval (T—T') may be governed 
by HQ=H—HI, the over-all time dependence of the 
commutator will be governed by H itself. Physically 
this is the statement that, while "internal" suscepti
bility dynamics may involve primarily H0, the value of 
the susceptibility at any instant [t+t/+(r+r/)/2~] will 
be governed by the state of the system at that instant. 
In (6.6b) we have additionally assumed that the 
susceptibility depends only upon the instantaneous 
average state of the system and that it is not influenced 
by or correlated to other operators which may appear 
in the expectation values under examination. If the 
ensemble with which we are concerned is not stationary 
—for example, if the operating conditions of the masers 
(and hence its representative ensemble) were functions 
of time—it would still be reasonable to use an approxi
mation of the type (6.6b) provided the expectation 
value derived from the ensemble describing the maser 
at the instant [ H - ^ + ( T + T ' ) / 2 ] . [This procedure is 
admissible only if the "state of the system" changes 
slowly over the intrinsic correlation interval (inverse 
line width) 0 < | T — T'\<T2 of the dielectric function 
(6.6b).] Our dielectric approximation would then 
involve an explicitly time-dependent susceptibility. We 
shall not be concerned with such a situation in this 
paper except briefly in Sec. X. 

Let us reiterate certain of the physical implications 
of the dielectric approximation. In making the approxi
mation, we assume that the polarization induced into 
the channel systems by a cavity photon field is nomi
nally a linear function of that field over a relatively 
short interval in the immediate past. The (retarded) 
proportionality function (susceptibility) is independent 
of the cavity field except insofar as that field modifies 
the average channel populations over relatively long 

where Z(r) is defined by the linear equation 

Z(XX ,;r) = 5 x x , 5 ( | r | - 0 + ) + i E f dr' f dr" 
W o Jo 

Xcoxsincox(r-r /)F-(XX / /; T'-T")Z{\"\'] r"). (6.9) 
13 Our implicitly incoherent dielectric theory is to be contrasted 

with the following maser analyses in which strong coherence plays 
an important role: S. Bloom, J. Appl. Phys. 27, 785 (1956); I. R. 
Senitzky, Phys. Rev. Letters 1, 167 (1958); J. R. Singer and S. 
Wang, ibid. 6,351 (1961); Y. Pao, J. Opt. Soc. Am. 52, 871 (1961). 

periods; it depends only upon the instantaneous average 
state of the composite system; and it is not influenced 
by correlation effects (except insofar as they might be 
represented by an explicit time dependence in the 
susceptibility functions). Since the susceptibility de
pends only upon the average present state of the 
channel, a dielectric theory implicitly assumes that the 
channel systems are not notably coherent.13 Coherent 
channel systems14 may be properly treated only if one 
includes the higher order perturbations induced into 
the channels by the cavity photon field. 

The susceptibility functions (6.4) do include in their 
intrinsic dynamics the complete pump-channel cou
pling. They are, therefore, capable of describing Raman 
processes by either of the mechanisms we mentioned 
in Sec. IV. They also can describe the nonlinear 
frequency mixing15 of pump fields which would be 
relevant in second-harmonic masers. They do not 
include nonlinear cavity-photon frequency-mixing 
effects, since we have not included second or higher 
order cavity-photon corrections to yx dynamics. Only 
first-order effects are included in our polarization terms. 

Used with Eqs. (5.5), (5.9), and (5.10), the dielectric 
approximation gives 

(P_(A\'; r) = -icox5xx' sincoXT+^ E / dr' l dr" 
v'Jo Jo 

Xcoxsincox(T-rOF_(XX/; r'- r")(9-{\"\f ] r"). (6.7) 

Since it contains in its inhomogeneous terms unknown 
ensemble expectation values, the corresponding equa
tion for (P+(r) i s o n r v °f limited usefulness. One may 
more usefully return to (5.1) and take both the / and 
T development into account. Using a straightforward 
extension of the previous (P_(r) techniques, we find that 

The terms of (6.8) have been numbered to facilitate 
their separate discussion in Sec. VIII . The function 

14 S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955); 
P. W. Anderson, J. Appl. Phys. 28, 1049 (1957); A. M. Clogston, 
J. Phys. Chem. Solids 4, 271 (1958); A. Javan, Phys. Rev. 107, 
1579 (1959). 

15 P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, 
Phys. Rev. Letters 7, 118 (1961); D. A. Kleinman, Phys. Rev. 
126, 1977 (1962); J. A. Armstrong, N. Bloembergen, J. Ducuing, 
and P. S. Pershan, ibid. 127, 1918 (1962); N. Bloembergen and 
P. S. Pershan, ibid. 128, 606 (1962). 

(P. -(XX';r)= E / dt" dt"'Z(\\";T+t-t")Z(\"'\';t' 
yy'Jo Jo 

- j f dt" cox" sintox- ( < " - f")<Dn» (*") W ' (<"')°]±> 

- f dt" <[Px- (<")Vyv» ( i ' " ) 0 ] ± V " sin«x'» (*" ' - ?") 
J 0 

{<DPx»(oo,iV'(n°]±>}u) 

0 ' (2) 

dt" f dt'" «x» sina;x^(/ , /-^ ,)F±(X , /X , , , ; i"-i'")<av» s ina>x- ( r / - / ' ' ' ) 1, (6.8) 
0 J 0 > (3 )J 
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Z(T) is such that the relation 

(P_(AA';r) = Z / dr' Z(\\"',r-Tf)(S>-{Ty (6.10) 
*" Jo 

is equivalent to (6.7).16 

In making the dielectric approximation, we have 
reduced the problem of computing (P±(r) to that of 
solving the linear integral equation (6.9) for Z(r). To 
this extent we have linearized the maser analysis. 
However, it is important to note that even with this 
simple first-order approximation we have retained 
what are probably the most important nonlinearities 
of the maser system, the nonlinearities which govern 
the steady-state populations in the coupled channel 
systems. These populations reflect themselves in the 
characteristics17 of the susceptibility spectral functions 
y±(\\';a)). 

VII. (P_(f) IN THE DIELECTRIC APPROXIMATION 

Once the susceptibility functions Y±(r) have been 
determined, the problem of calculating (P±(T) reduces 
principally to the problem of solving the linear integral 
equation (6.10) for Z(T). That equation is of a type 
conveniently treated by Laplace transformation. Since 
the symmetry properties of the various functions are 
known, we may restrict ourselves to r > 0 . Designating 
Laplace transforms by boldface characters (not to be 
confused with spatial vectors), we define those trans
forms for R e s > 0 by the typical equation18 

P ± ( j ) = / d T V r ( P ± ( r ) . 

The corresponding inverse transformations are 

rio° ds 

J -%<*> 2iri 

(7.1a) 

(7.1b) 

In terms of Laplace transforms Eqs. (6.9) and (6.10) 
become, respectively, 

w 
Z(XV; j) = 5xv+f E Y_(AA"; s)Z(A"A'; s) (7.2) 

X" S2+a)y? 
and 

P_(AA';s) = 
cox' 

S2+COX
2 
-Z(AA';s) 

= -*Z(XX';s)-
CDX'^ 

S 2 +C0 X ' 2 
(7.3) 

cox2=o>x2+irx2-cox2 
dco co—cox 
—3>_(A; co) 

, 2x (co-cox)2+Jrx
2 

Equation (7.2) represents in essence a linear eigen
value problem. The eigenvalues are reflected in the 
s-plane singularities of Z(XX';s) and the eigenvectors 
in the weights to be assigned those singularities. In 
order not to obscure our discussion by extraneous 
geometric considerations, we simplify the eigenvector 
problem by the uniformity assumption anticipated in 
Sec. IV. We assume that the spatial eigenvectors U\(r) 
of the electromagnetic field of the noninteracting cavity 
are also eigenvectors of the dielectric cavity. That is, 
we assume that 

F±(XX , ; r )=F ± (X;r )«xv 

or, equivalently, that 

y±Q&'',o))==y±(\;a>)d\\>. 

For R e s > 0 integral representations of the 
dielectric-function Laplace transforms are 

/

OO si, . r. 

—y+(X;«) , 
2x 

Y-(X;*)=- —y_(X;w) 
, 2x s*+c 

(7.4a) 

(7.4b) 

relevant 

(7.5a) 

(7.5b) 

Using the assumption (7.4) with (7.2), we may 
immediately solve the simplified eigenvector problem 
to obtain 

*2+cox2 

Z(A;*) = . (7.6) 
s2+cox2-*cox2Y__(A;s) 

Used with (7.3), this gives 

P-(X;*) = 
W 

(7.7) 
s2+cox2-;cox2Y_(A;s) 

The s-plane singularities of (7.7) determine the time 
behavior of the function (P_(r). Of particular importance 
in maser systems are two complex-conjugate poles s± 

which we represent in terms of two positive parameters 
Tx, cox: 

s ± = - i r x ± u o x . (7.8) 

These poles lie in the left half-plane close to the imagi
nary axis and dominate the important coherence 
properties of the maser. They correspond to the poles 
s=±icox in the uncoupled function P_(s)°. When the 
spectral functions ^_(A;co) vary slowly with co in the 
neighborhood of cox, the parameters I \ , cox may readily 
be computed by a successive-approximation solution 
of the equations 

+Im;y_(A; cox+^Tx) —-» cox
2] 1-

rx->o 

50 do) P 1 
—y-(\;co) -

oo 2lT CO — C O X ' 

(7.9a) 

16 Although derived by rather different arguments, equations similar to (6.7) and (6.9) have been considered by J. Schwinger, 
J. Math. Phys. 2, 407 (1961); I. R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642 (1961). 

17 W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962). 
18 D. V. Widder, The Laplace Transform (Princeton University Press, Princeton, New Jersey, 1946). 
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wx2 ( 1 ["> doj 

« x l 2 . / _ , 2 T 
— Rey_(X; ttx+f*rx) —> —y_(X; »x). 

wv" 
(7.9b) 

The residues of the poles (7.8) in P_(s) are 

A ± I ^ ± w _ w z 7 T { ; w (co — cox)2+ir x
2 dcox 

cox2 

cox2 f cox2T r do) dy- | r x = b i ( « - w x ) ^ - H I " 
«±=—~ U + — / (X;«)- - — (X;»x±4*Tx) 

2 w ± l 2s. U-oo 2TT dco (co -wx) 2 + i rx 2 dcox J J 

These equations are of fundamental importance for the 
analysis of steady-state maser operation, since they 
determine the position cox, the width T\, and the strength 
a± of the narrow Lorentz peak which dominates the 
spectral functions of masers. 

In addition to the poles (7.8), the function P_(s) will 
display other singularities which reflect the detailed 
structure of the function Y_(y). Although we shall not 
treat these components in detail, we can easily verify 
their existence by observing that the exact sum rule or 
moment relation [derived by using Eqs. (4.3) and 
(4.10) with the definitions (5.1), (5.2), and (7.1)], 

u\2=i—(P_(r) 
dr 

= *lims2P_(X;.y) 

i 
00 do) 

— < 
, 2 T T 

•co^_(X;co), (7.10) 

is not completely saturated by the pole residues (7.9c). 
Briefly, the importance of the various additional singu-

^2 '"dudy-, 

d± j _oo 2x dco 

P cox2 dy-
i ^ 

co—cox 4cox dcox 

cox r 
1 + — / —(X;co) = F * — — ( X ; « x ) [ • (7.9c) 

2s± J-c 

larities in P_(s) depends upon the strength of the 
channel-photon coupling and upon the extent to which 
the coupled cavity responds to driving frequencies 
different from the characteristic photon frequencies cox. 
This is perhaps more clearly shown in the following 
representation of the spectral function £_(X;co). Com
bining the definition (5.2) with relations of the present 
section, we have that with e = 0 + 

P±(X;-«•>+€) 

do) 1 

, 2w e—i(o)—o)) 
•p±(\;u>) 

••ip±(\;o))+if 
J —c 

du P 

2TT i 
:At(X;J,) . (7.11) 

Using the dielectric-approximation expression (7.7) for 
P_(s) and the spectral representation (7.5b) for Y_(s), 
we find from this result that 

£_(X 5«) = 2 ReP_(X ;- ico+e) 

/ r / r do) P \ 2 coxVcoe \ 2 1 
= cox4[co€/cox2+^-(X; co)] / co2-cox2-cox2 / —uy_(X; «) + — —+3>(X ; co) . (7.12) 

/ LA J-oo 2TT C O 2 - C W 4 W / J 

The corresponding expression in the absence of photon/channel coupling is 

£_(X;co)°= 
(co2-cox2)2+(coe)2/4 

= Jcox[5(co—cox)—5(co+cox)]. (7.13) 

In general, ^_(X;co) will display several maxima whose locations along the real OJ axis and whose magnitudes 
will govern the properties of (P - (T) . If we write (e=0+) 

p-(\;o})—oy!-
[>e+cox287rx"(X;w)] 

{ W
2 - W X

2 [ 1 + W ( X ; co)]}2+i[coe+W x
287rX"(X; « ) ] 2 

(7.14) 

we may distinguish two important general classes of 
maxima: (1) those associated with minima (or zeros) of 
[co2—cox2 ( l+47rx0] m regions where cox2x" (X; co) is 
small and slowly varying and (2) those associated with 
maxima of cox2x" (X; co) in regions where [co2—cox2 

X ( l + 4 7 r x 0 ] is slowly varying and greater in mag
nitude than o)\2x"(\;oS). The 8-iunction maxima of 

(7.13) are of type (1), as are their interacting analogs, 
the Lorentzian maxima characterized by cox and Tx, 
when the iteration solution of (7.9) is most suitable— 
that is, when the function cox2x" (X; co) is slowly varying 
in the neighborhood of co=d>x. 

Clearly the two classes of maxima we have cited do 
not cover all contingencies. In particular, if both 
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denominator terms of (7.14) vary comparably in the 
neighborhood of a particular maximum, that maximum 
does not belong to one of these simple classes. Physically 
this corresponds to a situation in which two oscillators 
(for example, the X-mode photon field and one of the 
coupling channels) are so strongly coupled that the 
effect of one on the other cannot simply be viewed as a 
small perturbation of the original oscillator frequencies 
and damping coefficients, the physical meaning of the 
iterative solution of Eq. (7.9). Instead, both oscillators 
must be treated as a coupled unit and the resulting 
quadratic secular equation solved exactly. A second 
exceptional case which deserves special mention is that 
for which x " (X; <o) displays rapid variations at one or 
more points in the neighborhood of a (relatively broad) 
minimum of [co2—cox2(1+47rx0]- This would occur, for 
example, if narrow holes were burned into the spectral 
function ;y_(X;o>) as a result of strong maser action.17 

As is clear from (7.14), these modulations will be 
reflected into the function £_(X;a>)~l/x"(X;co) in the 
region of interest. This second special case is of the 
general type (1) above except that the maximum does 
not have the Lorentz shape characteristic of an co-
independent x"(A; w). 

Using the spectral functions p±(\;u>) defined by (5.2) 
and the line-shape functions ;y±(X;co) introduced in 
(6.5), we find directly from (8.2) that 

^± (X;co)=^(X;co)! [^_(X;co)]2 

r r00 &»' P ~121 
+ / * - (X;« ' ) . (8.3) 

LJ-oo 2ir co—co' J J 

I t is not practicable to determine the function 
p-(k; o)) by solving the nonlinear equation (8.3).20 The 
importance of Eq. (8.3) derives instead from the fact 

19 Cf., the remarks of Sec. III . 
20 Since Eqs. (8.3) do not display an explicit a\ dependence, 

their solution is clearly not unique without additional restrictions 
such as that provided by the sum rule (7.10). 

Finally, it is important to understand that these 
remarks are, in fact, not peculiar to masers. They are 
well-known aspects of dielectric (or linear-response) 
theory, as our deliberate susceptibility (x = X/+^X//) 
notation (7.14) was meant to emphasize. 

Vm. <P+(*) IN THE DIELECTRIC APPROXIMATION; 
A FLUCTUATION/DISSIPATION THEOREM 

I t is easy to verify—an expansion of Z{r) in powers 
of the susceptibility function Y-{r) is sufficient—that 
the expression (6.8) appropriate to the function (P_(X; r) 
is independent of t, consistent with the stationary 
property of the maser ensemble. The t independence of 
the anticommutator function (P+(X;r) is less easily 
established, because the unknown inhomogeneous terms 
of (6.8) reflect the character of the ensemble and enter 
fundamentally into the invariance proof. However, if 
we assume that the right-hand side of Eq. (6.8) is 
independent of t, we may use that invariance to deter
mine certain of the unknown expectation values by 
passing to the limit19 t —» oo with r fixed. 

Using Eqs. (4.2) and (6.10), we may readily establish 
that the t dependence of term (1) of (6.8) is governed 
by factors of the form 

that it implies 

P+fr',u) y+(\;a>) 
= , (8.4) 

p-(\;a>) y-(\;cc) 

an expression which may be used to establish p+(\; co) 
once p„(\;co) has been computed from (7.12). [The 
expression (7.12) for ^_(X;co) is consistent with (8.3).] 

I t is interesting to note in passing the physical 
significance of the fact that all terms of Eq. (6.8) vanish 
as t—> oo except the term (3) retained in (8.2). Briefly, 
factors of the type (8.1) vanish because they refer to a 
system component (the X radiation mode) having a 
finite number (two) of degrees of freedom. The non-
vanishing term (3) contains in its Y+(r) factor a refer
ence to the pump-coupled channel systems which in our 
spectral treatment (7.5) implicitly have an infinite 

r fcoswx* 1 
/ dt"ZQi\t-tr)x\ ~ M X ; 0 — > o . (8.1) 

Jo IsincoxH **» 

Similar remarks apply to the t' components of term (1) and to the factors derived from P\>>{tnf and P\>>>(t'")Q 

in term (2). I t follows that in the large-/ limit only the terms (3) remain. 

<P±(X;r) = l i m - / dt'l dt" <P_(X; 0<P-(X; t")Y±{\;t+T-t'-t-\-t"), 
'-*" Jo Jo 

= - f dt'dt" (P_(X; 0<P-(X; t")Y±(\; r-t'+t"). (8.2) 
./o 
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(continuum) number of degrees of freedom, a familiar 
aspect of relaxation theory. Our particular example also 
shows that the steady-state expectation values are 
independent of the initial distribution of energy among 
any finite number of degrees of freedom [terms (1) and 
(2) in (6.8)] and depend only upon the energy charac
teristics of the continuum degrees of freedom [term 
(3)2- Our procedure treats the latter degrees of freedom 
as if they were an infinite reservoir with which the finite 
systems are in contact, a realistic assumption since the 
"pumps" presumably do contain very large reservoirs. 

The equality (8.4) of the two anticommutator-
commutator ratios p+/p- and y+/y~ constitutes a 
rudimentary fluctuation-dissipation theorem.6 If the 
stationary ensemble used to define our correlation 
functions was that appropriate to a thermal equilibrium 
of temperature T, then the Fourier transforms p±(u>) 

and y±(oo) would have the ratios 

£+(XX^«)_:y+(XX';&>) 

£_(XX';c*) ;y_(XX';w) 

= c o t h — = 2 [ ( g « / * r - l ) - 1 + i ] . (8.5) 
2kT 

The last line is a general thermal-equilibrium result and 
obtains for all anticommutator-commutator spectral-
function ratios not otherwise modified by chemical 
potentials. For the driven (nonequilibrium) stationary 
maser ensemble no such general statement obtains. 
Although we do have the limited relation (8.4), the 
further identification of those ratios with a universal 
thermal weight function is not generally possible. 

Using (8.4) with (7.12) in (5.3a), one may easily 
establish that the maser oscillator spectrum in the 
dielectric approximation is 

/ f / r00 du F \ l 

3Cx(co) = {cox2[(co2+cox
2)y+(X; co)-2awy-(X; co)]/2} / co2-cox

2-cox
2 / — e*y_(X; «) + — [ > - ( X ; «) ] 2 [• 

/ l \ 7-00 2TT C O 2 - W 2 / 4 ) 

(8.6) 
The corresponding expression for the response function (5.3b) is 

/ f a>2—cox
2—cox2 / r(X; co) = [a)\y-(\; w) (co+cox)

2/2{] 

If for co>0 all significant components of the spectrum 
3Cx(co) lie in a narrow interval about co = cox, it follows 
from (8.6) and (8.7) that 

y+(X;o>)-y_(X;co)«ox 
3Cx(co)« r(X;o>). (8.8) 

IX. ENERGY TRANSFER BETWEEN PHOTON 
AND CHANNEL SYSTEMS 

The rate of energy transfer between the cavity 
electromagnetic field and the various channel systems 
is also a feature of importance in the analysis of maser 
systems. If we assume that the various channel systems 
are uncoupled except through their interaction with the 
photons in the maser cavity, the operator YX in the 
photon-channel interaction (4.9) will contain a sum 
(He) over the independent channels, 

^ r = E c E x 7 c x P x . (9.1) 

The dielectric spectral functions j±(X;co) will display 
a similar sum structure, 

y±(\; co) = £ c y±(\; co)c, (9.2) 

if to eliminate trivial complications we make the 
reasonable assumption that (Y C X)=0 for each channel c. 
(That is, we assume that the channels do not display a 
net static current or moment.) 

The energy intrinsic to the cavity photon field is 
described by the Hamiltonian H0

P of (4.2). The rate at 

2TT 
*>;y_(X;w)-

&— /,y2 
+—b-~(X;co)]2 (8.7) 

which energy flows into the X mode of the photon cavity 
from the c channel as a result of the interaction (9.1) 
is described by the operator 

(Hex=i[yc\Px,H0
p2 = wx2Ycx(?x (9.3) 

In the stationary maser ensemble the average X-mode 
energy must be a constant of the motion. The net rate 
of energy transfer to any photon mode must be zero: 

0=i;c(«ox)=cox2Ec(7cxCx) 

= cox2<7xOx>. (9.4) 

To evaluate the stationary expectation value of the 
rate operator (9.3), we can utilize a time-independence 
technique similar to that employed in the preceding 
section. Doing that and making the now familiar 
dielectric approximation, we find that 

<(Rcx) = limcox2<7cxWQx(0> 

i r™ I d 
- dt F+(X;Oc-(P-(X;0 
2 7o I dt 

+ F_(X;/)c-(P+(X;0 
dt \ 

1 r 0 0 do) 
-— / —^{MX;co):y+(X;co)c 

-£+(X;co)3;_(X;coM. ( ^ ) 
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Summing the right-hand side of (9.5b) over the different 
channels c and using (8.4), we verify immediately that 
the time-invariance restriction (9.4) obtains. In the 
stationary thermal equilibrium ensemble for which the 
ratio (8.5) applies to the separate functions ^±(X;co)c, 
it follows that ((Rcx)=0 for each c, X. 

Equations (9.4) and (9.5) are of immense practical 
importance since they determine through the implicit 
saturation properties of the channel systems the detailed 
steady-state properties of the functions F±(X; r ) . 

X. PUMP MODULATION 

The central feature of the dielectric approximation 
is the replacement of the operator combinations (6.3) 
by numerical functions Y±(r) related in Eq. (6.4) to 
steady-state expectation values. As we noted, this 
approximation is valid if the rates of energy transfer 
between photon and channel systems is not too large 
and if the channel correlation properties are nominally 
time independent. In maser systems of interest the 
power-transfer restriction is not usually serious. How
ever, the time-independence assumption does sig
nificantly limit the usefulness of our results. Postponing 
to subsequent works any rigorous generalization of the 
present analysis, we, nevertheless, indicate one rela
tively simple extension of physical importance. 

Let us first consider a system in which the pumps are 
adiabatically modulated over time intervals much 
greater than any correlation time in (P±(X;r) or 
F±(X; r ) c . For this case the ensemble of Sec. I l l is not 
completely time independent but changes slowly. We 
are led, therefore, to append a macroscopic-time index 
t to the ensemble expectation value (•••)* and con
sequently to the correlation functions (P±(X; r)t) 

F±(X; T)U All of the results of Sees. VI I - IX will obtain 
as before, provided only that we include the new t 
index. 

Of particular interest is the rate equation (9.5) 
which governs the macroscopic energy dynamics of the 
maser system. That equation becomes 

1 r°° do) 
(<Rcx)«=- / —o){p-(\;co)ty+(\;o))c>t 

4 J _ 0 0 2 T T 

- £ + ( X ; W ) 0 L . ( A ; C O ) M } , 

do) f r r™do) 
= / - c o 
Jo 2ir 

cocox 
§y+(\; o))Cit 3>-(X; w)Cl« 

0)2-\~0)\2 

Xp-(\;o))t-
«X* 

0)2-\~0)\2 
-;y_(X;co)MXx(co)4, (10.1) 

where we have used (5.3) to replace p+(\',o))t by the 
energy spectral function 3Cx(o)) t.Hy±(\;o))t are smooth, 
slowly varying functions of o) and if p±(\; co)* are each 
dominated for co>0 by a single sharp maximum centered 
at co=cox, it follows from (10.1) and the normalization 

conditions (2.4) and (7.10) that 

d d 1 

dt dt cox c 

= icox[;y+(X; wx)*-;y-(X; cox)«] 

-|cox^-(X;^),nx(/). (10.2) 

The o)\(y+—yJ)/4: term in (10.2) represents spontaneous 
emission, the o)\fi\y_/2 term the net rate of cavity 
photon dissipation (absorption less stimulated 
emission). 

The adiabatic procedure underlying (10.2) is strictly 
legitimate (but relatively uninteresting) only if the 
pump variations are very slow, slow relative even to 
the long maser coherence time (rx)"1 calculable from 
(7.9). However, when in the steady-state situation the 
spectral functions p±(\;o)) would be sharply peaked 
about a single maximum at co=cox, the specific result 
(10.2) is more generally valid. I t is valid whenever the 
pump variations are slow relative to the much shorter 
time (r2c)max. This new limiting time is the maximum 
over the different channels c of the coherence time T<LC 

of the susceptibility functions F±(X; r) c . The generali
zation derives from the plausible assumption that the 
pump modulations will primarily distort the sharp 
#±(X; co) maxima at co=o>x by spreading them (through 
sideband generation) over a frequency interval on the 
order of the modulation frequency. Since the sum rules 
(2.4) and (7.10) fix the area under the spectral curves, 
Eqs. (10.2) will not be sensitive to these modulation 
distortions as long as y±(k;o))t do not change ap
preciably as a function of co in the sideband neighbor
hood of cox. 

These conclusions are important since Eq. (10.2) 
underlies most thermodynamic analyses of starting 
transients and of "spiking.3" These phenomena involve 
rapid system changes which clearly cannot be described 
as slow in our original restricted sense (adiabatic). 

XI. AN ILLUSTRATIVE TWO-CHANNEL MASER 

To illustrate the application of the preceding for
malism to a concrete system, we consider in this section 
a simple maser having two channels: an activating a 
channel which will excite cavity photons and a dis-
sipative d channel which will absorb photons. We shall 
not attempt to calculate the functions 3>±(X;co)c from 
physical models but shall assume simply that these 
functions have known elementary forms. 

We assume that the pump (sink)-coupled d channel 
is nominally a two-level system characterized by an 
equilibrium ensemble of temperature Td and by a broad 
Lorentz line shape. Specifically, we assume consistent 
with (6.5) and (8.5) that 

3>+(X; u)d=ttd\lg(o))d+g(-o))d], (11.1a) 
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;y_(A;w)d=fiJ g(w)d tanh 
2kTd 

—g(—w)a tanh-
(-co) 

2kTe ] 
-y+(\;w)d tanh 

with Q<2x>0 and 

l"(w)d= 

2kTd 

Avd 

(w-edy+i(AVdy 

(11.1b) 

(11.1c) 

The parameter Qd\ is a photon-channel coupling con
stant having the dimensions of energy (or angular 
frequency since ^ = 1 ) . 

Similarly, we assume that the pump (source)-coupled 
a channel is nominally a two-level system characterized 
by a (somewhat narrower, Ava<£Avd) Lorentz line 
shape and by suitable statistical parameters. To express 
the fact that the a channel will be excited by the action 
of the pump, we supplement the positive channel 
temperature Ta by a chemical potential /x«x-21 The 
appropriate analogs of Eqs. (11.1) are 

y+fr', " ) a = a * x [ g ( c o ) a + g ( - w ) a ] , (11.2a) 

y-(X ;a>)a=&<J g(o))a tann
er—Max 

2kTa 

-g(—u)a tanh , (11.2b) 
2kTa J 

with fiox>0 and 

g(o>)^ 
Al>0 

( o ) - e a ) 2 + i ( A ^ 
(11.2c) 

the function j+(X;co)c are proportional to the total 
number of subsystems in the c channel, whereas the 
important resonant component of ^_(X;w)c is pro
portional to the number of subsystems in the lower 
state less the number in the upper state. For a>>0 this 
latter population difference is governed by the factor 
t3Lnh(u—nc\)/2kTc and is, therefore, mainly a function 
of the energy difference ec, of the chemical potential 
/xcx, and of the temperature Tc. In discussing Eq. (10.2), 
we remarked that the term o)\(y+—yJ)/4: describes 
stimulated emission. This may be verified here by 
observing that the resonant contribution of that term— 
the resonant component is the only one of importance 
in maser systems—is proportional to the population of 
the upper channel state: 

r e X 5 ( c o ) - [ J c O x ( ^ + ~ 3 ' - ) ] r e s ( X ; Co)c 

I e-(u-Vc\)lkTc 

= -OcXwx g{u)c. (11.3) 
w>0 2 l-^e-(o>-vc\)/kTc 

Note that from the present viewpoint spontaneous-
emission noise and thermal noise are equivalent. 
Thermal noise is noise which steams from the spon
taneous emission of systems which are thermally 
excited.22 

Taking y±(k; w) to be the sum (9.2) of the separate 
functions (11.1) and (11.2), we can immediately 
evaluate the expressions considered in previous sections. 
We restrict ourselves to a single photon mode X such 
that cox lies near the line centers ea, ea. (The results are 
particularly relevant to microwave masers where cavity 
mode isolation is most effective.) Using the Tx—>0 
forms of Eqs. (7.9) and neglecting the nonresonant 
components of j±(X;co), we find that the dominant 
coherent component of the p±(\;o)) spectra has the 
linewidth 

Although the y+/y~ connection in the presence of the 
chemical potential Max is different from that in (8.5), 
the analogy between (11.2b) and the first of Eqs. (11.1b) 
is obvious. The plausibility of (11.2) can be verified by 
a statistical analysis8 of Y±(r) in which we put 
7=Pi2+P2i Ewith Pnn> the (JUM') element of the channel-
system density operator] and in which the chemical 
potential ixa\ acts through the population difference 
(P22—pn). 

If a particular channel system c, c=a or d, is com
posed of many independent identical subsystems, the 
number of such subsystems will appear as a factor in 
the coupling constant Qc\> Both g(zLoo)c components of 

21 Certain authors prefer to utilize an artificial "negative tem
perature" in place of a chemical potential. While this technique 
is satisfactory in systems having a few sharp energy levels, its 
introduction is, in fact, not necessary and, moreover, inadmissible 
in more general circumstances. W. A. Barker, Phys. Rev. 124, 124 
(1961), discusses three-level masers in terms of chemical potentials 
and positive temperatures, 

coxz [ cox 
r x = — J QdXg(cb\)d tanh 

2cox I 2kTd 

wx—Max] 
+tta\g(u\)a tanh — [, (11.4a) 

2kTa J 

22 In the preceding analysis, we implicitly assumed that all 
relevant photons are entirely contained within the maser cavity, 
which also contains all active channel systems (uniformly dis
tributed, cf., Sees. IV and VII). If the maser cavity is coupled 
through imperfect walls to another cavity nearly in thermal 
equilibrium, spontaneous emission from the quantized coupling-
channel subsystems will be supplemented by "shot noise" resulting 
from the random penetration into the maser cavity of real (not 
"zero-point") external photons. The probability for such pene
tration clearly depends upon the number of such photons present 
in the external cavity—that is, to l/[exp(hu\/kT) — 12 —> kT/hu\ 
as T —>»—and accounts for the kT dependence of the linewidth 
computed in reference 1. If the external temperature is low 
(kT<hu\, as in most optical masers) or if the external-cavity 
coupling is small, spontaneous emission will dominate, as we have 
assumed above. Cf., the discussion of noise by J. Weber, Rev. 
Mod. Phys. 31, 681 (1959), and the references contained therein. 
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and the position 

cox=cox 11+^dX" 
cox— td 

• tanh-
cox 

+Oa 

fa-edy+i(Avd¥ 2kTd 

COX" MaX|1 / 2 
cox-

(^X-€a)2+i(Az.a)
2 
• tanh-

2kTa "i 
(11.4b) 

The case of most interest is that for which juax>cox. 
(In our two-level system pumping implies Max>0; 
population inversion requires the stronger condition 
M«x>cox.) In that case tanh[(cox—fxa\)/2kTa']<0 and 
Tx is reduced below its empty-cavity value. 

When the linewidth of the damping channel is large 
(A^»cox— €d) so that the damping rate is insensitive to 
small changes in cox and when I \ and (cox—cox) are very 
small relative to cox, Eqs. (11.4) simplify to 

rx=rdX+rax(cox), (n.Sa) 

Td\ _ T«x(cox) 
0)\ = 0)\-\ (cox— €d)-\ (COX—€a) 

Avd Ava 

( TdX raX(cox)\ / 
= (co— €d ea 1 / 

\ Avd Ava /' 

0-
where 

r<*x 

Avd 

2cox 2coxOdx 

Tax(cox) 

Ava • > 

r d X = = tanh-
cox 

Avd 2kTd 

(11.5b) 

(H.6) 

measures the intrinsic damping rate of the ^-coupled 
cavity and where 

1 cox—Max 
rax(cox)=-cox£W(cox)a tanh (11.7a) 

2 2kTa 

measures the strength of the exciting-channel-photon 
coupling. Equations (11.5) are already familiar in the 
literature of maser theory.1'2 The factor tanh[(co—Max)/ 
2kTa] usually varies negligibly over the line g(co)a. In 
that case it is convenient to introduce the nominal 

maximum. 

«x(max)=r %u\tta\g(ea)a tanh-
"MaX 

2kTa 

2o)\^la\ 
tanh-

"MaX 

Ava 2kTa 

(11.7b) 

to facilitate the presentation (at the end of this section) 
of numerical results. 

If for co>0 the functions p±(\; co) are dominated by 
a single sharp peak having the characteristics (11.5), it 
follows from (10.2) and (11.3) that in the steady state 

(b) / / 

t——r~ i 

\ \0.5 

\ 2 . o \ 

i • ' — i d 

-T.oAva -O.sAva o o.5Ava 1.0 Ava 

FIG. 3. Oscillator output spectra (a) and amplifier response 
characteristic (b) for 1^ = 0.5 Ava and 2.0 Ava with ea=o)\ and 
ra(max)=rd—0.5 Ava, Va\>ea. 

(dfl\/dt=0) 

nx= 
y+(X;cox)-y-(X;cox) 

y_(X;cox) 

= (i/rx){r,xs(c3x)+rax
s(c^x)}. (11.8) 

That is, the steady-state cavity population n\ is deter
mined by the net rate ( I \ ) at which spontaneous 
emission [rcX

s , compare Eq. (11.3)] is dissipated.22 

Using this result with (9.5), we find by the methods 
used to derive (10.2) that the net steady-state rate of 
energy transfer from channel a into photon mode X is 

U\ )=i^x2[>-f (X; cox) a - y - (X; cox)«] 
-h,^ cox2y-(X;cox)a^\, 

-cox{raX
s(cox)-rax(cox)nx}. (11.9) 

(Recall that for a pumped channel r a X <0 . ) When 
maser action starts, Tx decreases, il\ increases, and the 
energy transfer rate (11.9) increases. The ultimate 
limit to this process—that is, steady-state saturation— 
is determined by the rate at which the ^-channel pump 
supplies energy to the channel. Given that pumping 
rate (a function of Ta and /xax) and the rate at which 
absorbed photon energy can be removed from the d 
channel (a function of Td), we can determine from 
Eqs. (11.8) and (11.9) the steady-state values of Ta, 
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Td, Max, T\, and fl\. Although more complicated in its 
details, the procedure is basically the same when the 
shape of the spectral functions g(to)c in (11.1) and 
(11.2) is also a function of the maser operating level. 

If Td\<^Ava, the functions ^±(X;co) are dominated 
by a Lorentz line component having the characteristic 
parameters (11.5). If Td\>Ava, the a-channel coupling 
necessary to achieve maser action must be so strong 
that the two denominator terms in (7.14) will vary 
comparably in the neighborhood of the co^cox maximum. 
As we have already noted in Sec. VII, this will cause 
the coherent line (7.9) or (11.5) to be accompanied in 
p-. (X; co) by less coherent components having a fre
quency spread >Ava. These less coherent components 
will also appear in p+ (X; co) and in 3C\ (co) but with 
considerably reduced amplitude, a reflection of the 
peaked character near co = co\ of the ratio (8.4). 

We may illustrate these and other features most 
easily by a few specific numerical examples for which 
we can compute the energy spectrum 3Cx(co) of (8.6) 
and the linear-response function f(X;co) of (8.7). In 
each case we assume that 

Ma\>ed=ea — cox»A^»Aj/ a (11.10) 

and consider only the frequency region near co = ea. The 
results are shown in Figs. 3 to 6. 

The horizontal scale in each figure is in units of Ava, 
the Lorentz width of the active-channel functions 

-0 .5Av a o.5Ava 

! ( a ) 

— * . . — — + — - " " 

1 

/ \°*2 ' 

0.5 \ 

1.0 P ^ ^ 
1 l " ~ 1 

-o.5Ava o.3Ai>a o.sAva 

FIG. 4. Oscillator output spectra (a) and amplifier response 
characteristic (b) for 1^ = 0.1 Ava and 0.5 Ava with ea—o)\ and 
r0(max)=r<2—0.1 AJ'O,/z0x>e0. 

FIG. 5. Oscillator output spectra (a) and amplifier response 
characteristic (b) for r0(max) =1^—0.2 Ava, Td—0.5 Ava, and 
Td —1.0 Ava with €a = aj\-f-0.3 Ava and Yd = Ava. In each case 
Ma\>€a. 

(11.2). The vertical scales in the different figures are 
unrelated; each has been chosen such that for clarity 
the curves are as large as possible; but within each part 
of each figure all curves have been drawn to the same 
scale. In each figure the upper curves (a) represent the 
oscillator output spectrum 3Cx(co); the lower curves (b) 
represent the amplifier response function r(\; co). 

Figures 3 and 4 illustrate how for Td comparable to 
Ava changes in Td modify the spectral functions. Observe 
in Fig. 3(a) with Ta>Ava that for the same peak 
intensity the width and total power (area under curve) 
of the oscillator output decreases as Yd increases. Since 
r a (max) , defined in (11.7b), must increase as Td in
creases in order to keep the peak intensity fixed, the out
put efficiency of a maser oscillator clearly decreases as Td 

increases. In Fig. 4(a) with TdS^va the same general 
remarks apply but quantitatively the Td changes are 
less significant. That is, for fixed peak intensity the 
output is less sensitive to Td as Td decreases below Ava-

An important feature to note in the response spectrum 
of Fig. 3 (b) is the broad plateau extending to each side 
of the sharp central peak. This plateau increases in 
breadth as Td increases. Physically it reflects the fact 
that a heavily damped (Td large) cavity is not highly 
selective in the absence (e.g., off resonance) of active-
channel effects. (Since Avd^>Avai the parameter Td is 
not frequency sensitive for co^cox.) Figures 5 and 6, 
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(b) 

1 

" 1 ~~~ 

/ \0"2 ' 

/ 0.5 I I 

-0.5 Ava 0 0.3 Ava 0.5Ava 

FIG. 6. Oscillator output spectra (a) and amplifier response 
characteristic (b) for ra(max)=rd—0.2 Ava, Td—0.5 Ava, and 
Td—1.0 Ava with €o=wx+0.3 Ava and rd = 0.5 Ava. In each case 
MaX>€ a . 

which illustrate frequency-pulling effects appropriate 
to € a^w\, are in qualitative agreement with Eq. (11.5b). 
Figures 5 and 6 also illustrate how the response and 
output functions vary with r a (max) when ea and Td 
are held fixed. 

In the limit Td/Ava—»0 the only aspect of these 
spectra of importance will be the sharp central Lorentz 
peak associated with the parameters (11.4) or (11.5). 
The r<* sensitivity apparent in Figs. 3 and 4, the 
response plateau apparent in Fig. 3, and the line-shape 
asymmetry apparent in Figs. 5 and 6, all become 
inconsequential by comparison. 

XII. REMARKS 

In the preceding sections we indicated by the 
analysis of rudimentary experiments that maser 
qualities of experimental interest can often be un
ambiguously expressed in terms of simple correlation 
functions. These functions are of such a type that they 
may be studied by general operator techniques of 
considerable power originally developed for the solution 
of relativistic and, subsequently, multiparticle non-
relativistic problems. Using methods of this type, we 
were led to a simple dielectric approximation whose 
general structure relative to the photon field of the 
maser was essentially independent of the specific maser 
realization, although much of our vocabulary was for 
definiteness oriented toward pump-photon coupling 
channels consisting of many identical ions or atoms with 
quantized energy levels. 

In the dielectric approximation the properties of the 
coupling channels manifest themselves in a pair of 
channel correlation (susceptibility) functions. In order 
for the dielectric approximation to be valid it is neces
sary that the linear differential response of the channel 
systems be a macroscopic (average) characteristic of 
those systems independent in the short term of the 
strength of the photon field. In the long term the 
electromagnetic field affects the channel populations 
and indirectly the susceptibility functions. Nonlinear 
saturation, hole-burning, and channel cross-relaxation 
effects are already implicit in our analysis, since they 
affect the long-term (average) channel properties. 

By formal mathematical expressions and by simple 
numerical examples we indicated how the response of a 
steady-state maser amplifier and the output of a steady-
state maser oscillator depend upon the coupling-channel 
susceptibility functions. We also determined in terms 
of channel and photon spectral functions the rate at 
which energy is transferred between the photon and 
channel systems. As an important generalization of the 
steady-state theory we indicated that spectrally in
sensitive macroscopic rate equations3 derived from the 
steady-state energy-transfer expressions are more 
generally valid. 


