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Calculation of Elastic and Inelastic Proton Scattering with a 
Generalized Optical Model 
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An extension of the optical model is considered in which a state of quadrupole collective motion is strongly 
coupled to the nuclear ground state. The calculations include a spin-orbit potential and the simultaneous 
coupled differential equations of the problem are solved numerically on a high-speed computer. Experi
mental data on the scattering of medium energy protons from Ti, Cr, Fe, Ni, and Zn are analyzed. A good 
average optical potential is determined and conclusions are drawn about the energy dependence of the 
parameters. Evidence is presented for the validity of the collective model. Nuclear deformabilities derived 
by fitting the inelastic differential cross sections are in good agreement with those determined by electro
magnetic methods. Various limitations and ambiguities of the model are discussed and possible improvements 
are indicated. 

1. INTRODUCTION 

THE optical model for the elastic scattering of 
nucleons by complex nuclei has been very 

successful in the last few years. As more and better 
data became available, it has proved possible to find 
good average parameters which enable one to calculate 
accurately the expected elastic scattering for a wide 
range of nuclei. More important, it has become feasible 
to study the deviations of the results for individual 
nuclei away from the average parameters and to 
correlate these with nuclear structure effects.1 This 
treatment of the elastic scattering appears to be 
applicable to any nucleus, although usually it does not 
work too well for light nuclei {A <30) . I t is the purpose 
of this paper to consider a generalization of the optical 
model which will make possible the simultaneous 
calculation of the elastic scattering of nucleons and the 
inelastic scattering to low-lying excited states of the 
target nucleus. 

All even-even nuclei have ground state spin 0+ , and 
a large proportion of these have low excited states of 
spins 0+, 2+ , 3~, 4+ , etc., which can be interpreted as 
nuclear collective motions. The majority of even-even 
nuclei have a quadrupole state as the first excited level 
and this level is often strongly populated by medium 
energy neutron or proton bombardment. Hence, the 
most obvious generalization of the optical model is a 
calculation in which a nuclear ground state of spin 0+ 

and a collective state of spin 2+ are included explicitly. 
Since the excitation of first 2 + states by nucleons varies 
strongly and erratically from nucleus to nucleus, one 
may hope by this means to remove one source of 
fluctuation in the optical-model parameters. One should 
also be able to correlate the nucleon inelastic scattering 
with the results of Coulomb excitation measurements 
and B(E2) determinations. 

* Operated by Union Carbide Nuclear Company for the U. S. 
Atomic Energy Commission. 

1 F. Perey (private communication) and (to be published). 

2. DESCRIPTION OF CALCULATION 

The methods described here are, in principle, very 
similar to those of Chase et al.y

2 but the formalism is 
extended to include the consideration of charged 
incident particles, spin-orbit effects, and easy specializa
tion to rotational, vibrational, or single-particle excita
tion models. 

In order to set up the generalized optical-model 
calculation, we start with the Schrodinger equation 
for the system consisting of an incident nucleon and a 
target nucleus. We work in the center-of-mass coor
dinate frame so that only reduced masses and relative 
energies and momenta appear in the equations. The 
wave equation is 

[ H * a ) + r + V ( r , £ ) > ( r , £ ) = £ * ( r , a (1) 

Here, r denotes the coordinates of the incident particle, 
£ stands for the internal coordinates of the target 
nucleus, HN(0 is the target nuclear Hamiltonian, T is 
the kinetic energy operator for the relative motion, 
V(t,£) is the interaction energy between particle and 
nucleus, ^(r,£) is the complete wave function of the 
system, and E is the total energy, ^(r ,^) is expanded in 
eigenstates of the total angular momentum, 

*(r ,*) = Z <W/*(r,£). 
JM 

(2) 

We assume that \pjM(t£), for each entrance channel 
(Ijl), can be adequately described by the superposition 
of the elastic and inelastic scattering states, as follows: 

1 
^ ( r , 0 = - C / i i / ( O * r y « / J f ( ^ f ) 

+ E frrvJ(r)4>iwJM('m (3) 
i'V 

where 

4>wJM(f,S)= E CMkm
JIjCm^u 

X*i* (?){W(r)}X/ . (4) 
2 D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 

1080 (1958). 
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The functions, fijiJ(r), are the radial wave functions of 
particles scattered from nuclear states with spin 7, 
partial wave Z, relative angular momentum y=Z±| , and 
total angular momentum / . The functions <j)ijiJM(r,£) 
represent the nuclear wave functions, ^ih(^), vector 
coupled to the spin-angular parts of the incident particle 
wave functions, {ilY^(f)}Xsf

i(s=§). Other reaction 
channels, and hence the rest of the total wave func
tion, are taken into account only in a general way via 
the later introduction of complex optical potentials. 

Insertion of the angular momentum eigenfunctions 
in the wave equation yields, after a little manipulation, 
the following set of coupled differential equations for 
the radial functions fijiJ(r) and fi'j'i'J(r), valid for 

r=o, r#o 
Cr,+ 7 W : i ^ ( r ) - £ ] / i ^ ( r ) 

+ Z Vm..rn>Jfi>J>i>J(r) = 0, (5) 
?v 

lTv+Vrri>..rJ>i>J{r)-E>-lfrn,J{r) 

j " l" 

+ Vw:wJ(r)fIjlJ(r) = 0, (6) 
where 

ft2r1(1+1) d2~i 
Ti=—\ , (7) 

M being the reduced mass of the incident particle. 
E'=E—e, where e is the energy of the excited state. 

For these nuclei of ground-state spin zero, 7=0, 
I ' = 2, and J=j=l±\ only, where I is the orbital 
angular momentum in the entrance channel. In Eq. (5), 
V=l, Z±2, and j ' = V^z\. Equation (6) represents five 
equations for each of J=j=lzh%, corresponding to 
V=l, /dz2 and the allowed values of f=l'±:%, and the 
sum in Eq. (6) also goes over /" = /, Z±2 and the allowed 
values of j"=l"^i\. Hence, the wave equation separates 
into sets of six coupled equations, one set for each 
value of / and of J=l-±.\. We shall assume that only 
the scalar and quadrupole parts of the interaction are 
effective, and this leads immediately to the above 
restrictions on the I and j values. For incident partial 
waves 1=0, 1, 2, some of these equations and parts of 
the sums drop out because of angular momentum 
coupling considerations. Hence, 1=0, 1, 2 need to be 
treated as special cases. 

Before the coupled equations (5) and (6) can be 
solved, it is necessary to evaluate the matrix elements 
Vi>j>i>-jjiJ{r) of the interaction potential. We have 

Vrri>:WJ(r)=(<t>ri>vJMmI V(t,Q|*w'*(^)). (8) 

The round brackets indicate integration over the nuclear 
coordinates £ and the angular variables f, but not over 
r. The interaction is written as a sum of products of 
multipole tensor operators, 

v{t,&= E F,^wr,«(r,f). (9) 
Qq 

By using the definition of Eq. (4), we can soon evaluate 
Eq. (8) to give a calculable formula for the required 
potential matrix elements. We obtain 

= VII'Fn^(r)il-,'(-)J+in(-y+1" 
X [ (2j+1) (2 /+1) (21+1) (21'+1)]1'2 

XCmW'W(ljl'j':iQ)W(IjI'f: JQ), (10) 

where 

VnWFnWfy^—-^ . (11) 
(47T)1'2 

The quantity (I'lir^l!/) is a reduced nuclear matrix 
element defined, by means of the Wigner-Eckart 
theorem, as follows: 

(*,<*'(I) 17V(r,$) \W0) = Ck,qkt'V(I'\\TQ\\I). (12) 

It may be readily shown from these formulas that we 
have the symmetry relation, 

Vr^:m^J(r)=Vm:rn^
J*(r). (13) 

The matrix elements of the scalar component of the 
interaction (Q=0) are taken to be the usual type of 
complex optical potentials employed in elastic scatter
ing work. They are assumed to be independent of I 
and the same in both elastic and inelastic channels. 
We employ a real Saxon potential plus volume and 
surface absorptive terms, a Coulomb interaction due 
to a uniform spherical charge distribution, and a 
spin-orbit potential of the Thomas form. Hence, 

VQ^= Vc(r)-Vsfs(r)-iWifr(r)-iWDfD(r) 

/ f t \ 2 r ldfs(r)l 
-Vsol ) 1-cr. (14) 

\mrc) L r dr J 
In this equation, Vs, Wi, and WD are potential depths 
(i.e., positive numbers) and Vso is also positive in 
agreement with the shell-model assignment. We have 

/fl(f) = r i + e r p ( ^ - ^ ) ] , Rs=rsAV*, (15) 

/r(r) = [ l + e x p ^ — - ) ] , R^nA™, (16) 

w"=,op(v)/[1+op(v)]' 
RD=fDAV*9 (17) 

where A is the nuclear mass in atomic mass units. 
Since the results are not sensitive to the value of the 
charge radius RC} within reasonable limits, we shall 
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set Rc=Rs. Hence, 

Ve(r) = ZiZTe*/r, 

ZiZre2\ 

2RS KJ 
r^Rs, 

r<Rs, 
(18) 

where Zj, ZT are the incident and nuclear charges. 
Also, for the scattering state symbolized by | jl), 

l-«\jt>=UU+Q-i(l+V-il\Jt>- (19) 

For the matrix elements of the quadrupole component 
of the interaction (Q=2) we use the expression in 
Eq. (10). Explicit formulas for the coupling strengths 
F / / , ( 2 ) and the form factors Fnf(2) (r) can be found only 
by employing definite nuclear models and using Eqs. 
(11) and (12). If, for instance, a single-particle excita
tion model is proposed, they may be calculated in 
terms of shell-model wave functions and assumed 
two-body forces. The collective rotation and quadrupole 
vibration models will be considered in detail in the 
next section. 

However, on general theoretical grounds, the form 
factors F02

(2)(r) and F22
(2)(r) should be zero at r = 0 

and peaked inside or near the nuclear surface. In 
addition, for single-particle excitations, the form 
factors may have nodes in the nuclear interior. In the 
present calculation we chose a simple parametric form 
for the coupling functions which was peaked near the 
nuclear surface and left the strengths F02(2) and F22(2) 

as input numbers. We set 

Fo2(2)to = *22(2)(r) 

rr-RF\ fr-RF\ /r (r-KF\y 
= exp( ) / 1+expf J , 

\ aF /' L \ aF / J 

RF=rFAli\ (20) 

Thus, various nuclear models could be simulated by 
varying the strength ratios and the two parameters of 
the coupling functions. 

For incoming state \jl), we have, in general, six 
coupled equations. We integrate the coupled set six 
times numerically, each time using different initial 
values for the functions near the origin. The integrations 
are carried out to the nuclear surface where the optical 
and coupling potentials eventually become negligible. 
The six independent solutions for each of the six radial 
wave functions are then superposed to yield the true 
wave functions. The superposition coefficients are 
determined by setting up a 12X12 complex matrix 
equation which matches the internal nuclear functions 
and their derivatives to the corresponding incoming 
and outgoing free-state Coulomb wave functions.3 Of 
course, we require outgoing Coulomb waves only for 
the inelastic scattering channels. The solution of the 

3 B . Buck, R. N. Maddison. and P. E. Hodgson, Phil. Mag. 5, 
1181 (1960). 

matrix equations yields automatically the elastic and 
inelastic scattering matrix elements, from which the 
corresponding cross sections are easily computed. This 
procedure is repeated for each partial wave I and for 
each 7 = / ± § , up from 1=0, until the scattering phase 
shifts are negligible. 

The whole calculation was coded for the IBM 7090 
at Oak Ridge. For incident protons, the code gives the 
total absorption cross section, the total inelastic 2+ 

cross section, the elastic and inelastic differential cross 
sections, and the corresponding polarizations. For 
incident neutrons, we obtain also the total nuclear and 
total elastic cross sections. 

A. Collective 2+ States 

In this section we evaluate the coupling functions by 
means of Eqs. (11) and (12), using the permanently 
deformed nucleus model4 and the pure quadrupole 
vibration model.5 These are, of course, extremely 
simplified representations of nuclear collective motions. 

1. The Rotational Model4 

Here we consider a nucleus characterized by a 
permanently deformed surface of cylindrical symmetry. 

i?(04>) = i? s[l+/3F2°(00)], 

<4TT\ 1 / 2 

(21) 
that is, 

R(O*)=RII+P(—\ Z F2~*(W)F2«(5)T (22) 

The direction S specifies the orientation of the nuclear 
symmetry axis and /? is the conventional nuclear 
deformation parameter. /3>0 and /3<0 refer, respec
tively, to prolate and oblate deformations. Assume that 
the potential seen by the incident particle depends only 
on its distance from the nuclear surface. Then 

V{r-R(64>)} = V(r-R8) 

/ 4TT\ 1 / 2 dV 
- 0 ( — ) T,Y^{d<t>)Y^{S)'Rs— (23) 

\ 5 / m dr 

to first order in (3. dV/dr is evaluated for /3=0. For an 
interaction of the Saxon form, as in Eq. (15), 

•V=Vsfs(x)-
pRsVs/^\m 

\ 5 / 

X E F 2 ™ * ( r ) F 2 - ( S ) , (24) 

where x= (r—Rs)/as. fs(%) is defined in Eq. (15), 
and g(x) = Fzi'(2)(x) is given by Eq. (20) if we set 
RF=Rs and aF = as. Hence, by definition and use of 

4 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. 
Selskab, Mat.-Fys. Medd. 27, No. 16 (1953). 

8 A, Bohr, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 
26, No. 14 (1952). 
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Eqs. (11) and (12), we have 

F , r< 2 ) =-
PRsVs\ • 2 / '+ l - | i /2 

as L 5 J 
( - ) ' 

(^rk'\Y2
m(S)\^ik) 

X — • (2 5) 
C k'mk 

The nuclear wave functions for the ground-state 
rotational band can be written 

[-2/+1-I"2 

L 8x2 J 

* r 

Also, 
"-[ 

2/ '+l- i i /2 

Y2
m(S) 

8x2 J 

/ 5 \ v* 

ZW(S)-

2(3), 

(26) 

(27) 

where the Z)Js are elements of the rotation matrix. 
Inserting Eqs. (26) and (27) into Eq. (25), we soon find 

0RsV8 

7 r l # ( 2 ) = _ _ _ ( _ ) / p / + i ] i / 2 c 0 0 0 / ' ^ (28) 
asi^ir) 1/2 

Hence, the two coupling strengths Fo2(2) and F22 (2) are 

F02
(2) = + 

PRBVS 

as(4:Tr) 1/2 
F 2 2

( 2 ) = 
• - ( T ) "' 

,(2) (29) 

Thus, the coupling strengths can be calculated from the 
assumed deformation parameter /3 and the parameters 
of the optical potential, while the form factors are 
essentially the derivatives of the Saxon potential shape. 

2. The Vibrational Model5 

In this case, the nuclear surface is characterized by 
dynamical deformation parameters aM. 

i ? ( ^ ) = ^ [ l + Z M « / ^ * ( ^ ) ] . (30) 

Again assuming that the potential felt by the incident 
particle depends only on its distance from the nuclear 
surface, we have, to first order, 

-V=Vsfs(x)+ 
RsVs 

-g(xy£aSYf(04>) (31) 

where x= {r—Rs)/as. As before, fs(x) is defined by 
Eq. (15) and g(x) = Flr^(x) is given by Eq. (20) when 
we set RF=Rs and aF=as. In the usual way, aM is 
decomposed into operators b^ and 6M* which, respec
tively, destroy and create a single quadrupole phonon 
of vibration. 

rA&n1/2 

LVK-)"*-**], (32) 

where 

Also, 
: ( - )"«_/ . 

blibll*=n„+l, b/b^tin, Zi».^=iVr, 

(33) 

(34) 

where N is the number of phonons in a state. The 
quadrupole phonon states are written as follows: 

Vxk=\N:Ik), (N:Ik\N:Ik)=l. 

Vacuum state: |0 :00)= |0), 

1-Phonon state: 11: 2fe>= &** 10). 

(35) 

(36) 

Analogously to the permanent deformation parameter 
j8 used in the last section, we introduce a dynamical 
or root mean square deformation parameter. The new /? 
is defined so that /32 is the expectation value of ] [^ ] a^ \2 

in the nuclear ground state. 

/32=<o|E„KI2|o>. 

Using Eqs. (32) and (34), we easily find that 

0*/5=tiw/2C. 
Hence, 

«,.= (/3/V5)[>,-K-)"*>-/]• 

By means of the definitions given earlier, we have 

(37) 

(38) 

(39) 

V11.™--
pRsVs r 2 / ' + l -

a s(4x) 1/2 

1/2 

X-
{N':rk'\b*\N:Ik) 

C 
(40) 

k'fik 

This is easily evaluated to yield 

PRsVs 
Fo2(2) = + — , F2 2

( 2 ) = 0. (41) 
^(4TT) 1 / 2 

The diagonal strength F22(2) of the quadrupole inter
action vanishes because b^* can only connect states 
which differ by one in the number of phonons. I t is 
fairly straightforward to verify that when F22(2 = 0 , 
the results of the coupled channels calculations do not 
depend on the sign of /3. 

We see from the above derivations that, with suitable 
and natural definitions of the permanent or dynamical 
distortion parameters /?, the two models give identical 
expressions for Fo2(2). The models can only be distin
guished if the presence or absence of the strength F22(2) 

has large effects on the results of calculation. I t turns 
out that the two models give very similar results for 
the energies and nuclear masses considered here. In 
Fig. 1 we illustrate this point by means of typical 
calculations of the inelastic 2+ angular distribution of 
protons from the reaction Fe66(£,^') at 14.1 MeV. The 
geometrical parameters and spin-orbit potential are 
the same as in the standard set given in Table I, while 
Vs and W& for this reaction are contained in Table I I . 
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TABLE II. Results provided by the search code. The geometrical 
parameters of the model and the spin-orbit magnitude were 
fixed at the values given in Table I. See text for the sources of 
the experimental measurements. 
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FIG. 1. Comparison of collective models. The three curves are 
theoretical results for the 2+ inelastic scattering of protons from 
Fe66 at 14.1 MeV, using a prolate permanent deformation, an 
oblate deformation, and the vibrational or dynamical distortion 
model. The parameters employed are given in Tables I and II . 

We chose |/3|=0.24 and we give the results for the 
two cases /3>0 and /3<0 on the rotational model and 
the result for the vibration model where the sign of /3 
is irrelevant. The curves show that while it may just 
be possible to distinguish experimentally between 
prolate and oblate deformations if the nucleus is 
permanently deformed, it would not be possible to 
distinguish between the vibrational model and either 
of the above two extreme cases. 

B. Critique and Discussion 

The calculations described above may be criticized 
on several grounds. First, it would be desirable to 
include explicitly the process of Coulomb excitation of 
the 2 + state by the incident protons. This process 
interferes destructively with the purely nuclear excita
tion mechanism. The contribution of Coulomb excitation 
is, in principle, straightforward to calculate within the 
framework of the present treatment. One assumes that 
the charge distribution is deformed in the same way as 
the potential distribution. This leads to the introduction 
into the coupling form factors of additional terms 

TABLE I. Standard set: fixed optical potential parameters 
used in the final analysis described in Sec. 3B. See text for defini
tion of symbols. Use of this model allows easy comparison of 
derived potential depth parameters Vs, WD and nuclear deform-
abilities /3 with the results of other work. 

Nucleus 

Ti 
Cr 
Ni 
Zn 
Ti 
Cr 
Fe 
Ni 
Zn 
Ni 
Ni 
Fe 
Ni 
Zn 

E 
(MeV) 

12.2 
12.0 
12.0 
11.9 
14.3 
14.3 
14.1 
14.3 
14.3 
15.0 
16.8 
17.3 
17.3 
17.3 

Vs 
(MeV) 

48.1 
50.2 
48.4 
50.0 
47.4 
49.6 
48.2 
48.5 
49.0 
48.2 
48.4 
47.6 
47.5 
48.2 

WD 
(MeV) 

9.7 
10.8 
9.1 

10.6 
11.0 
12.2 
11.6 
9.7 

11.8 
10.3 
9.7 

10.0 
9.1 

10.5 

0 
0.25 
0.20 
0.28 
0.24 
0.26 
0.19 
0.24 
0.23 
0.23 
0.22 
0.20 
0.21 
0.20a 

0.23a 

<TA 

(mb) 

904.6 
904.0 
881.6 
919.7 
970.2 
983.1 
979.8 
954.4 

1001.0 
974.6 
989.2 

1007.0 
981.6 

1047.0 

<Tin2+ 

(mb) 

40.8 
23.8 
54.9 
42.3 
34.7 
19.2 
33.6 
40.7 
35.5 
35.9 
34.5 
33.2 
35.7 
43.3 

rs(F) 

1.25 

as(F) 

0.65 

m(F) 

1.25 

aD(F) 

0.47 

rF(F) 

1.25 

aF(F) F^o(MeV) 

0.65 8.0 

• /8 fixed: only elastic distributions available. 

proportional to r~3 when r is greater than the average 
charge radius Rc, and proportional to r2 when r<Rc. 
The proportionality factors are soon calculated for a 
uniform, quadrupole distorted charge distribution. In 
practice, one would need to integrate the sets of coupled 
equations for a very large number of partial waves if 
the Coulomb excitation process was to be treated 
correctly. Fortunately, this excitation mechanism is 
expected to be negligible for the experiments considered 
in this paper. 

Second, it may seem dangerous to neglect the effects 
of higher excited collective states, i.e., the 4+ , 6+, etc., 
states of the rotational band or the 0+, 2+ , 4+ triplet 
of the vibrational nuclei. This is still an open question. 
However, a code has been written which couples 
together 0+, 2+ , and 4 + states, though spin-orbit 
coupling is neglected. Experience with this latter code 
indicates that the inclusion of the 4 + state does not 
appreciably affect the elastic and inelastic scattering 
results provided that 0^0 .3 approximately, and the 
energy is not too low. These conditions are not violated 
in the analyses presented later. More serious is the 
neglect of the 3~~ octupole collective states which occur 
in a wide range of even-even nuclei and which are 
usually strongly excited by nucleon scattering. The 
effect of this on the other results remains to be investi
gated. 

There is another ambiguity in the calculations. We 
have tacitly assumed that only the deformation of the 
real part of the optical potential is effective in coupling 
the elastic and inelastic channels. Naively, one might 
say that since the nucleus is deformed or deformable, 
then the absorptive potential should also be deformed 
or should undergo quadrupole vibrations. This would 
lead to imaginary terms in the coupling potentials 
evaluated earlier. But, equally naively, one could say 
that the absorption potential is introduced only to 
take care of all reaction processes other than the ones 
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FIG. 2. Comparison of the present 
theory with the distorted-wave Born 
approximation for Ti48 (p,pf) at 14.5 
MeV. The parameters used in the 
calculations are obtained from Table I, 
and Eqs. (45) and (46). 
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treated explicitly by means of coupled channels and, 
therefore, it should not contribute to these latter reac
tions. In any case, even if the coupling potentials 
should be complex, it is not at all evident what form 
the imaginary parts should have. Again the matter 
remains to be investigated; but it does not appear to 
be very important when one considers the other uncer
tainties in the models employed. A similar ambiguity 
afflicts the introduction of the spin-orbit potential. 
Perhaps one should make this deformed too and so 
have a source of spin-flip processes. This is felt to be 
important only for the calculation of the inelastic 
polarization. 

Apart from the uncertainties mentioned above, there 
is yet another fundamental dilemma in the treatment 
of the diffuse-edged collective model for inelastic 
scattering. An alternative prescription states that 
instead of denning the deformed potential as in Eq. (23) 
[or as in Eq. (31), if we are considering the vibration 
model] one should use the expression, V{r(d(j)) — Rs}, 
where r(64>) = r[\—0F2°(0<£)], r being the radial coor
dinate of the incident particle. The expansion to first 
order in 0 leads again to our formulas, except that the 
coupling form factors should be multiplied by r/R$. 
This modification should not lead to appreciably 
different results for the case of proton scattering. 

Finally, all the optical and coupling interactions 
should, presumably, be nonlocal operators in coordinate 
space. Modern theories for the interaction of nucleons 
and nuclei always give rise to some form of nonlocality. 
Usually, we can take this into account by allowing the 
optical potentials to be energy dependent. A more 
detailed consideration of nonlocal effects in the strong 
coupling theory of inelastic scattering would present 
serious computational difficulties. 

We now discuss some general properties of coupled 
channel calculations. First, it may be noted that if 
the sum of coupling terms in Eq. (5) is neglected, 
the whole calculation is mathematically equivalent 
to the distorted-wave Born approximation (DWBA) 
theory of direct interaction inelastic scattering. This 
theory is usually presented so that the inelastic scatter
ing cross section appears as the square modulus of a 
perturbation theory matrix element. Schematically, 

da (2+) 
ex 0* | <*/-> | F (r) F2° (t) | ¥,.<+>) |2 . (42) 

Here, 0 is the deformation parameter and F(r) is an 
interaction form factor similar to those mentioned 
earlier. SI>;(+) and ^ / ( _ ) are essentially initial and final 
elastic scattering wave functions calculated with a 
spherical optical model. 

We see that the cross-section magnitude is always 
proportional to 02 and that the angular distribution 
shape is independent of 0. Figure 2 contains a compar
ison between the DWBA theory and the present 
calculation for the elastic and inelastic scattering of 
protons from Ti48 at 14.5 MeV. This case is typical of 
those analyzed later. The first diagram shows a plot of 
the total inelastic 2+ cross section as a function of 0. 
For 0 ^ 0 . 1 , the two theories give essentially identical 
results and GIN(2+) oc02. But when 0>O. l , there is a 
marked divergence and, for a given ft, the DWBA 
overestimates the cross section considerably, e.g., by 
— 10% at /3=0.2 and by - 2 0 % at 0 = 0 . 3 . I t is interest
ing to see that from 0=0.2 to 0=0 .4 , O"IN(2+)OC0 in 
the present theory, not 02 as in DWBA. Similar results 
were obtained from calculations on Fe and Zn. The 
results on Ti, Fe, and Zn, taken together, indicated that, 
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for a fixed value of /?, the theoretical total 2 + cross 
sections were proportional to the nuclear mass A. 

The second diagram shows the elastic and inelastic 
angular distributions as functions of /3. The DWBA 
treatment would give elastic and inelastic distribution 
shapes close to those labeled /3=0.1. We see that as 
P is increased the inelastic differential cross section 
grows in magnitude, though not as fast as in DWBA, 
and its shape does not change appreciably. Hence, 
DWBA is probably adequate for calculating the 
inelastic cross section shapes, but not their magnitudes. 

In DWBA, the elastic differential cross section is 
independent of f3. But we find that strong channel 
coupling does have a large effect on the calculated 
elastic scattering. Hence, it is clear that if the elastic 
data, for instance, fell along the curve marked /5=0.1, 
and if the inelastic magnitude demanded /3=0.4, then 
one would need to change the optical-model parameters 
if one wished to fit elastic and inelastic differential 
cross sections simultaneously. This illustrates a general 
rule that when collective states are strongly excited the 
optical-model parameters obtained by fitting the 
elastic data with a spherical optical model are not 
necessarily the same as those found using the present 
model to fit elastic and inelastic data at the same time. 
The difference between spherical optical-model param
eters and the deformed-nucleus model parameters 
becomes more marked as the incident particle energy 
decreases. A more detailed discussion of these effects is 
found in reference 1. As a final remark, we should say 
that inclusion of the 3~ octupole states in the calculation 
would require further adjustment of the potential depth 
values in order to fit all the data. 

3. ANALYSIS OF PROTON SCATTERING 

In this section we use the model to analyze proton 
elastic and 2 + inelastic differential cross-section meas
urements. The data are taken from several sources and 
include experiments on natural targets of Ti, Cr, Fe, 
Ni, and Zn at energies between 12 and 17 MeV. The 
measurements at 12 and 14.3 MeV on Ti, Cr, Ni, and Zn 
were the work of Hu et al* The Fe data at 14.1 MeV are 
due to Kikuchi et al.,7 and the Ni data at 15 and 16.8 
MeV were taken by Daehnick and Hill.8 The elastic 
angular distributions for Fe, Ni, and Zn at 17.3 MeV 
are the work of Dayton and Schrank,9 while the only 
inelastic distribution at this energy, that for Fe, was 
reported by Schrank et al}° 

The analysis was greatly facilitated by attaching to 
the code described above an automatic parameter-

6 C. Hu, K. Kikuchi, S. Kobayashi, K. Matsuda, Y. Nagahara, 
Y. Oda, N. Takano, M. Takeda, and T. Yamazaki, J. Phys. Soc. 
Japan 14, 861 (1959). 

7 K. Kikuchi, S. Kobayashi, and K. Matsuda, J. Phys. Soc. 
Japan 14, 121 (1959). 

8 W. Daehnick and H. A. Hill (unpublished). 
9 1 . E. Dayton and G. Schrank, Phys. Rev. 101, 1358 (1956). 
10 G. Schrank, P. C. Gugelot, and I. E. Dayton, Phys. Rev. 96, 

1156 (1954). 

searching routine. The search code adjusts the param
eters of the model until the quantity 

is a minimum. The suffices E and T refer, respectively, 
to the experimental and theoretical results. Both elastic 
and inelastic distributions are included in the sum over 
angles and thus the two differential cross sections are 
fitted simultaneously. The code was arranged so that 
up to 14 parameters could be varied automatically in 
the same run. For obvious practical reasons, this full 
generality was never used. We shall not quote the 
individual values of x2 obtained for the results given 
later, since these would only have meaning if we gave 
also the number of data points and the errors attached 
to each measurement. In a fairly typical case we have 
about 20. data points for each of the elastic and inelastic 
cross sections, while the quoted errors for the elastic 
scattering are of order 5 % and the inelastic errors are 
of order 10%. For such cases we obtain values of the 
total x2 ranging from 100 to 400. Usually, about one 
third of the total x2 is contributed by the elastic results 
and the rest by the inelastic fitting. Nearly always we 
arrive at an excellent fit for the elastic cross section and 
results for the inelastic scattering which range from 
fair to good. 

I t was decided early to use an optical model with 
surface absorption only; hence in all the follows we set 
Wi=0. As discussed in reference 1, this is probably a 
good assumption for the incident energies considered 
here. All the nuclei mentioned above are thought to 
be, at least approximately, of the vibrational type. Thus, 
we shall always put the coupling strength F22(2) = 0. 
The reason for this is indicated in the last section. Any 
breakdown of the vibrational model would lead to a 
nonzero value for F22(2); but, as we have already 
illustrated, it is difficult to distinguish the presence or 
absence of this type of coupling. I t would also be 
desirable to fix the geometrical parameters of the 
calculation so that systematics in the potential depth 
parameters and the deformabilities fi will show up 
clearly. This was done only after the preliminary 
analysis presented below. 

Again, we have seen that the vibrational model of 
the last section specifies that the parameters TF, &F of 
the collective coupling form factor should be set equal 
to the corresponding parameters rs, as of the real Saxon 
optical potential. We did not employ this constraint in 
the preliminary calculations since we wished to use the 
experimental data to provide a clear-cut test of the 
suitability of the collective model. At this stage, 
therefore, the model was defined by the following ten 
parameters: Vs, rs, as) WD, rD, aD; (3, rF, a? and Vso> 
The coupling strength F02(2) was calculated by means of 
Eq. (41). Since ft is a free parameter, this does not 
imply any specialization to the collective model. To 
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sum up, the idea behind the preliminary work was to 
determine suitable fixed geometrical parameters (and 
spin-orbit strength) for use in later systematic calcula
tions and to test the applicability of the simple vibra
tional nucleus considerations. 

A. Validity of the Collective Model 

The data referred to above contained eleven cases 
suitable for inclusion in the first survey. These were 
elastic and inelastic scattering measurements on Ti, 
Cr, and Zn at 12 and 14.3 MeV, on Ni at 14.3, 15, and 
16.8 MeV, and on Fe at 14.1 and 17.3 MeV. The 
Ni data at 12 MeV were not used for reasons explained 
later, while inelastic data were not available for Ni and 
Zn at 17.3 MeV. We thus have a large enough number of 
typical experiments for us to be able to draw some 
general conclusions. 

A series of searches on the data was run in which all 
ten parameters of the model were allowed to vary. A 
fairly well defined minimum for x2 was found in each 
case, and the final values for x2 were all in the lower 
part of the range mentioned earlier. The model param
eters thus obtained varied erratically from case to case, 
as is to be expected in this type of procedure. Table I I I 
contains the average values of geometrical and spin-
orbit parameters determined by this method. The 
individual results for the parameters rs, as, and YD do 
not, in most cases, depart from the averages by more 
than about 5%, while the departures for aD were 
of order 15%. The particular values for the parameters 
TF, CLF deviate from the quoted averages by about 10% 
and 20%, respectively. Hence, Table I I I represents a 
fairly reliable guide to an underlying average nuclear 
model. The cross-section calculations are not very 
sensitive, within reasonable limits, to the magnitude 
of the spin-orbit potential and we can tolerate depar
tures from the tabulated average value of about 30%. 
Thus, we may use in later calculations any fixed reason
able value for V so in the range 5 to 10 MeV. Polariza
tion data may help to remove this ambiguity. 

The really striking result obtained here was that the 
average values for the coupling function parameters 
TF, CLF were nearly the same as the corresponding average 
parameters rs, as of the real part of the optical potential. 
The closeness of the agreement was quite unexpected, 
and is a strong indication of the validity of the collective 
model treatment of this type of inelastic nucleon 
reaction. In particular, the simple vibrational model 
prescriptions given earlier seem to work surprisingly 
well. Further support for the validity of the model will 

TABLE III . Model parameters obtained by averaging the 
results of the preliminary investigations described in Sec. 3A. 
Note that YF—TS and dF^as. 

rs(F) as(F) rD (F) aD (F) rF (F) aF (F) Vso (MeV) 

1.21 066 h26 051 1̂ 20 065 7J5 

be presented below when we compare the values of ft 
found in this work with those obtained by electro
magnetic methods. 

We have now justified the use of the collective model 
and derived one possible set of potential parameters for 
application to all cases. To test this, we fixed the model 
parameters of Table I I I at the given values and fitted 
all the data again. Only the quantities Vs, WD, and p 
were allowed to vary in the search routine. The results 
obtained were only slightly worse than those found 
earlier when all the parameters were allowed to vary. 
The fits obtained were very similar to those given in the 
next section. I t is useful to be able to fix so many 
parameters, for then we can study the possible sys
tematic variations of the potential depths Vs and WD 
and the deformabilities ft. I t turns out that these 
quantities also can be assigned suitable values within 
narrow limits. 

B. Results of Calculation 

Table I contains another possible set of fixed values 
for the geometrical parameters of the model and for 
the spin-orbit potential depth. These parameter 
values are very close to the corresponding numbers of 
Table I I I and we have used the above justification of 
the collective model to set rF — rs and aF — as. The 
quality of fits obtained by use of Table I is essentially 
the same as found when Table I I I is employed. Several 
considerations indicate the use of the second set of 
fixed parameters in the final analysis rather than the 
first set; but most important is that this choice allows 
easy comparison of the results with the conclusions of 
similar and related work. 

First, it is clearly desirable that the parameters for 
neutron and proton scattering should be closely the 
same. Hence, we employ as a guide the values given by 
Bjorklund and Fernbach,11 which they derived from an 
analysis of medium energy neutron elastic scattering. 
Their treatment contained a Gaussian surface absorp
tion, while ours uses one of the Saxon derivative type 
[see Eq. (17)]. Thus, our absorptive difTuseness aD has 
to be chosen to correspond with their Gaussian diffuse-
ness. Second, essentially the same set of local potential 
geometrical parameters has been found to generate 
results equivalent to those predicted by the nonlocal 
model of Perey and Buck,12 which gave a unified 
account of a wide range of neutron-scattering data. 
Finally, this set, quoted below as the standard model of 
Table I does indeed give a good basis for the calculation 
of proton elastic scattering over a larger range of 
energies and masses than we consider here. The broad 
survey of available elastic data is reported and discussed 
by Perey.1 

Hence, to fit the available data we used the standard 
set (Table I) and allowed only Vs, WD, and ft to be 

11 F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958). 
12 F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). 
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adjusted by the search code. Of course, the magnitudes 
of Vs and WD, corresponding to the two fixed models 
of Tables I and I I I , were different; but they showed the 
same general behavior as functions of mass and energy. 
I t was very encouraging that the derived values of /5 
for each nucleus, corresponding to the two models, 
differed only by a few percent. This suggests that, in 
conjunction with reasonable optical parameters and the 
collective considerations of the last section, model-
independent values of the nuclear deformabilities 0 can 
be extracted from the inelastic proton scattering data. 

The results are presented in the form of diagrams and 
a table. Figure 3 summarizes the experimental data 
and the theoretical calculations for 12-MeV incident 
proton energy. Figure 4 contains the 14-MeV results 
and Fig. 5 the available results at 17 MeV. Table I I is a 
compendium of the final parameters obtained and 
contains the individual values for Vs, WD, and j3, 
together with the predicted results for the total inelastic 

2 + cross section and the total absorption cross section a A 
(which includes the contribution of 0"_n[_2+]). The 
polarization results are not given. The elastic polariza
tion predictions are very stable as functions of A and E 
and are essentially as given by Perey.* The inelastic 
polarizations vary quite appreciably with A and E; but 
no data are available for comparison. In addition, there 
are uncertainties in the calculation of the inelastic 
polarizations because we have not included the possibil
ity of spin-flip processes. 

C. Discussion of Results 

In general, it will be seen from the diagrams that the 
elastic angular distributions are fitted remarkably 
well. However, the Ni results at 12 MeV do not quite 
reproduce the cross-section rise at angles greater than 
140°. The reason for this will appear later. Also, there 
are marked discrepancies at forward angles in the 
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FIG. 4. Comparison of theory and 
experiment at 14-15 MeV. The fixed 
model parameters are given in Table 
I and the final results for the varied 
quantities are in Table II . 
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results for Fe at 14.1 MeV and Zn at 17.3 MeV. The 
cause of these disagreements is not known. The inelastic 
differential cross sections are fitted reasonably well in 
all cases and sometimes very well. The derived values 
of /? are not expected to be very reliable when there is 
an appreciable difference of structure between experi
mental and theoretical distribution shapes. On the 
whole, the experimental inelastic data are much poorer 
than the elastic data, due to the technical difficulty 
of the experiments. The inelastic results on Ti and Cr at 
12 and 14.3 MeV show only qualitatively good agree
ment with experiment. The calculations for Fe, Ni, and 
Zn at all energies are considerably better when compared 

with experiment, the Zn results being particularly 
successful. 

In Fig. 6 the real potential well depth V s and the 
surface absorptive well-depth W& are plotted as 
functions of energy. Since only a few nuclei are con
sidered, no useful conclusions can be drawn about the 
fluctuations of the potential values at a given energy. 
The results for the real potential Vs all lie within the 
indicated band shown in the diagram. There is an 
obvious tendency for Vs to decrease with energy. The 
nonlocal potential model12 for the scattering of neutrons 
by nuclei indicated that, if one determined the local 
potential parameters equivalent to the nonlocal model 
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13 14 15 16 

F (MeV) 

FIG. 6. Potential depth parameters obtained from the fitting 
of the data presented in Figs. 3, 4, and 5, plotted against the 
incident proton energy. The lines on the diagram indicate the 
average trends of the results. 

at each energy, then over the energy range 0 to 20 MeV 
the neutron well depth varied linearly as a function of 
energy. The results for the neutron case could be 
summarized by the formula 

Vs (n)« (48-0.29E) MeV. (44) 

In the present case, where the geometrical and spin-orbit 
parameters are the same as in the neutron analysis, we 
can draw an average line through the indicated proton 
potentials. This line is shown on the diagram and the 
proton results can be represented by the equation 

Vs(p)= (52.6-0.28£)d=1.0 MeV. (45) 

Thus, the slope of line is nearly the same as for neutrons 
while zero-energy potential depth for protons is from 
3.5 to 5.5 MeV deeper than the corresponding neutron 
depth. The origin of this increase is still rather obscure. 
To sum up, this analysis fixes the real potential well 
depth for protons to an accuracy of about 2%, indicates 
that it decreases linearly with energy and reveals that 
it is definitely larger than the neutron well depth at 
each energy. 

The analysis of neutron scattering showed that the 
surface absorption potential magnitude was about 11 
MeV and that it did not vary much with energy or 
mass number. The proton analysis given here indicates 
some considerable fluctuations; but the over-all results 
can be represented by the expression 

PFD=10.6zfcl.6MeV (46) 

at all energies and mass numbers. Hence, the surface-
absorptive potential depth is only fixed within limits 
of ± 1 5 % . 

I t is interesting to compare the values of the nuclear 
deformabilities £ derived from the inelastic scattering 
experiments with the results determined by electro
magnetic methods. The B(E2) values for these nuclei, 
as extracted from Coulomb excitation and lifetime 
measurements, are taken from the forthcoming compila

tion prepared by Stelson.13 To evaluate the electro
magnetic £ we assume a uniform nuclear charge distribu
tion with a sharp surface of average radius Rc—\.2Allz 

F. For these dynamically deformable nuclei, the charge 
distribution has a root mean square effective quadrupole 
distortion. A first-order calculation leads to the follow
ing expression for £2: 

£ ( £ 2 : 0 - + 2 ) 

[(3/47r)Zei?c
2]2 

(47) 

Taking the calculation to second order would yield 
slightly smaller values for £. When we consider the 
crudity of the model and the errors of the B(E2) 
measurements, we estimate that Eq. (47) should give 
results for £ within about 15% of the true values. 

From the proton experiments on Ti we find that £ 
lies between 0.25 and 0.26. though high quality fits to 
the angular distributions are not obtained. The B (£2) 
result is £~0.26. In Cr the inelastic proton scattering 
indicates that £ is between 0.19 and 0.20, while the 
B(E2) measurement implies £^0 .23 . This seems to be 
a definite discrepancy; but again we observe that the 
shape fitting is not very good. The electromagnetic 
value for Fe is £«0.24. We find two differing values 
from the inelastic data, i.e., £=0.24 at 14.3 MeV and 
£=0.21 at 17.3 MeV. In both cases the angular distribu
tions agree reasonably well with the experimental data. 
Natural Zn appears to be a good case for comparison. 
Coulomb excitation measurements on the dominant 
isotopes Zn64, Zn66, and Zn68 indicate the values £« . 0.25, 
0.23, and 0.21, respectively. Taking into account the 
isotopic abundances in natural Zn (very approximately 
50% Zn64, 30% Zn66, and 20% Zn68) a reasonable 
average electromagnetic value is £^0.24. This is 
consistent with the magnitudes derived from the 
inelastic data on natural Zn which lie between £=0.23 
and £=0.24. I t is obvious from the above discussion 
that only rather rough comparisons can be made 
between the deformabilities determined by electro
magnetic and inelastic scattering methods. But it is 
fair to say that the £ magnitudes obtained from the 
two techniques are in satisfactory agreement and this 
gives additional support to our collective model treat
ment of these reactions. 

Natural Ni has been left for separate consideration 
since the derived values of £ seem to vary strongly with 
energy: £=0.28 at 12 MeV, £=0.23 at 14.3 MeV, and 
£=0.20 at 16.8 MeV. The Coulomb excitation value is 
£^0.20. We meet here a phenomenon which greatly 
complicates work of this type at low proton energies. 
The quantity of interest in this connection is the (p,n) 
threshold energy for each nucleus. When the incident 
proton energy is below or only just above the (p>n) 
threshold then, if a compound nucleus is formed, one 
of the main channels for compound nuclear decay (i.e., 

13 P. H. Stelson (private communication) and (to be published). 
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neutron emission) is greatly inhibited. Since there is not 
a large number of target nuclear levels below the (p,n) 
threshold, the compound nucleus will have an appre
ciable branching^ratio for decaying by proton emission 
to the ground; [state and low-lying levels of the target 
nucleus. Hence, we get compound elastic and inelastic 
proton reactions. Ni provides a good example of this, 
because the (p,n) threshold is approximately 9 MeV. 

In practice, it turns out that one needs to be about 5 
MeV above the neutron threshold before compound 
scattering effects can be neglected. Hence for Ti, Cr, 
Fe, and Zn the effect can be ignored at energies greater 
than 12 MeV. But for Ni, the incident proton energy 
must be greater than 14 MeV before we can safely use 
direct reaction theory alone. Thus, we interpret the 
apparent rapid increase of /3, as the energy is lowered, as 
due to the large contributions of compound nucleus 
processes to both elastic and inelastic proton scattering. 

To illustrate this point further we calculate the 
elastic and inelastic cross sections for Cr, Ni, and Zn at 
J E « 1 0 MeV and compare the results with the corre
sponding data of Hu et al. The (p,n) thresholds for these 
nuclei are 5.5, 9.3, and 7.8 MeV, respectively, so that at 
E « 1 0 MeV we expect some compound contamination 
in all three cases; least for Cr and most for Ni. Zn is an 
intermediate example. We fixed Vs from Eq. (45) to be 
49.8 MeV and set WD=10.6 MeV. The /? values for 
Cr, Ni, and Zn were taken to be 0.20, 0.20, and 0.24, 
respectively, as indicated by the higher energy data. 
Comparison of theory and experiment in Fig. 7 bears 
out the interpretation fairly well. Some compound 
contribution is evident for Cr. For Zn there is already a 
fairly sizeable amount of compound inelastic scattering 
at 10 MeV. Finally, the Ni results indicate large contri
butions of compound nucleus processes to both elastic 
and inelastic scattering cross sections. 

I t is difficult to calculate the contributions of the 
compound nuclear reactions. The most obvious method 
is to use the statistical nucleus assumption for the 
compound processes and so reduce the calculation to 
the Hauser-Feshbach model14 as modified for incident 
protons and emitted nucleons. But in order to do this 
one must know the spins, parities, and energies of all 
excited levels in the relevant nuclei below the incident 
proton energy. Information on these quantities for the 
required range of excitation energies is scarce and 
unreliable. 

D. Separated Isotopes 

From the viewpoint of this analysis, a very interesting 
kind of experiment is to measure the elastic and in
elastic differential cross sections for the separated 
isotopes of an element. Such measurements are now 
becoming available. Here we consider the data of 
Beurtey et al.16 on the separated isotopes Zn64, Zn66, and 
Zn68 at 11.1 MeV. Using the standard parameters of 
Table I and searching on the data as before yielded the 
results shown in Fig. 8. All the measured differential 
cross sections are fitted remarkably well. Very low 
values of %2 were obtained and the final numerical 
results for the automatically varied parameters Vs, 
W&, and fi are given in Table IV. 

We see that the values of W& all lie within the range 
14W.Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952). 
15 R. Beurtey, P. Catillon, R. Chaminade, H. Faraggi, A. 

Papineau, and J. Thirion, Nucl. Phys. 13, 397 (1959). 
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FIG. 8. Compar
ison of theory and 
experiment for the 
separated isotopes of 
Zn at 11.1 MeV. The 
fixed parameters are 
in Table I, final 
results for varied 
quantities in Table 
IV. 
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implied by Eq. (46); in fact, the result for Zn66 is the 
average value while the results for Zn64 and Zn68 

appear at the extremes of the range. For 11.1 MeV, 
Eq. (45) predicts a real potential well-depth of Vs=49.5 
d=l MeV. The value obtained for Zn64 is within this 
range while the other values are just outside it. In this 
type of experiment, where the incident proton energy 
and the Z numbers of the targets are fixed, the main 
source of potential parameter fluctuations may be 

a symmetry energy contribution proportional to 
(N—Z)/A. In the case given here it is easily verified 
that the values obtained for WD show a correlation of 
this type, while the results for Vs are erratic. Again, 
no definite conclusions can be drawn from results on 
such a limited range of nuclei. 

The values of 0 derived from the fitting of these 
experiments may be compared directly with the 
magnitudes obtained by electromagnetic methods. 
The B(E2) measurements give 0 - 0 . 2 5 for Zn64, 
0 - 0 . 2 3 for Zn66, and 0«O.21 for Zn68. The correspond
ing results from the inelastic proton scattering data are 
0=0 .27 ,0=0 .23 , and 0=0.20. Thus, the two techniques 
yield deformability parameters in very satisfactory 
agreement with each other. The inelastic result for Zn64 

seems to be a little high; but it should be recalled that 
this nucleus has a (p,n) threshold energy of 7.8 MeV, so 
that at 11.1-MeV incident proton energy we should 
expect a little compound nucleus contamination. 

TABLE IV. Theoretical results obtained by fitting the data of 
Beurtey et al. (reference 15) on separated isotopes of Zn at 
11.1 MeV. 

A (amu) Vs (MeV) WD (MeV) p <rA (mb) <rin
2+ (mb) 

64 
66 
68 

49.9 
50.8 
50.9 

9.0 
10.5 
12.2 

0.27 
0.23 
0.20 

850.6 
885.1 
913.2 

52.2 
34.8 
22.7 

The last experiment to be considered is on Ni60 at an 
incident proton energy of 30.8 MeV. The data were 
taken by Devins et al.16 Here we have a test of the 
possibility of extrapolating Eqs. (45) and (46) to higher 
energies. The standard parameters of Table I were 
employed once more and Vs, WD, and 0 were auto
matically varied by the search routine in order to obtain 
a fit to the data. The fit found for this case was not 
quite as good as the ones obtained for the lower energy 
differential cross sections. The results of the calculations 
and the experimental data are presented in Fig. 9. 
For the absorptive potential depth we obtained 
WD=\\.9 MeV. This indicates that the surface 
imaginary potential is in the range given by Eq. (46) 
and hence there is no marked tendency for WD to change 
with energy. The derived value for the real potential 
depth was Fs=44.9 MeV which may be compared with 
the values predicted by Eq. (45) at £ = 3 0 . 8 MeV, 
i.e., F,s=44zbl MeV. Hence, we may say that Eqs. (45) 
and (46) can be used with some confidence to predict 
potential parameters at least up to an incident proton 
energy of 30 MeV and for nuclei in this mass region. 

The fitting of the inelastic differential cross section 
yielded a deformation parameter of 0=0.14. This is 
considerably lower than the Coulomb excitation value 
for Ni60, which is 0«O.2O. However, the errors quoted 
for the inelastic measurements are rather large. Also we 

16 D. W. Devins, H. H. Forster, and G. G. Gigas, Nucl. Phys. 
35, 617 (1962). 
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FIG. 9. Comparison of theory and experiment for Ni60 at 30.8 
MeV. Table I gives the fixed model parameters. See text for 
discussion of results for the varied parameters. 

see that the experimental and theoretical 2+ reaction 
cross sections diverge appreciably at forward angles. 
The theoretical results for the elastic scattering do not 
reproduce the experimental data very well at large 
scattering angles. This may indicate the necessity of 
including some volume absorption in the model at 
higher energies. 

4. SUMMARY AND CONCLUSIONS 

We have shown in this paper that the strong coupling 
theory of direct interactions, with inclusion of spin-orbit 
coupling, is able to give a unified treatment of the 
elastic scattering of protons and the inelastic scattering 
leading to low-lying collective states. However, great 
care is necessary in the interpretation of the experi
mental data and the theoretical results when the 
incident proton energy is less than about 5 MeV 
above the nuclear (p,n) threshold energy. If a fixed set 
of geometrical optical parameters and a fixed spin-orbit 
strength are used, then the elastic scattering distribu
tions can be reproduced excellently for a range of 
medium-mass nuclei, while the theoretical 2+ differen
tial cross sections are in good qualitative agreement 
with the available data. 

The data analysis determines the assumed surface 
absorption potential depth only within about 15% of 
the value WD= 10.6 MeV and there are considerable 
individual fluctuations. The real Saxon potential depth 
at each energy has been found to be within 2% of the 
values represented by Eq. (45) and this formula can be 

extrapolated to higher energies. But at energies greater 
than 20 MeV, it may be necessary to introduce some 
volume absorption into the model. This remains to be 
investigated when more extensive higher energy experi
mental measurements become available. 

I t has proved possible to derive, from the inelastic 
scattering data, fairly good values for the nuclear 
distortion parameters (3. For values of /3 greater than 
about /3=0.2, it seems necessary to use the coupled 
equations approach rather than the DWBA formalism, 
although this latter theory is capable of giving good 
fits to the inelastic angular distribution shapes. When 
/3>0.2, the presence of nuclear deformability begins to 
affect the elastic scattering and it is not possible to 
take account of this easily within the framework of the 
DWBA calculations. Also, for a given value of /3, the 
DWBA treatment overestimates the magnitude of the 
inelastic cross section. 

The values of /3 obtained in this work are, in general, 
consistent with those derived by electromagnetic 
methods, i.e., by Coulomb excitation and lifetime meas
urements. The /3's obtained from B(E2) determinations 
were found by assuming a quadrupole distorted, sharp 
edge charge distribution with an average radius given 
by RC=\.2A1IZ. This is a rather crude model, but it is 
adequate for the rough comparisons discussed in the 
paper. On the whole, the agreement between the 
electromagnetic deformabilities and those found from 
inelastic scattering indicates that the collective model 
considerations of Sec. 2 represent a valid way to 
compute 2+ reaction cross sections. In addition, the 
preliminary analysis of the data discussed in Sec. 3A 
showed that the parameters of the coupling form factors 
should be closely the same as the corresponding 
parameters of the real Saxon potential. This is predicted 
by the simple vibrational model calculations of Sec. 2A. 
Hence, we have evidence for the validity of the collec
tive model. 

In order to clear up various ambiguities in the 
calculations, it is necessary for the proton experiments 
to be extended to higher energies and performed for 
a much wider range of even-even nuclei, preferably 
separated isotopes. Data on 3~ angular distributions, as 
well as on the elastic and 2+ differential cross sections, 
would be desirable. 

In conclusion, we may say that the generalized optical 
model appears to be a useful way of correlating experi
mental data and studying the properties of nuclear 
collective states. Further applications of the model 
have been discussed elsewhere.17,18 
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