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STEVEN WEINBERG! 

Department of Physics, University of California, Berkeley, California 
(Received 13 November 1962) 

Any nonrelativistic theory may be rewritten by introducing fictitious elementary particles with arbitrary 
properties. No physical predictions are affected, provided that the interaction part of the Hamiltonian is 
correspondingly modified. The fictitious elementary particle provides a good representation of a real com­
posite particle if the modified interaction is sufficiently weakened for perturbation theory to work. It corre­
sponds to a truly elementary particle with infinite bare mass, and hence with Z = 0. We show how the latter 
condition yields a sum rule for the coupling of a composite particle to its constituents as a function of energy. 
The sum rule can be used to evaluate such coupling constants as that for the proton-electron-hydrogen ver­
tex. The mathematical method used is that developed by Schmidt for the study of the Fredholm equation, 
and corresponds to the extraction of a single factor from the full Fredholm determinant. 

I. INTRODUCTION 

THIS is the first of a series of articles, in which we 
hope to develop a method for the calculation of 

strong interaction processes. 
In this first paper we show how it is possible to intro­

duce fictitious elementary particles with arbitrary 
properties ("quasi-particles") into any nonrelativistic 
theory without changing any physical predictions. In 
order to accomplish this the interaction among the 
original, truly elementary, particles must be modified 
according to well-defined rules. 

In the second and third papers we will show that the 
introduction of quasi-particles in nonrelativistic theories 
can always be managed in such a way that the modified 
interaction is weaker than the original one, and in fact 
weak enough so that perturbation theory works. The 
quasi-particles must be chosen to correspond to real 
bound particles, or to resonances, or, more generally, 
to Regge poles. 

In the fourth paper we will extend these ideas to the 
fully relativistic case.1 Here we shall see that the quasi-
particles can provide the force that makes their intro­
duction a necessity. 

In further papers we hope to be able to offer a proof 
(or at least an argument) that the introduction of quasi-
particles in relativistic theories may render the full 
series of Feynman diagrams convergent. And ultimately, 
we hope to start a program of numerical calculation. 

There are some special problems which are discussed 
in detail in this paper. A theory modified by the intro­
duction of elementary particles is actually physically 
equivalent to the original theory only if their bare 
energy is much larger than any energy explored by 
experiment. Or to put it another way, the quasi-
particles must be introduced with infinite unrenormal-
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1 This has already been discussed in a preliminary way by the 

author in the Proceedings of the 1962 High-Energy Conference at 
CERN (CERN, Geneva, 1962), p. 683. A similar but perhaps in-
equivalent approach to the problem of introducing composite 
particle fields into a Lagrangian has been developed by A. Salam, 
Nuovo Cimento 25, 224 (1962). 

ized mass.2 If there is a stable bound state which we 
wish to represent by introducing a quasi-particle, then 
(as shown in Sec. IV) its infinite bare mass implies that 
the fictitious elementary particle must have renormal-
ization factor Z equal to zero. In fact, many authors3 

have proposed Z=0 as a way of distinguishing bound 
from elementary particles. But what we prove here is 
that this is the only possible way of making this 
distinction.4 

This does not quite answer the question, of whether 
experiment can decide what sort of elementary particles 
exist, since we do not show whether experiment can tell 
whether a particle has infinite bare mass, or if Z = 0 . 
But we are able to show (in Sec. V) that the condition 
Z = 0 provides a sum rule5 for the coupling of the particle 
to its presumed constituents at various energies. This 
sum rule, for weakly bound systems, determines the 
coupling constant of the particle. An elementary 
particle (with 0 < Z < 1 ) would have a smaller coupling 
constant.6 

2 This point has also been made by M. Gell-Mann and F. 
Zachariasen, Phys. Rev. 124, 953 (1961). However, they work in 
the dispersion formalism, so in their case the equivalence of com­
posite and elementary particle theories is built in. In their work 
the bare mass has to be defined in a manner very different from 
our Eq. (3); also, the infinity of the bare mass is for them a 
definition and not a theorem. 

3 J. C. Howard and B. Jouvet, Nuovo Cimento 18, 466 (1960); 
M. J. Vaughan, R. Aaron, and R. D. Amado, Phys. Rev. 124, 
1258 (1961); R. Acharya (to be published); A. Salam, reference 1. 
Doubtless there are many other references for Z = 0 of which the 
author is unaware. 

4 A similar equivalence theorem has been proven by Vaughan, 
Aaron, and Amado, reference 3, for the special case where V is a 
separable potential, and apparently also in a more general case. 
We present the proof here in our own language for reasons of 
clarity and completeness, and also to facilitate the extension of 
these methods to resonances and to multiparticle processes. We 
want to stress that our primary interest throughout lies not in 
questions of principle about the definition of "elementary," but in 
exploiting the fact that the introduction of fictitious elementary 
particles into a theory will change the interaction of the theory 
and make perturbation theory work. 

5 This sum rule is equivalent to Eq. (20) of Vaughan, Aaron, 
and Amado, reference 3, and also to a nonrelativistic version of a 
formula of Acharya, reference 3. We have attempted to express it 
here in a more useful form. 

6 This upper limit on coupling constants is of the same sort as 
that discovered bv M. Ruderman and S. Gasiorowicz, Nuovo 
Cimento 8, 861 (1958). See also M. Ruderman, Phys. Rev. 127, 
312 (1962). 
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The general mathematical method employed in 
introducing quasi-particles is based on one of the classic 
techniques for solving linear integral equations, the 
Schmidt method.7 We provide in the Appendix a 
general treatment of the Schmidt method, and we ex­
plain its relation to the Fredholm approach. 

II. SYNTHETIC ELEMENTARY PARTICLES 

Suppose there are no elementary particles in a 
particular channel described by a given Hamiltonian H. 
We shall show how to construct a new Hamiltonian H 
which does involve an elementary particle, but which 
yields precisely the same physical predictions as does 
the original H. 

The original H is split as usual into an unperturbed 
part Ho and an interaction V. The continuum eigen-
states of Ho are labeled by their energy E, and perhaps 
some discrete quantum numbers n, so that 

Ho\E,n)=E\E,n), ( £ > 0 ) (1) 

{E',n'\E,n)^hn,nh{E'-E). (2) 

The assumption that there are no elementary particles 
in H just tells us that H0 has no discrete eigenstates, so 
that the \E,n) form a complete set. [There is no need 
to be too explicit as to the constitution of these states; 
a two body system with definite / may be kept in mind 
as a typical case.] 

The reconstructed Hamiltonian H will also be split 
into a new unperturbed part Ho and a new interaction 
V. The unperturbed part will again have a spectrum of 
orthonormal continuum eigenstates, 

Ro\E,n)=E\E,n), 

but it will also have a discrete elementary particle 
eigenstate (0), 

Ho|0> = E0 |0>, (3) 

<E»|0>=0, (4) 

<0|0>=1. (5) 

Together, 10) and the | E,n) form a complete set span­
ning a new Hilbert space. (If our notation were im­
peccable, we should have to distinguish the continuum 
eigenstates of Ho by boldface type, since the Hilbert 
space on which H acts is larger than the original one. 
But no confusion should arise.) 

In order that H should be physically equivalent to H, 
the new interaction V must be specified in terms of V 
according to some rules. But the specification is not 
unique; it depends on the choice of "bare vertices" 
|T) and (f | , which can be any linear combinations of 
the continuum states | E,n) and (E,n |. The rules for 
constructing the matrix elements of the new interaction 

7 See, e.g., R. Courant and D. Hilbert, Methods of Mathematical 
Physics (Interscience Publishers, Inc., New York, 1953), 1st 
English ed., Vol. I, p. 155. The original reference quoted by 
Courant and Hilbert is: E, Schmidt, Math. Ann. 64, 161 (1907). 

V are: 

< £ V | V | £ » ) = (EW| V| En)- Un.(E')Un(E), (6) 

( £ V | V|0>= (-NEtfi*Un>(E'\ (7) 

(0 |V|E»>=(-ATEo) 1 / 2 t7 n (£) , (8) 

( 0 | V | 0 > - - £ o ( l - A O , (9) 
where 

Un(E) = (En\V\T\ (10) 

Un(E) = (Y\V\En\ (11) 
and 

iv=i—<r|F|r>. (12) 

This prescription for V may be written more concisely 
if we define a "reduced'' interaction (acting in the 
original Hilbert space): 

F i ^ F - F | r ) ( r | F . (13) 

Then (6)-(9) may be written 

<EV | V |En)= (EW\ Vx| En), (14) 

< £ V | V | 0 > = ( - E 0 / i V ) 1 / 2 < £ V | 7 i | r ) , (15) 

<0| V|E»>= ( -£o/ i \0 1 / 2 <r | V1\En\ (16) 

< 0 | V | 0 > = ( - £ 0 / i V ) < r | 7 1 | r > . (17) 

But it would be a mistake to summarize our prescription 
by saying simply that 

V = F i , 

\0)=(-E0/Ny>\T), (0\ = (-E0/Ny'HT\, 

for V and V\ act in different Hilbert spaces. In partic­
ular, |0) is orthogonal to all continuum states \En), 
whereas \T) certainly is not. 

With (6)-(9), or equivalently with (14)-(17), we can 
now prove that H yields precisely the same predictions 
as does H for all processes occurring at an energy such 
that 

\W\«\Eo\. 

The two theories become entirely equivalent2 only in 
the limit as \Eo\—> °°. (In Sec. IV we show that in this 
limit the renormalization factor Z of a stable elementary 
particle approaches zero.3) The condition that |Eo| be 
infinite is the sole memory retained by the new Hamil­
tonian that there really is not any elementary particle 
in the channel. Physical consequences of this condition 
will be discussed in Sec. V. 

Before closing this section, we pause to make a 
remark which will become important in future articles 
of this series. There is no compulsion to choose the "in­
coming bare vertex" (F | as the adjoint of |T), nor to 
choose either or both as constants. (In fact, in our next 
paper we shall show that the "ideal" choice of | T) and 
(F | is such that they are not adjoints of each other, and 
such that they both depend on the energy.) I t follows 
then that the new interaction V may be energy depend­
ent, and may also be non-Hermitian. But physical 
predictions are still the same in the two theories, 
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III. EQUIVALENCE THEOREM4 

All physical predictions of the original Hamiltonian 
H can be derived from an operator T(W), defined for 
all complex energies W by the Lippmann-Schwinger 
integral equation 

T(W)=V+VIW-H0]-1T(W). (18) 

For example, the S matrix is 

Sn>n(E) = «„'»- 2m(En' | T(E+ie) \ En) (19) 

and the stable one-particle states have energies at the 
poles of matrix elements of T(W) for negative real W. 

Likewise, the physical predictions of the reconstruc­
ted Hamiltonian H can be derived in the same way from 
an operator T(W), defined by 

T(W) = \+\ZW-Eo]~1T(W). (20) 

It is our task now to show that if V is chosen according 
to the prescriptions (14)-(17), then in the limit as 
EQ—> zb oo 

(EV | T(W)|En)-» <£'»'\T(W)\En). 

To do this we shall have to rewrite the formulas for 
both T(W) and TQV). 

A. Original Theory 

Suppose that the "reduced" interaction V\ defined 
by Eq. (13) were the whole interaction. Then, the 
physical T operator would not be T(W), but Ti(W), 
defined by 

T1(W)=V1+V£W-Ho]-1Ti(W), (21) 

or less concisely 

T1(W)=V1+Z fdE 7i|E,n>(PT-E)-1(£,»|ri(W0. 
n J 

(22) 
It is the key point of the classic Schmidt method7 of 
solving integral equations that the solution of an 
equation like (18) can be obtained immediately if we 
know the solution of the reduced equation (21). A little 
algebra [see Appendix, (A14) and (A15)] shows that 
the answer is 

T(W) = T1(W)+N-2T1(W)\T)A(W)(T\T1(W), (23) 

where the "propagator" is 

A W = D - / W ] - \ (24) 

J(W)==N-2(T\V1[W--HoyiTi(W)\T) (25) 

^l-N^+N-^TlT^W)^). (26) 

[The general Schmidt method is described in detail 
in the Appendix, where we also discuss its connection 
with the more familiar Fredholm (or N/D) approach. 
We just remark in passing here that if D(W) and Di(W) 
are the Fredholm determinants for the integral equa­

tions for T(W) [Eq. (18)] and TX{W) [Eq. (21)], 
respectively, then 

D(W) = D1(W)A~l(W). (27) 

So the Schmidt method extracts one factor from the 
full Fredholm determinant. In our next paper we shall 
show that the usual Fredholm method just corresponds 
to a particular choice of bare vertices.] 

B. New Theory 

We can expand Eq. (20) in intermediate states [as 
we did to get (22)], but the sum will here include the 
discrete elementary particle state |0), as well as the 
continuum states \E,n). In order to isolate the effects 
of the elementary particle, let us define a "proper" 
T-operator Ti(TF) as what T(W) would be if the 
elementary particle were omitted in sums over inter­
mediate states. That is, 

Ti(W0 = V + E dEVlE^iW-Ey^nlT^W). 
n J 

(28) 

It is well known8 that T(W) can be expressed in terms 
of Ti(W) in a simple way: 

T(W)^T1(W)+T1(W)\0)A(W)(0\T1(W), (29) 

A (W) = [W- E0- H (W)J-\ (30) 

n(TT) = <0|T1(PT)|0>. (31) 

The physical significance of these equations is apparent. 
In Eq. (29), (0| Ti is the complete vertex that converts 
the incoming particles into a virtual elementary par­
ticle ; A is the complete elementary particle propagator; 
Ti 10) is the complete final vertex; and Ti is the sum of 
graphs that do not arise from one-elementary-particle 
exchange. Also, II is the proper self-energy insertion, 
and (31) may be recognized as one of Dyson's equations. 

C. Comparison 

According to the prescriptions (14)-(17), all matrix 
elements of V are equal to corresponding matrix ele­
ments of Vi, if we perform the substitutions 

|o)->(-£o/^)^|r), 
<o|^(-£0/i\01/2(r|. 

By taking matrix elements of (22) and (28), we see that 
the same equalities must hold between corresponding 
matrix elements of Tx (W) and 7\ (W): 

<E V | Ti (IF) | En) = {E'n' \ Tx (W) \ En), (32) 

8 See, e.g., B. Zumino, in Lectures on Field Theory, edited by 
E. R. Caianiello (Academic Press Inc., New York, 1961), p. 40; 
G. C. Wick, Rev. Mod. Phys. 27, 339 (1955). Wick treats the case 
where there actually is a stable one-particle state, and Zumino 
discusses unstable particles. The algebra is the same in both cases, 
and actually has nothing to do with the existence of real particles. 
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<0|Ti(W)|E»>= (-E„/i\0l'2<r|ri(TF)|-E#>, (S3) 

(En\T1(W)\0)= (-E*/Nyi*(En\Tx(W)\T), (34) 

(0 |T 1 (TF) |0)=(-£ 0 / iV)( r | r 1 (^) | r} . (35) 

It follows from (29) and (32), (33), (34) that the 
continuum matrix elements of the operator T(W) are 

(E'n' | T(W) | En)= (E'n' | TX(W) | En) 

- (E»/N)A(W)(EW | TX(W) | T)(r | ri(B01£»>, (36) 

and from (31), (35), and (26) we see that the self-energy 
part is 

n(W)=-E0{l-N+NJ(W)} (37) 

so that (30) gives the propagator as 

A (W) = - Eo-W-^l -J(W)- (W/EoN)T-1. (38) 

Combining (36) and (38), we get 

(E'n' | T(W) | En)= (E'n' | 2^(1*0 | En) 
+N-2£i-J(W)-(W/EaN)lr^E'n'\T1(W)\T) 

X<T\TiQV)\En). (39) 

This is to be compared with the continuum matrix 
elements of T(W) in the original theory, which are 
given by (23) and (24) as 

(E'n' | T(W) | En)= (E'n' | Tt(W) \ En) 
+N-i[l-J(W)l-1(E'n' | Ti(W) | T) 

X(T\Ti(W)\En). (40) 

Clearly, (39) and (40) are equal for energies W such 
that | W| is sufficiently small in comparison with \EQ\. 

Hence, the original theory and the theory modified 
by the introduction of the quasi-particle can only be 
distinguished by experiments at high energy. Only in 
the limit \E0\ —» <*> are the two theories entirely 
equivalent. 

IV. REAL PARTICLES 

Now we know how to put an elementary particle into 
a theory in which it originally did not appear. Indeed, 
we can put in as many as we like, with arbitrary bare 
vertices T, without affecting any physical predictions. 
But so far, we have not connected this purely mathe­
matical trickery with the existence of real bound states 
and resonances. We now consider how we should choose 
these synthetic elementary particles to best represent 
the real ones. 

Suppose that there is a physical bound state with 
energy — B<0. It must correspond to a pole of T(W) 
[defined by (18)]] at W= — B. Let us think of how such 
a pole could arise. If V were sufficiently weak, the 
integral equation for T(W) could be solved by perturba­
tion theory, which gives the Neumann series (i.e., the 
Born series) 

But no term in this series has any poles. Hence the 
bound state can only exist if V is too strong for (41) to 
converge, at least for W in some neighborhood of — B. 

It was just to handle such integral equations that the 
Schmidt method7 was developed. The trick is to try to 
approximate the interaction V by the separable inter­
action 

VS=V\T)(T\V. (42) 

If Vs is a good enough approximant to V, then the 
reduced interaction Vi, given by (13) as V— Vs, will be 
weak enough so that the corresponding T-operator 
Ti(W) will not have any poles. 

The method for accomplishing this will be discussed 
in the next paper of this series. For the present, we will 
just assume that it has been done, and that the reduced 
T-operator Ti(W) does not have a pole at —B. But 
then the only place that the pole can arise in T(W) is in 
the propagator A(W) in Eq. (23). So the binding energy 
is to be found as the root of the equation 

/ ( - £ ) = ! . (43) 

This appears paradoxically as if the physical binding 
energy depended upon the arbitrary separable potential 
Vs* In fact, Vs is not entirely arbitrary, since it must 
approximate V well enough so that V\ is too weak to 
give T\ a pole. But this still allows a range of possible 
choices of Vs- We are forced to the surprising conclusion 
that, however, we choose Vs within this range, the value 
of B obtained from (43) will be the same I 

The Schmidt method allows us to compute not only 
the binding energy but also the wave function of any 
bound state. To see this, let us consider how T(W) 
behaves as W —> — B. If the propagator A(W) has a 
pole at W=—B with residue &, then from (23) we see 
that as W -» -B 

dN-2T!(-B) I r ) ( r I f I ( - J B ) 
r(wo-» - ^ • (44) 

W+B 

But we can write a general formal solution of (18) for 
T(W): 

T(W) = [_W-H<)J_W-H~YlV. (45) 

If the bound state |S3) is defined by 

H\S8)=~B\^8\ 

then (45) shows that as W-> — B 

ZHo+Bl\Sb)(%\V 

(46) 

(47) 

T(W)-

T(W)=v+viw-H0y
iv+ • (41) 

W+B 

iHo+BimmiHo+B^ 

W+B 
(48) 
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I t follows upon comparison of (44) with (48) that 

| © ) = - dWN-1ZHo+Blr1T1(-B)\T), (49) 

(SB | = - d^N-^T] T1(-B)ZH0+By-\ (50) 

(We are making a convenient choice of phase for |S3). 
If ( r | is chosen as the adjoint, or minus the adjoint, 
of |T), then dl/2 must be, respectively, real or pure 
imaginary, and so the propagator has, respectively, 
positive or negative residue.) A more explicit formula 
for the wave function is 

a i /2#- i 
<E»|S>= (En\ Tx{-B) |T). (51) 

E+B 

For completeness, we will give some corresponding 
results for the case where the stable particle 35 is really 
elementary. Here, instead of reducing the potential V, 
we assume from the beginning that it is too weak to 
give a bound state pole in the "proper" operator 
Ti(W). Then we see from (29) that the pole can only 
arise in the propagator A (W), and so 

B+E0+U(-B) = 0. (52) 

This does not allow us to calculate the energy — B, but 
rather provides a relation between it and the un-
renormalized energy EQ. 

The physical particle wave function can be calculated 
here by the same method as in the nonelementary case. 
We obtain 

! » > = - - — T i ( - Z ? ) 10), (53) 
H o + 5 

< » | = _ ^ | T l ( - B ) - , (54) 
H 0 + £ 

where Z is the residue of the pole of A(W) at W= — B. 
[ I t is apparent from (53) and (54) that Z1/2 is real, so 
that Z>0.~] The continuum part of the wave function 
is then 

- Z 1 ' 2 

(En\%) = < E » | T i ( - £ ) | 0 ) . (55) 
E+B 

However, there is now also a component along the 
discrete bare elementary particle state 

< 0 | 8> = ^ ^ - ( 0 | T 1 ( - J B ) | 0 > . (56) 
Eo+B 

Using (31) and (52), we get 

(0 |S3)-Z1 /2 (57) 

which verifies that Z [defined here as the residue of 
A(W) at W=— B~] is, in fact, just the conventional 
renormalization constant. 

If the interaction V in the elementary particle theory 
is chosen according to our rules, then (37) tells us that 

the condition (52) determining the energy —Bol the 
particle may be written 

J(-B) = 1+(B/EQN). (58) 

Also, the wave function (55) is 

(-EQZ/Nyv 
< £ * ! » ) = (En\ Tx(-B) | T). (59) 

E+B 

Furthermore, (38) gives the residue of A (W) as 

Z = - (d/EoN)ll- (d/EoN)^1. (60) 

To get (60), we used the definition of d as the residue 
of A(W), which gives 

-S- '=(SFWL, <61) 

Combining (59) and (60), we see that the wave function 
of the physical elementary particle is 

3 1 / 2 ^ - 1 

<£»!»>= = 
(E+B)tl-(d/EoN)J!* 

x<£»|r i(-£) | r>. (62) 

As \Eo\—-> °°, Eq. (58) for B becomes the same as 
Eq. (43) in the nonelementary case, and Eq. (63) for 
the wave function becomes the same as Eq. (51). This 
is only to be expected from the equivalence theorem 
proved in Sec. I l l ; since the energy and wave function 
of a stable one-particle state are observables, they are 
equal in the original theory and in the theory modified 
by the introduction of a quasi-particle with infinite 
bare mass. 

A more significant result is obtained from (60): In 
the limit as |£ 0 |—> 0° , the renormalization constant 
Z —> 0. (It should be recalled that N and % are defined 
by the original Hamiltonian H, and by our choice of 
|T) and (Tj ; they do not depend upon EQ.) More will 
be said about the condition Z = 0 in the next section. 

Other types of real particles, such as Regge poles and 
resonances, will be treated in our next paper. 

V. SIGNIFICANCE OF Z=Q 

We have seen that Z1/2 is the matrix element between 
a physical elementary particle state and the correspond­
ing bare state. I t follows then that 

0 < Z < 1 . (63) 

I t has been often remarked that this inequality sets an 
upper limit6 on the coupling constant of the particle to 
any set of constituents, and that this limit is attained 
when Z = 0 , i.e., when the particle is actually not 
elementary. We offer here a very simple derivation of 
this result and give a convenient expression for the 
maximum coupling constant. 

The physical one-particle state |53) obeys the 
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Schrodinger equation (46), which may be written 

\%)=-ZHo+BFVm. (64) 

Therefore, the continuum part of its wave function is 

(E,n\®)= -Ll/(E+B)jE,n\Vm. (65) 

But since |33) is normalized, we must have 

\ = Z+(dEY.\(E,n\m\ 
J n 

(66) 

where Z is a sum over bare "elementary particle" 
states \/3) 

Z = E 3 l « > l 2 . (67). 

In particular, if there is one elementary particle state 
|0) then Z is given by (57), and if there are no ele­
mentary particles in H then Z = 0 . Combining (65) and 
(66) gives 

1 -Z= fdEZ 
J n 

\(E,n\V\m 

E+B 
(68) 

Imagine for a moment that the state |93) was not 
stable, but instead was the physical " in" state corre­
sponding to a bare state of energy E>0. Then if there 
were a resonance a t E, the decay matrix element of the 
resonance into | E,n) would be 

Tn(E) = (E,n\Vmy 

and, therefore, the total decay rate of the 33 particle 
would be 

aJ(£) = 2 x L M K ^ | F | S 3 ) | 2 . (69) 

(The density-of-states factor is included in the normal­
ization of | E,n), which has the dimensions of E~lf2.) We 
see then that (68) just tells us that5 

1 /•« 
L - Z = -

2ir J o 
dE-

co(£) 

(E+BY 
(70) 

Clearly co (E) is proportional to some effective coupling 
parameter, and so (70) sets an upper bound on this 
parameter6; the maximum is attained when Z = 0 . 

In the limit as E —» 0, a> (E) will always have the 
behavior 

C O ( E ) 9 ^ A / £ (71) 

provided that there is a two-body 5-wave state into 
which a very low energy 33 particle could decay. If the 
binding energy B of the physical bound state is suffi­
ciently small, than (71) can be used over the whole 
range of integration in (70), and we get 

\~Z^\AB-l'\ (72) 

In other words, for particles which are only weakly 
bound, the decay rate the particle would have if it had 
energy E>0 (instead of — B<0) is, for small E, 

For example, if the deuteron were slightly heavier it 
could decay by the mode 

d—•> p+n. 

The effective p-n-d interaction Lagrangian may be 
written 

£eH^Gpnc$pys>yp}pnc<PdfX. (74) 

(Here ^n
c is the charge conjugate of the neutron field, 

and has opposite parity to \pp.) Then, if the deuteron 
mass were mv-\-ynn-\-E, with E sufficiently small, the 
deuteron decav rate would be 

\Gpnd\
2 (mpmny

12 

« ( £ ) = - (2E)1'2. 
T (mp+mn) 

Comparing with (73), we see that9 

|Gi J 2 

5/2 

= {1-Z,)- — ( — ) 
4 T (mpmnfi* \ 2 

= 0 .19(1-Z d ) . 

(75) 

(76) 

(77) 

If | GPnd 12/47r were less than 0.19 we would conclude 
that the deuteron is an elementary particle, while if 
\Gpnd\2/4n were greater than 0.19, we should have to 
call it a ghost. 

Similarly, the effective interaction among the proton, 
electron, and Is hydrogen atom may be written for 
F = l as in (74), or for 2?=0: 

£ett==GPeH)f'pyb\l/eC<PE.' (78) 

The "decay" rate is given in either hyperfine state by 
replacing tnp, mn, and Gpnd in (75) by wp, me, and Gpen. 
Using (73) gives, then, (since me<^jnp) 

spen\2 mp /Bn\112 

- = ( 1 - Z H ) — - ( — ) 
W e

3 / 2 \ 2 / 

= 6 .6 (1 -Z H ) . 

4TT 

c o ( E ) ^ 4 ( l - Z ) ( £ ^ ) 1 / 2 . (73) 

(79) 

(80) 

I t can easily be shown that 0.19 is just the value of 
|G|2/47r needed to get the right scattering length in 
triplet n-p scattering. Aside from this, the presence of 
long-range forces in the hydrogen atom, and of anoma­
lous thresholds in both examples, makes it doubtful 
whether these formulas for ]G]2/47r have any physical 
utility. If they do, then the place to measure one-deu-
teron-exchange or one-hydrogen atom-exchange would 
be in backward antineutron-proton or positron-proton 
scattering. The residue of the pole in the u channel is 
proportional to | G \ 2/4x. 

9 This type of formula for coupling constants can be derived 
in a more familiar manner by noting that the binding energy 
determines the behavior of the exponential tail of a bound-state 
wave function. For very small binding energy, the normalization 
integral is dominated by the exponential tail, so its coefficient 
(which is the coupling constant) is determined by the binding 
energy. A calculation of the S-A-T coupling has been carried out 
on these lines by Y. Nambu and J. J. Sakurai, Phys. Rev. Letters 
6, 377 (1961). We have applied (73) to S -> A+TT and very easily 
get their coupling, with a needed factor of 2 correctly supplied. 
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APPENDIX: THE SCHMIDT METHOD AND THE 
FREDHOLM METHOD 

Any linear integral equation with kernel K can be 
solved if we know the resolvent F, defined by 

F=K+KF. (Al) 

Let us consider instead of (Al) another integral 
equation 

F1=K1+K1F1 (A2) 

whose kernel Ki differs from K by a sum of a finite 
number of separable (or "degenerate") kernels: 

K!=K-j:s\sXs\ (A3) 

The vectors \s), \s) need not be orthonormal, and 
certainly do not form a complete set. Also, since we have 
not said any thing about the Hermiticity properties of K, 
the vectors (s | may or may not be related to the adjoints 
of the | s). 

We want to show first how to solve (Al) in terms of 
(A2). Using (A3), Eq. (Al) may be written 

F=K1+Zs\s)(s\(l+F)+K1F. (A4) 

If we regard the first two terms on the right-hand side 
as known, then this is a linear integral equation for F 
with kernel K±, and can therefore be solved using Fi: 

F=F1+j:s(l+F1)\s)(s\(l+F). (A5) 

In order to eliminate the unknown (s\ (l-\-F) we take 
the matrix element of (A5) with (s | : 

Ei D8.«-<*l (l+^i) I/>]<<! (1+/?) = <«I (l+^i). (A6) 

If we define a matrix Ast by 

( A - % = S . « - < * | ( l + F , ) | / > , (A7) 

then (A5) reads 

i7=/?i+E.i(i+*?i)l*>A.«<*l (1+Fi ) . (A8) 

Equations (A7) and (A8) solve the problem of obtaining 
F if we know Fi. 

In particular, we can write the Lippmann-Schwinger 
equation (18) in the form (Al) if we define 

F(W) = T(W)£W-Ho}-1, (A9) 

K(W) = V[W-H ^ . (A10) 

Also, the reduced L-S equation (21) may be written in 

the form (A2) if we define 

F1(W)^T1(W)lW-H0]-\ (Al l ) 

K1(W) = V1ZW-H0']-1 

= K(W)-V\T)(T\VOV-H0J-1 (A12) 

= K(W)-N-W1\V)(T\K1(W). (A13) 

Then (A8) tells us that 

T{W) = T1(W)+N-i[_l+F1(W)2V11 T)A(W) 

X{T\K1(W)ll+F1(W)XW-H0'] 

^T1(W)+N-2T1(W)\T)A(W)(T\Tl(W), (A14) 

where (A7) gives the propagator as 

A(W) = £l-J(W)l-\ (A15) 
and 

J(W) = N-%T\K1(W)ll+F1(W)2V1\T) 

= N~2(T| Vi[W-HoJr^i(W)\T) 

= N-*(?\{T1(W)-V1}\T) 

= l - N-t+NSr I Tt (W) | r). 

To get the last line, we use the fact that 

(T\V1\T) = N(r\V\T) = N(l-N). 

This verifies the formulas (23)-(26). 
We end by describing the relation between the 

Fredholm and Schmidt methods. The Fredholm deter­
minants for any kernels K or Ki are given by 

TrF[X]<ftj, (A16) 

Z?!=exp - f TrFipOdX , (A17) 

where we define F\X] and Fi[V| by inserting a X into 
(Al) and (A2): 

FQQ=K+\KF[\1, 

F1[\l=K1+\K1FJ[>r\. 

(A18) 

(A19) 

The relation between ^[X] and Fi[\] is given, according 
to (A8), by 

+ L ^ ( l + X ^ i M ) k ) A s , [ X ] ^ | (1+XFxO]), (A20) 

(A-x[}]).«=a.«-X<S| (l+XFx[X]) | / ) . (A21) 

Then the traces are related by 

TrF[X] = TrFx[X] 

+Zst Ast&Jil (1+X/^CX])2!*). (A22) 

To evaluate the second term, let us differentiate (A 19) 
with respect to X. We get 
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The solution of this integral equation for i 7 / is 

F1 ' [X]=F1
2[X]. 

Using this in (A21) gives 

•d 
(-A-1X]) =• -(sKi+xFxCxpio, 

and so (A22) may be written 

d 
TrF[>] = Tri<\[X]+—In DetA[X]. (A23) 

d\ 

Using (A23) with (A16) and (A17), we have finally 

D=Dl/BetA. (A24) 

Equation (27) is a special case of this general relation. 
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Because recent data on K2° —• 7r+7r~7r° are at variance with the AT = 1/2 rule while the data on K+ —> 3-rr 
are not, the charge space kinematics of K —> 3w are re-examined. Matrix elements are assumed to be at most 
linearly dependent on the usual variables Si, and it follows that only four of the seven possible 3ir states can 
contribute to the decay. Of these states, two have T= 1, the third has T = 2 and the fourth T—3. The possible 
values of AT are | , §, f, f, and accordingly, the most general interaction Hamiltonian is written as the sum 
of four parts Hn/2, each corresponding to AT — n/2 (» = 1, 3, 5, 7). It is then possible to express the matrix 
elements, rates and spectra of all the modes of K —» 3ir in terms of the reduced matrix elements of Hnj2 
between the four 3x states and the K meson. The analysis reveals that, provided the branching ratio of 
K20 —» 3ir° to K20 —* 7r+7r~7r0 is f, the present data are consistent with an interaction Hamiltonian containing 
only AT = § and §, and a 3ir final state of isotopic spin one. 

R 
INTRODUCTION 

ECENT experiments on K20 —> 7r+7r~7r° indicate 
that while the slope1 of the TT° spectrum may be 

consistent with the AT—\ rule,2 the rate of decay3 is 
not.4 In the case of K+ decay, however, the rates3 and 
spectra5,6 of the r and rr decay modes all seem to be 
consistent with the predictions of Ar=§ . 2 - 4 Because of 
this discrepancy, it seems appropriate to give a system-

* Work supported in part by U. S. Air Force and in part by the 
U. S. Atomic Energy Commission. 

t Present address: School of Physical Sciences, University of 
Sussex, Falmer, Brighton, England. 

J D . Luers, I. S. Mittra, W. J. Willis, and S. S. Yamamoto, 
Phys. Rev. Letters 7, 255 (1961); 7, 361 (1961). The first paper 
quotes all the data on the rates for the various modes of K —• 3-n-. 

2 S. Weinberg, Phys. Rev. Letters 4, 87, 585 (1960). 
3 G. Alexander, S. P. Almeida, and F. S. Crawford, Jr., Phys. 

Rev. Letters 9, 69 (1962). Footnote 20 of this reference gives the 
required phase-space factors. 

4 R. H. Dalitz, Rev. Mod. Phys. 31, 823 (1959). 
5 For <r(+ H ) see M. Ferro-Luzzi, D. H. Miller, J. J. Murray, 

A. H. Rosenfeld, and R. D. Tripp, Nuovo Cimento 22, 1087 
(1962); also L. T. Smith, D. J. Prowse, and D. H. Stork, Phys. 
Letters 2, 204 (1962); G. Goldhaber, S. Goldhaber, and T. 
O'Halloran (private communication). 

6 Our value of a (0 0 -f-) is calculated from the 119 events in 
the compilation of J. K. B^ggild, K. H. Hansen, J. E. Hooper, 
M. Scharff, and P. K. Aditya, Nuovo Cimento 19, 621 (1961). 

atic restatement of the charge space kinematics of 
Z " - > 3 7 T . 

Dalitz4 has shown that the r to T' branching ratio 
depends not on AT being J, but rather on the isotopic 
spin of the final state being equal to one; and that if the 
interaction Hamiltonian contains both A r = | and 
A r = f , the admixture of A r = f affects only the relative 
rates for K+ —> 3x and K20 —» Sir. Similarly, Weinberg's 
relation2 between the spectra of r and T is, as we shall 
show below, a consequence only of the final state having 
T— 1; and further, as regards the slopes, an admixture 
of A r = | will show up only in the slope of the 
K20 —»7r+7r~7r° spectrum. Hence, even if the AT— \ rule 
has to be abandoned, it may still be true that the final 
state of K —•> 3TT has isotopic spin equal to one. Our 
analysis shows that such a conclusion is, in fact, con­
sistent with the present data, provided the branching 
ratio of K2° —> irW toK2° —> 7r+7r~7r0 is assumed to be f. 

THE LINEAR APPROXIMATION 

We use the linear approximation, which appears to 
be in good agreement with the r and rf experimental 
data, and write the matrix element for 

K>—»7ri04-7r2
/3+7r3'

y, 


