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The perturbation expansion of the elastic electron-electron scattering amplitude is examined in the limit 
of very high energy and finite momentum transfer (nearly forward scattering). Several classes of graphs 
involving the exchange of an arbitrary number of virtual photons are summed into an exponential form, 
but no evidence is found that the exponent contains terms depending logarithmically upon the energy with 
coefficients varying with the momentum transfer. This leads to the conclusion that the photon is probably 
not a "Regge pole." Its zero mass and its vector character are seen to be together responsible for this result. 
A symmetry property of the elastic scattering amplitude shows that terms involving the exchange of an even 
number of virtual photons do not, in any case, contribute at very high energy in the neighborhood of the 
forward direction. 

I. INTRODUCTION 

SOME interest has been expressed recently1 on the 
question as to whether the photon is an elementary-

particle, or rather the J=\ state of a composite 
system represented by a pole in the angular momentum 
plane moving with energy (Regge pole). In the list of 
the known "elementary" particles, the photon plays a 
special role because of its zero mass and because, being 
the agent of a universal interaction, it can be exchanged 
with equal probability by any pair of charged particles. 
Since the photon does not have a mass, there is no 
intrinsic scale which could make the photon pole move 
with energy. On the other end, it is hard to understand 
why this scale should depend particularly upon the 
mass of one among all the charged particles.2 

A possible way to investigate this problem3 is to 
calculate as a power series in a, the fine structure 
constant, the scattering amplitude of two charged 
particles produced by the exchange of many photons in 
the limit of very high (squared) energy 5 and finite 
(squared) momentum transfer t, and to isolate to every 
order of perturbation theory terms of the form 

M, ( an n \ 

-T,Fnp(t)\^s)Mh 

where Mi is the lowest order matrix element correspond
ing to the exchange of one photon. The sum of all 
these terms might then perhaps be recast into an 
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1 R. Blankenbecler, L. F. Cook, and M. L. Goldberger, Phys. 
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2 A mechanism which can provide such a scale through a set of 

fixed masses, independently of the specific scattering process, is 
the photon-photon interaction. Simple arguments show that the 
"slope" of the photon trajectory should then be at least of order 
<x6w~2, where the electron mass m is the lowest which can con
tribute. See, however, the discussion of Sec. IV.3. 

3 M . LeVy, Phys. Rev. Letters 9, 235 (1962); M. Gell-Mann 
and M. L. Goldberger, ibid. 9, 275 (1962); J. C. Polkinghorne 
(to be published); P. G. Federbush and M. T. Grisaru (to be 
published). 

exponential form: 

M^ Z M^i=G(t) exp[7(0 ln^Mi, (1) 
71=0 

where G and 7 are expressed as power series in a. 
Equation (1) would represent the characteristic 
behavior at high energy of a scattering amplitude 
dominated by a composite state formed in the crossed 
(particle-antiparticle) channel associated with a photon; 
y(t) would be identified with the photon trajectory. 
Actually, because of invariance under charge conjuga
tion, one must distinguish between the exchange of 
an even or an odd number of photons. Only the terms 
corresponding to the exchange of an odd number of 
photons should be summed to give Eq. (1); the exchange 
of an even number of photons might or might not lead 
to the appearance of a second term on the right-hand 
side of Eq. (1), which would then correspond with the 
even counterpart of the photon trajectory, the lowest 
state of which presumably has a much higher mass. 

The purpose of the present paper is to report the 
results of an investigation of elastic electron-electron 
scattering at high energy, which is summarized as 
follows: 

(1) We first investigate to all orders the contribution 
to the elastic scattering amplitude coming from 
infrared photons, using the technique of Yennie, 
Frautschi, and Suura.4 These terms are known to give 
rise to an exponential factor like in Eq. (1), but we 
show that the exponent vanishes to all orders in the 
limit of high s. (The infrared terms are calculated with 
a finite photon mass X which disappears at the end.) 

(2) We calculate then exactly the contribution to 
the elastic scattering amplitude of the exchange of two 
photons and we show that the terms of order (lns)Wi 
and (lns)Mi cancel completely at high energy. By 
comparing with the preceding calculation, we find that 
these terms contain, in addition to the standard infrared 

4 D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 
(N. Y.) 13, 379 (1961), abbreviated in the following as YFS. 
See also: K. E. Eriksson, Nuovo Cimento 21, 383 (1961); K. T. 
Mahanthappa, Phys. Rev. 126, 329 (1962). 
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contribution, terms which can still be considered as 
generated by the exchange of "soft photons," in the 
sense that their energy is small compared with the 
electron energy, but nevertheless cannot be neglected 
compared to the momentum transfer, which is kept 
finite. 

(3) We calculate accordingly the scattering ampli
tude to all orders, assuming that the virtual photons 
momenta ki are small compared to the initial or final 
electrons momenta, but taking rigorously into account 
the energy-momentum conservation of all the exchanged 
photons: £ ki= q, where q is the four-momentum 
transfer (t=q2). The corresponding soft photon contri
bution can then be summed exactly in an exponential 
form, and shown to contain all the terms contributing to 
the exchange of two photons at high energy. We give 
reasons to believe that it contains all the /-dependent 
terms at high energy, to every order of perturbation 
theory, and we find that the In (s) dependence of the 
exponent vanishes. 

(4) We attempt to calculate corrections due to the 
ultraviolet contributions to the scattering matrix 
elements, and we show that they come from terms in 
which two of the exchanged photons are "hard," 
with large momenta of opposite sign, and are emitted or 
absorbed in immediate succession. This contribution is 
calculated and found to cancel again to every order of 
perturbation theory, in the limit of high energy. 

The subsequent corrections are discussed, if not 
calculated, and arguments are given to indicate that, 
in the high-5 limit, they either vanish or give rise only 
to In (s) terms with constant coefficients which would 
not induce a movement of the photon pole. 

(5) We discuss next the influence of the modified 
photon propagators and of photon-photon interaction, 
and give an explicit formula for the (n+l)th. order 
/-dependent (soft photon) part of the matrix element. 
We find that it is likely that the In (s) dependence 
vanishes also in this case in the high-energy limit. 

(6) Finally, we show that the elastic scattering 
amplitude at high energy has a symmetry property 
under the exchange of s and u=4rtn2— (t-\-s) which 
implies that the contribution of graphs corresponding 
to the exchange of an even number of photons vanishes 
in any case for large values of s. 

The general conclusion is that there is so far no 
evidence from perturbation theory that the photon is a 
Regge pole. Our calculations indicate rather strongly 
that it is a "fixed" pole, although they cannot be 
considered as representing a complete proof of this 
statement. 

II. INFRARED CONTRIBUTION TO ELASTIC 
ELECTRON-ELECTRON SCATTERING 

In this section, the "infrared" part of the elastic 
scattering amplitude is defined exactly in the same way 
as in Yennie et al.4 (abbreviated in the following 
as YFS). 

We consider the scattering of two electrons of initial 
four-momenta ph p2 and final four-momenta pi, 
p2. We write as usual: q= p\—pi = p2 — p2y t=q2, 
s= (^1-f^2)2) anc[ u— fa—p^y. T n e latter quantities 
satisfy the relation: 

s+t+u=4m2, (2) 

where m is the electron mass. The lowest order matrix 
element, corresponding to the exchange of one photon, 
can be expressed as 

Jfi(0 = 
ta m* [Y ,XY, ] 

w (£1£2£1 '£2 ')1/2 t 
(3) 

where, following Tsai's notations,5 we write in general : 
{_AXB~]=u(p1

,)Au{p1)u(p2t)Bu(p2) (the «'s are the 
usual free Dirac spinors). Using the rules given by YFS, 
we find that, in the present case, the infrared part of the 
scattering amplitude can be separated from the rest 
in the form: 

M=exp(B+B')M, (4) 

where M does not contain infrared contributions and 

B(pi,p2)=-
la 

8TT3 

r d*k r 2p!-k 2p2+k -|2 

J k2-\2Lk2-2p1k k2+2p2U ' 
(5a) 

Bf is obtained from B through the relation: 

B'=-B(ph-p2
f). (5b) 

In principle, one should add, to be complete, another 
similar factor involving the pair of momenta (pi,pi) 
or (p2,p2), but it corresponds to Feynman diagrams 
where the photon of momentum k is emitted and 
absorbed by the same electron. In any case, it depends 
only on t and does not contain, therefore, any of the 
ln(s) factors which are of interest to us p t can be 
absorbed in the function G(t) of Eq. (1)]. 

We place ourselves in a physical situation of nearly 
forward scattering, where s is large and positive and t 
finite and negative. Because of Eq. (2), u is consequently 
large and negative. It is then easy to see that B' is real 
and can readily be computed in the limit of large \u\: 

B'= - (a/*)Z4>iM+4>*(!*'> X2)], (6) 

where we have set 

dx 1 /-z\ 
(7) 

, (8) 

5 Y. S. Tsai, Phys. Rev. 120, 269 (1960). There is a small 
misprint in Eq. (9) of Tsai's paper: the ( + ) sign in front of the 
second line should be changed into (—). This does not affect his 
subsequent equations. 

and 

02(2 

0i (2) = z 

; x 2 ) 

'0 4m2-

y2[m2— 

~ — In — 
-z(\-x2)-ie 2 \m2J 

ydydx 

•(z/4)(l-x2)- •*Y]+A2(l-;y): 
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which, when z is large and < 0 , can be evaluated as 

^2(2; X 2 ) ^ | \tf(-z/tn2)+ln(~z/m2) ln(w2/X2); (9) 

(0i and <j>2 are, respectively, equal to Jzjui and —^Zfx2 

in Tsai's notations). 
B can now be calculated from B' through Eq. (5b). 

However, some care must be exercised in doing so, 
since B contains, for &>0, an imaginary part which 
corresponds, in the relativistic theory, to the long-range 
contribution to the familiar Coulomb phase shift. 
Using integral expressions (7) and (8), one finds for 
large 5: 

5 = ( a / i r ) C ^ i ( - j ) + 0 , ( - 5 ; X 2 ) - i i r l n ( V X 2 ) ] . (10) 

If t is kept finite, we have $~—u in the limit s —» <*>, 
and, consequently, 

B+B'~-ialn(s/\2). 

The \n(s) and (Ins)2 terms have cancelled out, except 
for the unimportant purely imaginary term (11), the 
coefficient of which is independent of / (even this term 
is cancelled by the remaining contribution calculated 
in Sec. I I I ) . 

I t should be noted at this point that the <f>i parts of 
B and B' are actually ultraviolet contributions, coming 
from the k2 term in the numerator of B (or B() on the 
right-hand side of Eq. (5). They were added in YFS in 
order to maintain gauge invariance throughout the 
calculation. 

III. THE TWO-PHOTONS EXCHANGE DIAGRAMS 

In order to understand the origin of the remaining 
contribution to the high-energy scattering amplitude 
coming from noninfrared terms, we turn now to an 
examination of the complete matrix element produced 
by the exchange of two photons. They have been 
calculated in detail by Redhead6 and Tsai.5 Let us call 
M2 and M2 the respective contributions of diagrams 
(a) and (b) of Fig. 1. M2 is real whereas M2, like B, 
contains an imaginary part. We have exhibited in 
Table I the various contributions to M2 and Relf 2 in 
the limit of high s~—u, and finite L The first two 
columns contain the contribution of B and B' calculated 
in Sec. I I , to the second order in a. To make things 
clearer, we have separated them into a truly "infrared" 
part, and an ultraviolet part (independent of t). The 

pr 

FIG. 1. The two basic 
diagrams for the exchange 
of two photons. 

q-k 

k 

(a) 

Pi 

K"k 

(b) 

P2 

6 M . L. G. Redhead, Proc. Roy. Soc. (London) A220, 219 
(1953). 

TABLE I. High-energy contributions to the two-photons 
exchange diagrams. 

YFS terms Other terms 
Infrared Ultraviolet "Soft" Ultraviolet 

?r Reif2 

aMi 

-<f>2(u;\2) —4>i(u) —<j>2(u;—t) —4>\{u) 

last two columns contain the terms which were not 
extracted by the YFS rules. As can be seen immediately, 
the terms contained in each column cancel separately 
in the limit s~— u. In addition, the imaginary part of 
M2 can be written: 

(11) ImM2=\TmB+a ln(* / - / ) ]Af i 

= - a ln ( -* /X 2 )Af i , (12) 

so that the (Ins) dependence cancels even there. 
For our purpose, which is to extend the calculation 

of high-energy contributions to all orders, the terms 
contained in the third column of Table I are of special 
interest. We interpret them as coming from photon 
energies which are still small compared to electron 
energies, but are nevertheless of the same order as the 
momentum transfer, which we have kept finite. We 
choose to call them "soft," to distinguish them from 
the "infrared" terms7 where k2<£q2. I t must be realized, 
however, that the soft photons occupy, in the present 
kinematical situation, almost the complete range of 
the spectrum. To prove our interpretation, we compare 
the "truly infrared" part of B'Mi, calculated in the 
preceding section: 

ia 1 

4TT 3 

4:pvp2'd
4k 

(k*-\*)(k*-2p1h)(h*--2pjk) 

-<t>2{u]\2)Mh (13) 

with a similar expression in which the energy-momen
tum conservation of the two exchanged photons has 
been restored (in other words, k<Kpi or p2', but kc^.q): 

U'Mi ~ (AfiO 
4TT3 

X 
J (Q-

4tp!p2'd
Ak 

~--M!l<l>2(u-,\2)--<t>2(u; - 0 1 (14) 
7T 

7 Starting with Sec. IV, we shall actually call "soft" the sum of 
the infrared part of YFS and the soft part defined here. I t consists 
of all the contributions coming from photon momenta which are 
small compared to pi, p* or p^\ but have any magnitude compared 
to q. 
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As can be seen, this new expression contains both 
contributions coming from the first and third column 
of Table I (a similar verification can be made for M2). 
I t can also be verified that the value of the integral 
(14) in the high-energy limit is not changed if one 
neglects k2 compared to 2pik or 2p2k in the denominator 
of the integrand. This remark is of importance for the 
discussion of the n-\-\ photons exchange diagrams in 
the next section. 

The results of this section can be summarized as 
follows: 

(1) In the 2-photons diagrams, the double logarithms 
(contained in $2) are produced either from "infrared" 
or "soft" photon energies, but they cancel separately 
for each of the graphs (a) and (b) of Fig. 1. 

(2) The remaining single logarithms cancel by adding 
the contributions of crossed and uncrossed diagrams. 
One last word about the ultraviolet contribution: it is 
easy to see that it should, in general, only give rise to 
ln(s) terms with a constant coefficient (like <t>\ here). The 
reason is that, with our separation of the "soft" photons 
terms, only values of k comparable to pi, p2 or p2 are 
included in the ultraviolet part. We can, therefore, 
neglect q compared to k in these terms, which then 
depend only on 5 or u, and no longer on t. This point 
is of great importance, since we are mostly interested in 
the movement of the photon pole when t varies. 

IV. GENERAL TREATMENT OF THE HIGH-ENERGY 
SCATTERING AMPLITUDE 

In this section, we use the information obtained 
from our discussion of the two-photons diagrams to 
give an approximate treatment of the high-energy 
scattering amplitude which includes, to all orders, the 
various kinds of contributions which we have isolated 
in the last section. 

In the following, we shall often call "line (1)," for 
instance, the continuous set of electron lines which 
link the external electron line of momentum pi to the 
external electron line of momentum pi [and similarly 
for "line (2)"] . Now, if we isolate in line (1) the 
emission of the first photon of momentum ki, and 
polarization vi, we can write the corresponding contri
bution to the matrix element: 

u(pi)T(pi, pi~ki)SF(pi-ki)yvlu(pi) 

j^ i el ._j_] \r v i mag.-] 

= u(pi')T(pi', pi-h) Ufa), (15) 

where we have set: 
ki2—2pi-ki 

(16) 

By separating explicitly more photons from the vertex 
function T of Eq. (15), we can then define the "electric" 
and the "magnetic" parts of the emission or absorption 
operators for each photon successively. 

1. The "Soft Photon" Contribution 

We consider first the part of the matrix elements 
contributed by exchanged photons of momenta ki 
which are small compared to pi, p2 and p2, but can, 
nevertheless, be of the same order as q, the momentum 
transfer. We saw in the previous section that they 
contribute the main /-dependent part of the 2-photons 
exchange diagrams at high energy. As long as the 
integrals continue to converge in the ultraviolet, the 
separation of the soft photon contribution can be 
achieved by replacing Nv

el- of Eq. (16) by 2pv, by 
disregarding Nv

m&e-, and by neglecting, for instance, 
ki2 compared to — 2pi-ki in the denominator of the 
right-hand side8 of Eq. (15). The summation of the 
diagrams to every order can then be achieved in a 
relatively simple way. 

We shall consider here Mn+i, the matrix element 
corresponding to the exchange of (^+1) photons. 
Only n of these will have independent moment 
ky • -kn (and polarizations vv * -vn). We shall assume 
that they are all emitted from line (1) in that order 
[if one of the photons (i) is actually absorbed by line 
(1), we label its momentum — ki, and the result is 
unchanged^]. Then, the ( ^ + l ) t h photon emitted from 
line (1) will have a momentum ko=q—'5L ki and polar
ization [i. There are (n+1)! different graphs contribut
ing to Mn+i. Each of them can be characterized com
pletely by a permutation (ax- • -an+i) of the n+1 first 
integers, which defines the order in which the n+1 
photons are absorbed by line (2). We shall call such a 
graph {an- • -an+i} or, more simply, {a}. 

The general form of Mn+i is as follows : 

Mn+i=-
47r2m2 /—ia\n+1 

X 

(EIE2EI'E2')
1I2\4TSJ 

d% 1 

/

n C n-
<-i k-

x[axE®«] . 0-7) 2-x2 [<z-Z ki}2
 M 

d is the contribution from line (1) and can be written 
relatively simply in the soft photon approximation. 
Using the notation: 

we have: 

a=7„II 

i—r 

2pin 

i - l [ -2 i> l •#!,,-] 

(18) 

(19) 

Since the photons will be absorbed by line (2) in all 
possible orders, we can replace Cfc by its symmetrized 
form with respect to all ki (and divide it by nl). 

The following identity, relative to a set of numbers 
8 See the remark after Eq. (14). It is not possible to neglect k2 

in the denominator if the corresponding integral diverges in the 
ultraviolet like in the YFS formalism. Even there, however, this 
would not be terribly serious, since the logarithmically divergent 
terms cancel when crossed and uncrossed parts are added. 
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av • -an, is useful: 

perm.{a%,aj} ^1(^1+^2) * * * (^1+^2+ * * * ~\~&n) 

(20) 

The symmetrized form of Q, can then be written, 
using this identity: 

as-
1 7 * T T 2pl»i 

ft! perm. {ki,ki} fl! i-1 (— 2^i • &;) 

2p u'i 

«!*-i (-2^1-fe/) 
(21) 

where {&i'-••&»'}, { P I ' ' • • P»'} are arbitrary permuta
tions of all the {k\- • -kn}, {vvvn}, resepectively. 

We now consider a graph {a}, which can be con
structed as follows: We give ourselves a permutation 
ki •• -kn

f of the k/s and assume that the photon ko is 
absorbed by line (2) at the position (w+1) . In other 
words, the order of absorption of the n+1 photons 
will be : k{- • -km'; ko] km+\'• • 'kn'. The corresponding 
(B« can then be written: 

.=7„n 
2p2vi' 

n 
2p2vj> 

*-i C+2#2-^t,/] *-«+i [ - ^ ' - ^ . M - I ' ] 
(22) 

In order to get the sum of all (E«: (a) we sum over all 
permutations of the first group {ki—-km'} and of 
the second group {km+i- - -kn'} separately; (b) we 
multiply the number of ways in which a group of m 
photons can be chosen from a larger set of n, that is 
n\(ml)~1Z(n—m)f\~1; (c) we vary m from 0 to n to 
allow ko to take all the possible positions on line (2). 

The result is 

{a} m=om\(n—m) \ *=i [ 2 ^ 2 • ki~\ n 
2p: 2H' 

x n 
2p„/ 

J = m + i £—2pt'-k/2 
(23) 

so that, finally, we can write (returning to the variables 
ki) Mn+i°, the soft photon part of Mn+i: 

M. n+l 

X 

Air2m2 / — ia\n+l 

-(—) z 
1 

{E1EiEl'E2')
w\ 4u-3 / m=ow!(w-w)! 

Apvpud^ki 

x n >-»n ( f c / - A 2 ) [ - 2 ^ • £ , ] [ - 2 p , ' • ki] 
(24) 

This expression can be simplified by introducing the 
Fourier transform of the lowest order matrix element: 

Miix)^— [ MitfW'li'q, (25) 
(2TT)4J 

where Mi(q2) is denned by Eq. (3), and the two 
functions: 

U(pi,p2;*) = -

and 

—la 

J (k2-

{fitpv p2)eikxdAk 

4TT3 J (k2-\2)(-2pvk)(2prk) 
, (26) 

U'(php2';x)=-U(ph -p2';x). (27) 

Then, Mn+i° becomes 

1 
Mn+1°= L 

m^Qm\{n—m)\ 
Um(x)U/n-m(x) 

XMi{x)e-^xd% (28) 

and, after summation over n, we obtain 

M«= £ Mn+{ 
- / 

expZU(x)+U'(x)2 

X M i W r ^ f e (29) 

Equation (29) for if0 has a form similar to the one 
obtained by YFS, except that we now have, at the end, 
a four-dimensional integration over x which reflects the 
fact that we have rigorously taken into account the 
energy-momentum conservation of the photon lines 
[the YFS expression can be obtained from Eq. (24) by 
neglecting £ h compared to q in the first factor of the 
integrand]. Our discussion of the previous section 
showed that it is essential to maintain the photon 
momentum conservation if we want to obtain all the 
/-dependence terms at high energy. 

The cancellation of all ln(s) terms for M° can now 
be understood intuitively from Eqs. (29) and (27). 
If U(x), for example, contains a term of the form 
F(t,x)]n(s), the change p2^±—p2

f leaves F(t,x) 
unchanged, but transforms 5 into u. In our kinematical 
situation where sc^—u, Eq. (27) amounts, therefore, 
in this case, to 

U'(x) = ~ReU(x). (30) 

Actually, U{x) is somewhat more complicated. U and 
V are calculated explicitly in the Appendix, and it is 
shown that when x is finite, no term of order ln(s) 
remains in the exponential of Eq. (29). (For x~» 0, the 
cancellation has already been proved on the expressions 
for B and B' of YFS.) 

The physical interpretation of the approximation 
which leads to Eq. (29) can be given as follows: In an 
nth order diagram, the maximum contribution to the 
scattering is obtained if each electron undergoes small 
changes of momentum at each of the n vertices, the 
sum of which amounts to the (relatively small) total 
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momentum transfer q. When there occurs one large 
change of momentum, the corresponding contribution 
is strongly decreased by the phase factor which appears 
in Eqs. (26) and (27). In this sense, the variable x 
which we have introduced is closely related to the 
scattering in configuration space. Our approximation 
is very reminiscent of the "stationary phase" approxi
mation which has been applied to the problem of high-
energy scattering by a potential by Schiff9 and others, 
and our Eq. (29) resembles closely the result obtained 
in those calculations [compare, for example, Eq. (13) 
in SchifFs paper]. 

2. Ultraviolet Corrections 

One of our main arguments, in our contention that 
the photon pole does not move with energy, is that, 
once the "infrared" and "soft" photon parts have 
been separated out, the remaining ultraviolet contribu
tions, which correspond to ki>pi, p2 or p2, do not 
depend on t. I t is, therefore, quite important to examine 
this point further, and, in particular, to ask ourselves 
how we can obtain the next order correction to our 
expression for M°. 

From the discussion above, it is clear that this 
correction will come from terms where each of the 
electrons undergoes two large changes of momentum of 
opposite sign. Now, whenever one internal electron 
line has a momentum which is very different from a 
free momentum, the contribution to the matrix element 
is reduced by the denominator of the corresponding 
SF function. Therefore, the two photons of large and 
opposite momenta must be emitted and absorbed in 
succession in order to minimize this effect. The order 
of absorption of these two "hard" photons can either 
be the same as or opposite to their order of emission. 
Consequently, each of the graphs which we must 
consider for our correction will contain a "core" con
sisting of the two basic fourth-order diagrams, the 
remaining part being filled by soft photons emitted or 
absorbed in any order before or after the "core" 
(Fig. 2). 

We can now apply to this class of graphs the same 
technique as was used in the previous paragraph. The 
calculation is straightforward, and leads to the following 
expression for Ma\ the correction to M° of Eq. (29): 

X[.M2(x)-M2
0(x)']e~i^d% (31) 

where M2(x) is the Fourier transform of the complete 
fourth-order matrix element and M2° the part of it 
which is obtained by expanding the exponential in 
Eq. (29): 

M2°(x) = (U+U,)M1(x). (32) 

9 L. I. Schiff, Phys. Rev. 103, 443 (1956). 

/ * 

/ ' • \ y 

FIG. 2. General dia
grams for the first ultra-
violet corrections to the 
matrix element. Full 
and dashed lines in
dicate hard and soft 
photon, respectively. 

P, W Pz (b) 

Now, we have seen in Sec. I l l that M2—M2° does not 
depend on q2 in the high-energy limit. Consequently, 
its Fourier transform will be proportional to 8±(x) so 
that M ( 1 ) can be simplified as follows: 

MV = exp(B+B%M2(q*)-M2«(q>)y, (33) 

[we have used the fact that U(0)~B and U'(0)~B', 
as was already pointed out in Sec. I l l after Eq. (14); 
there is a logarithmic divergence which cancels when 
B and Bf are added], 

The results of Sees. I I and I I I show then that Ma) 

vanishes in the high-energy limit. But, what is more 
important is that, even before cancellation, each term 
contributing to Ma) does not depend on the momentum 
transfer. 

I t is easy to understand Eq. (33): if two of the 
exchanged photons have large momenta of opposite 
signs, the remaining (n—1) soft photons contributing to 
Mn+ia) are no longer sensitive to the over-all energy 
momentum conservation of the photon lines, as long as 
q retains a moderate value. Then, the YFS method 
applies, and Eq. (33) is essentially their result, obtained 
in a different way, with no reference to the infrared 
divergence (which would, in any case, disappear from 
B+B'). 

The next approximation M(2) can be calculated by 
assuming: (a) either that three successive virtual 
photons have large momenta which add up in such a 
way that their sum is small; (b) or that two virtual 
photons only have large momenta of opposite sign, but 
that a soft photon is emitted in between so that two 
large energy denominators are present in the matrix 
element. I t is likely that the last effect will be dominant. 
In any case, following the same method as previously, 
Mi2) must be calculated from a "core" of sixth-order 
matrix elements in which at least two of the three 
virtual photons are hard. Although the calculation is 
understandably more difficult, we do not see any 
reason which would make the general features of the 
result any different from those of Ma\ 

3. Influence of Photon-Photon Interaction 

Two elements have been missing from our analysis 
so far: the effect of a modified photon propagator 
(closed loops with only two photon external lines) and 
the influence of photon-photon interaction. 
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I t is relatively easy, in principle, to include the 
effect of electron loops in our formalism. In the soft 
photon contribution, for instance, all one has to do is 
to change U(x) and Ur (x) into 

U(php2;x) = / 
4TT3 J 

and 

-ia f eikx(^pip2)DF'(k2-V)d^k 

(-2"M)-(+2M) 

U'(x) = -U(ph-p2';x), 

, (26a) 

(27a) 

the matrix element being still given by Eq. (29). Their 
corresponding evaluation is, of course, considerably 
more difficult. However, Eq. (27a) which expresses the 
relation between crossed and uncrossed graphs makes 
it likely that the cancellation of the leading ln(s) or 
In | u | terms still occurs in this case. 

As to the photon-photon interaction, it is sufficient 
to consider a graph like Fig. 3, where n-\-\ photons 
emerge from a black box in which the electron "line (1)" 
enters and goes out. As in Sec. 1 of this section, the 
photon momenta are labeled kvkn and &o=<7—Z) £*• 
Then, in the soft photon approximation, the general 
form of the matrix element is still given by Eq. (17), 
except that now we replace (£ by an unknown but 
symmetric function of the photon momenta and 
polarizations 

a= (1/n !)/Vw) (#i • • -kn; vi • • • vn); (34) 

(F^n) depends also on pi and q, but we can leave this 
dependence implicit). The calculation of (B is unchanged 
but, because of the symmetric character of the photons, 
we can, by suitable changes of variables, express it 
differently from Eq. (23): 

= 7M 

n r *P*H ^pi*i i 

<-iL(2^2-*.-) (-2p2%)J 
(35) 

Mw4-i(0\ the soft photon contribution to Mn+i can now 
be expressed quite generally as : 

M n + 1 ° = -
47T2W2 /-ia\n+1 1 

2 \ 4 ^ r 3 / n\ (EiE 2£i ,£2 , ) 1 / 2 \47r 3 / 

[F^ikv -K]vv "v^Xy^ 

(?-E W 
x/ 

x n D,'w-\')\ wh. 
*-i \-(2prh) (2 *«'•*<)-I 

(36) 

The same cancellation which we have already observed 
still seems to occur here because, in the limit of high pi 
and small q, p2^p2, so that each of the factors in the 
infinite product on the right-hand side goes to zero in 
that limit. On the other hand, it is well known that the 
photon-photon interaction introduces a strong con-

FIG. 3. The general graph for the 
exchange of w+1-photons with photon-
photon interactions. 

vergence factor for large values of k2; the influence of 
the ultraviolet contributions should then be even less 
important than we have estimated in Sec. IV. 2. 

The total matrix element M° can be summed into an 
exponential, as in Eq. (29), only if we assume that, 
at high energy, FM

(w) factorizes as a product involving 
separately the momenta and polarizations (ki,vi). The 
corresponding generalization of the functions U(x) 
and U' (x) is rather obvious; therefore, we do not need 
to write the result here. 

4. A Symmetry Property of the High-Energy 
Scattering Amplitude 

We have not made any difference, so far, between 
matrix elements involving an even or an odd number of 
exchanged photons. Nevertheless, as was pointed out 
in the Introduction, there is an important physical 
difference between them. We want to show here that 
this difference reflects itself in a symmetry property of 
the scattering amplitude at high energy. 

In the kinematical situation which we have considered 
in this paper where sc^. \ u | is very large and / is finite, 
the leading terms of the scattering amplitude are not 
modified if we exchange everywhere p2 and —p2, 
leaving pi and pi as they are, so that t remains the 
same, but s and u are exchanged. To order an with 
respect to Mi, for example, this would not affect the 
real part of a term like anFn(t)(lns)nMi. We can then 
introduce a transformed matrix element M through 
the formula: 

M (pup*-, pi,p*)-*M(pi,pi; Pup2) 
= h[_M(pi,p2;Pi',p2f)+M(pi, -pt'iPi'y-Pi)!. (37) 

This transformation has the effect to suppress a large 
number of terms in the perturbation expansion of M. 
For instance, in the analysis of the previous sections, 
because of relations (5b), (27), and (27a), the exponents 
in Eqs. (4), (29), or (33) change their sign if one makes 
the exchange p2 ^ —p2* Consequently, the odd 
powers of a in the perturbation expansion of the 
corresponding matrix elements (which are due to the 
exchange of an even number of photons) disappear 
altogether in M. Similarly, the cancellation of the ln(,y) 
terms in the complete two-photons exchange graphs 
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becomes obvious, since : 

M2'(pi,p2;pi,p2)££-M2(pi, -p*; pi, ~p2) (38) 

at high energy. 
This type of cancellation is still maintained if one 

takes into account photon-photon interactions, as is 
clear for_Eq. (36) where _the exchange p2^±—p2 

changes Mn+i° into (— l)nMn+i°. Actually, this sym
metry property does not hold only for the "soft photon" 
part of the matrix elements. It is true in general. To see 
this, it is sufficient to look at the general diagram of 
Fig. 3, and to compare two graphs {ai} and {a2} where 
the photon ko occupies the positions m+1 and n—m+1, 
respectively. Then, because of the symmetry of F/n) 

with respect to the exchange of all ki and vi, one can 
see that, for each factor yViSF(p2+Ki,i) in one graph, 
there is a factor yViSF(p2—Ki^ in the other one, and 
vice versa (one has, for the second graph, to relabel all 
the ki, Vi in the opposite order). Since SF(—P)==—SF (p) 
for large p, it follows that, in general: 

Mn+i(php2;pi,p2) 

= § D + ( - l ) n l M n + 1 ( p h p 2 ; p^pl). (39) 

Since the change M -^>M does not affect the leading 
logarithmic terms at high energy,10 the result is that the 
diagrams of even order cannot contribute when s —> oo, 
t remaining finite. For the case where n+1 is odd, the 
number of independent graphs is reduced by a factor 2. 
[Using the labeling {av • -an+i} introduced in Sec. IV. 1, 
one finds that the change M—*M transforms {a r • -an+1} 
into (-l)n{an+v ••«!}.] 

We conclude that there cannot be, in any case, an 
"even counterpart" (even under charge conjugation, 
that is) to the photon trajectory; actually, as we have 
already emphasized, we do not believe that there is a 
photon trajectory either! 

V. CONCLUDING REMARKS 

The conclusion of our work is that there does not 
seem to be any ln(^) terms in the elastic electron-
electron scattering amplitude for high values of the 
squared energy s. If there are terms of high order which, 
for one reason or another, we have missed, they can 
only come from ultraviolet contributions to the matrix 
element, and should not depend on the momentum 
transfer, if the latter remains finite. One can conclude, 
therefore, that the photon pole does not "move" with 
energy. 

Another conclusion which should be emphasized is 
that, when summing subsets of graphs in the high-
energy limit, any kind of "ladder" approximation is 
rather dangerous. 

10 This would not be the case if the leading term of the (w-f-l)th 
order matrix element were of order j_1(ln5)nifi, as seems to be 
the case for the exchange of scalar particles (see M. Gell-Mann 
and M. L. Goldberger, and J. C. Polkinghorne, quoted in footnote 
3). Then, the role of the even and odd graphs should be reversed. 

Finally, we would like to speculate on the significance 
of possible In (s) terms with constant coefficients, if 
they turn out to exist after all. These terms might be 
summed up into the form exp{c(a) ln(s)}Mly where 
c(a) should be an even function of a only. We assume 
now that the exchange of a particle of fixed angular 
momentum / leads to a scattering amplitude behaving 
like sJ at high energy. Mi behaves like s in that limit, 
and since we know that, if the photon has a fixed 
angular momentum, it must be 7 = 1 , we conclude 
that one should impose the consistency condition 
c(a) = 0, which can be used to determine the fine 
structure constant! I t is more likely, however, that this 
condition will be satisfied identically for each power of 
a2. Even if this were not the case, the computation of 
c(a) to all orders should be a formidable problem 
indeed. 

The author would like to thank Professor Robert 
Oppenheimer for extending once more to him his kind 
hospitality at the Institute for Advanced Study. 

APPENDIX 

Calculation of U(x) and U'(x) 

We start with the calculation of W (%): 

ia\u\ 
U'(X): 

2TT3 

J ( k 2 -

eikxdAk 

(k2-\2)(-2plk+ie)(-2p2'k+ie) 
(Al) 

We first combine the two terms linear in k in the 
denominator through a Feynman parametric integral: 

1 1 C+1 dz 

hk)(-2p2'.k) 2 7- i (-2p1k)(~2p2
f-k) (-21V *+fc)* 

> (A2) 

where 2PZ= (l-z)pl+(l+z)p2\ We then express the 
denominators in an exponential form, through the 
formula: 

1 (—i)71*1 r«> 
= — / eiaDanda, (A3) 

so that 

U'(x) = dz bdbda 
4?r3 J-! Jo Jo 

X / exp{i[kx+a(k2-\*)-2bk-Pz2}d*k. (A4) 

Making a displacement of the k integration and using 
the formula: 

Iei IT' 
»»d'k= e(p), (A5) 
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we get, after changing a into a 1: 

U'(x)= — 
ia\u\ 

4TT £* 
exp[ - ia (bPz - | x ) 2 - i\2/a]bdbda. (A6) 

Putting 

A = ( J p s - J « ) 2 = y p , 2 - f t ( P , . a ; ) + i a ? , (A7) 

we find that we can do the a integration11: 

[intuitively, one can understand | x2 | _ 1 as a continuous 
variable which takes values between X2 and (—t), 
the cancellation occurring for each of these intermediate 
values]. 

£/'(2) is somewhat more difficult to evaluate, and, to 
avoid lengthy developments, we shall calculate it only 
in the case x < 0 (the case x2>0 gives a similar result). 
Writing - # 2 = P 2 and [ ( P * - * ) 2 - ^ 2 ] 1 ' 2 ^ , we can 
do the b integration, and obtain 

a\u\ f+1 dz (Pz-x) R2P* 
U'<» = — I — - In

fer y_x P* Qz [ & + ( P * - * ) ] 2 
(A13) 

Jo 
e-iaA-i\ya^a 

7rX 

A1/2 

2i\ 

•H1^(2\A1^2), if A > 0 

J ^ p A C - A ) 1 ' 2 ] , if A < 0 , (A8) 

Now, since Ps
2=m2+l\u\ (1 — s2), it is clear that the 

main contribution to the integral will come from 
values where Pz

2 is small, i.e., near z = d b l . We define 
then a number e such that 

m2/\u\«e«l, (A14) 

1/2 ( - A ) 

where i?i<2) and Ki are the usual Hankel functions; 
X in these expressions acts like a regularizing factor in 
the limit of high b, since the Hankel functions force 
then the integral to converge. We shall actually take 
the limit A —> 0 immediately, but put a cutoff Z>max in 
the b integration. The cutoff will disappear when U 
and Uf are added. We then have very simply: 

write C i= (pvx), C 2 = (p2'%), C 2
/ = (p2'%), and express 

U'W as 

U'Q>= (a /27r)[G(£,C2 ' )+G(i?A)] (A15) 

with 

G(R,Q-
l«l r1 

4 .A_ 
dz C 

i-t P z
2 [ JPP. '+C*] 1 ' * 

P2P*2 

Xln-

Z7'(*)« 
a\u\ 

4x £>/„ A ' 

[(P2P/+C2)x/2+C]2 
(A16) 

We divide this expression into 

,+i dz l>h^[2bP2-{Pz>x)~] a\u\ r^1 dz r° 
J7'<i> = — / — / 

8TT 7 - I Pz
2Jo A 

(Pz'x) r"db 
and 

J 7 ' ( 2 ) = . 
a w 

8TT i_i ^ 2V Jo A* 

(A9) 

(A10) 

(Al l ) 

We can then write approximately P z
2 ~ m 2 + \ \ u \ (1—z), 

change to the variable sinh% = C(i^P0)~1, sinhxo 
= C(wi^)~1, s inhxi=2C(Re\u\) , and obtain, in the 
limit defined by (A 14): 

G(R,C)c 
r*' rC+(m2R2+C2)^2-

2xdx^ln2\ 
mR 

- / 2 x ^x^ ln 2 -
J xi L 

(A17) 

(U'2 converges when b—> <*>.) Uf{x) is real when # 2 <0 
but has an imaginary part when x2>0. Its real part is 
always given, in the limit of high | u | , by 

2a (2&max) a 
ReUfM = —<t>i(-u)\n 02l 

7T \X2\ 2lT 
( —u; J, 

\x2\J 
(A12) 

where fa and <£2 are defined by Eqs. (7) and (8) of the 
text. Re£/ / (1) is cancelled by a similar term coming from 
Re£/(2) exactly in the same way as in Sees. I I and I I I 

11 W. Magnus and F. Oberhettinger, Formeln und Stitze fiir die 
Speziellen Functionen der Mathematischen Physik (Springer-Verlag, 
Berlin, 1948), 2nd ed., p. 174. 

The calculation of ReUi2) goes along similar lines, 
except that care must be taken because several expres
sions change sign in the integration domain. I t is clear 
that the only cases which are of interest to us are 
those in which the C/s are large compared to mR 
(otherwise G—>0 automatically). If we suppose then 
that 2C t-

2(^2)~1»e, the calculation of Re£/<2> becomes 
relatively easy, with the result: 

ReE/<*>~- (a/27r)[G(i?,C2)+G(i?A)], (A18) 

so that, finally, the only remaining parts of U+ Uf are 

Re(J7+ 1 7 ' ) ^ - (a/2*)[G(R,C*)-G{R£*'y]. (A19) 

(One verifies that U+U'=0 if p2=p2, as is apparent 
from their definition.) Since, in our kinematical 
situation, ptf^pj, we can approximate Eq. (A19) in 
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the case where Cg^Cz^mR and obtain: expression of the form 

Re(U+U')^ In In— 
2TT m2R2 CJ 

(A20) 

which cannot increase like ln(s) in a given x direction. 
Also, this is the worst possible situation that can happen. 
In all the other cases, Re (£7+ U') —> 0 much faster. 

The technique of Fourier transforms of matrix 
elements, which has not been much used in the past, 
can be applied to many problems in high-energy 
scattering. For instance, if one has to calculate an 

Mt " • • • = / • 

AW ' 
(A21) 

in the high-energy limit, one can introduce a factor 
exp{ikx} and express all the kff, km etc., as derivatives 
with respect to x. One can the compute the Fourier 
transform of A-1 in the high-energy limit and let 
x —* 0 at the end. This eliminates many "components" 
of the matrix element which do not contribute at high 
energy. 
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It is shown that the energy density commutator condition in its simplest form is valid for interacting 
spin 0, i, 1 field systems, but not for higher spin fields. The action principle is extended, for this purpose, 
to arbitrary coordinate frames. There is a discussion of four categories of fields and some explicit considera
tion of spin f as the simplest example that gives additional terms in the energy density commutator. As the 
fundamental equation of relativistic quantum field theory, the commutator condition makes explicit the 
greater physical complexity of higher spin fields. 

INTRODUCTION 

AFTER it had been noticed1 that the energy and 
momentum density of a particular field system 

obeyed the equal time commutation relation 

- i [ r o o (x) , r o o (^)]= - (Tok(x)+Tok(x'))dk8(x-x'), 

a general proof was constructed2 by considering the 
response to an external gravitational field. The commu
tator condition applies to all systems for which (—g°0)r00 

and (—goo)1,2Tok are independent of the gravitational 
field, when it is of the special type 

gki=fai, gok=0, — goo(x)^l. 

How extensive is this distinguished class of physical 
systems? We shall find that fields with spin 0, J, 1 are 
included, but not fields of larger spin. Thus, higher spin 
fields can now be characterized, not merely as mathe
matically more complicated structures, but by their 
greater physical complexity. 

The technical problem encountered here is the 
extension of the action principle to arbitrary coordinate 
frames, subject to the requirement of coordinate 

* Supported in part by the Air Force Office of Scientific Research 
under contract number A.F. 49(638)-589. 

1 J. Schwinger, Phys. Rev. 127, 324 (1962). 
2 J. Schwinger, Phys. Rev. 130, 406 (1963). 

invariance. Even more is involved for, as Weyl3 was 
the first to recognize, the description of spin entails the 
introduction, at each point, of an independent Lorentz 
coordinate frame, combined with the demand of 
invariance under local Lorentz transformations. This 
is the ultimate expression of the local field concept. 

The relation between the local and the global 
coordinate systems is conveyed by a family of vector 
fields e/(#), which respond to general coordinate 
transformations and local Lorentz transformations as 

and 
ea

lt(x)= (dx»/dxv)ea
v(x), 

ea
fi(x) = la

h(x)eb
li(x), 

respectively. In the latter, the matrix / obeys the 
Lorentz invariance condition 

where gab is the Minkowski metric tensor, which we 
take to have the value — 1 for its temporal component. 
The inverse vector set eM°(#), 

3 H. Weyl, Z. Physik. 56, 330 (1929). Our approach derives 
most directly from this source rather than the later developments 
of Schrodinger, Bargmann, Belinfante, and others. 


