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We have studied the statistical properties of a single mode of a radiation field in interaction with a very 
large number of material quantum systems. The quantum systems are assumed to be in internal thermal 
equilibrium at some positive or negative temperature. Under appropriate conditions we find linear solutions 
to Heisenberg's equations of motion for the field. We then make use of the quantum characteristic function 
to evaluate the statistical properties of the field during the interaction. A general conclusion which may be 
drawn is as follows. If at some initial instant the field can be resolved into the sum of the Gaussian zero-
point field and an independent "input" field, then at later times the total field may be resolved into the sum 
of three independent fields; the unaltered zero-point field, the amplified or attenuated input field, and a 
Gaussian thermal or spontaneous emission field. 

I. INTRODUCTION 

IN a recent paper1 we have made a quantum analysis 
of the noise properties of parametric amplifiers. 

In this paper we apply similar mathematical methods 
to maser-type amplifiers or attenuators. 

Many authors2-21 have previously dealt with problems 
similar to that which is our present concern; namely, the 
interaction of a single quantum oscillator (in our case a 
radiation field oscillator) with a large number of loosely 
coupled quantum systems which are in thermal equi­
librium among themselves at some positive or negative 
temperature. Our model, a generalization of that used, 
for example, by Senitsky,8 is rather venerable, as are 
the assumptions which lead to the linearization of 
Heisenberg's equations. 

Our main conclusion, that the field spontaneously 
generated by the quantum systems always has the 
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statistical properties of additive Gaussian noise, agrees 
with results obtained by Schwinger20 and Wells.21 Our 
concern has been to keep the quantum-mechanical 
treatment of the problem in the simplest possible form. 

II. THE MODEL 

We consider the radiation field of a single mode of a 
lossless cavity, resonant at frequency co. At some initial 
time, say at l = h, this radiation field is weakly coupled 
to a very large number of nearly independent quantum 
systems. The quantum systems will, for convenience, 
be referred to as "atoms" and their properties will be 
kept as general as possible consistent with simplicity 
in the mathematics. The "atoms" might be harmonic 
oscillators, magnetic particles with half-integer angular 
momenta, etc. 

Let us specify the properties of the atoms. Each 
atom is assumed to have a set of M equally spaced 
energy levels, where M may be finite or infinite. The 
energy separation between adjacent levels of the j t h 
atom is taken as ftooj. I t is assumed that there are 
sufficiently numerous atoms with energies in the 
neighborhood of any coy so that they may be represented 
by a continuous density function, cr(coy). Only atoms for 
which coy«co couple to the radiation field to an ap­
preciable extent. 

The atoms are assumed to be weakly coupled to each 
other, and they are also assumed to be in weak thermal 
contact with a "heat" bath at temperature T. They, 
therefore, have a Boltzmann distribution corresponding 
to the temperature T at time h. 

The couplings among the atoms, and between the 
atoms and the heat bath, are assumed to be so weak 
that they can be ignored during the interaction time. 
Further, the number of atoms is assumed so large, and 
their individual interaction with the field so weak that 
the statistical distribution of the atoms is not changed 
appreciably during the interaction time. These assump-
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tions are made to insure that the amplification remains 
unsaturated during the interaction, i.e., that the 
amplification remains linear. There are of course other 
ways of obtaining linearity, but presumably they will 
lead to no new phenomena. 

The Hamiltonian for the radiation field in the cavity 
before coupling to the atoms is taken as 

flr
fl=*co[at(0a(0+i] = i [^ (0+co 2 g a (0 ] , (1) 

where a(t) and a^{t) are the Heisenberg annihilation 
and creation operators, respectively, for photons in the 
radiation field. The Heisenberg operators p(t) and q(t) 
are proportional to the electric and magnetic fields, 
respectively, and are related to a(t) and at(t) by 

p(t) = i(fu,/2)^laKt)-a(tn (2) 

g(0=( f t /2« ) 1 / 2 [ a t (0+a(0 ] . 

We shall adopt the notation that a Heisenberg operator, 
when it is evaluated at time t=h (when the interaction 
is turned on) will be written with its time argument 
omitted; e.g., at(2i)==at. 

When a basic set of eigenstates of the field is needed 
we will usually use the eigenstates of Ha. These eigen­
states are represented by the kets 

\n) ( » = 0 , 1 , 2 , 3 , - - . ) , 
where 

a t |w)= (n+l)1/2\n+l); a\n)=nl/2\n-l); 

a^a\n)=n\n). (3) 

n is the number of quanta in state \n). 
The Hamiltonian for the atoms before coupling to 

the radiation field is taken as 

Hb=Y,ih<*W&), (4) 

where the sum is taken over all N atoms. 3C/ is the 
"number" operator for the jth atom. The energy 
eigenstates of the jth atom are represented by the kets 
\m>j), where 

3Cy | ntj)=m j | mj). (5) 

nij has integral values from 0 to M — 1. 
We next define bj+(t) and bf~(t), respectively, as 

raising and lowering operators for the atoms so that 

bj
+\mj)=\j>m+i\mj+l); &y~|wy)==\/,m[m/-l). (6) 

We choose the phases of the states | nij) so that Xy,m is 
real. Also bj+ is the Hermitian adjoint of bf. In order 
that there be just M levels for the jth atom, we require 
that 

Xy,M=Xy,o—0, 
or 

6y+| (AT—l)y>=&y-IOy> = 0, 

where |0y) is the ground state of the atom. There are 
certain cases for which 5C;- can be related to the b/s. 
For example, if the "atoms" are harmonic oscillators, 

then 

and 

However, there need be no specific relationship between 
3Cy and the b/s. 

Finally, we must postulate an interaction Hamil­
tonian. In order to conserve energy in first order, it 
must have the form 

Hha=fi L y K£b^t)a(t)+br(t)aKtn (?) 

where KJ is the coupling coefficient between the ^th atom 
and the field. With this form of the interaction, destruc­
tion of a photon accompanies promotion of an atom 
to the next higher state, while creation of a photon 
accompanies the demotion of an atom. In order that 
the interaction be linear, the K/S must be sufficiently 
small that it is unlikely for any particular atom to 
change its state during the interaction time. 

The total Hamiltonian is then 

H=Ha+Hb+Hba. (8) 

III. THE COMMUTATION RELATIONS AND 
EQUATIONS OF MOTION 

The commutation relations for the field operators 
are constants of the Heisenberg equations of motion. 
They are 

| > ( 0 , a t ( 0 > l ; [ a ( 0 , « ( 0 ] = [ * t ( 0 , « t ( 0 ] = 0; 

[ ? « , £ « ] = * . (9) 

I t follows from (5) and (6) that 

[6^(0,3C*(0]==F4/fc(0«y*, (10) 
and that 

(mj\ [J/~>&*+]| w,-)= (Ay,m+i2—\y,w
2)5yfc. (11) 

Operators relating to different atoms of course commute. 
From these commutation relations and the Hamil­

tonian (8) it follows that the Heisenberg equations of 
motion are 

da(t) 1 
i =-£fl(0,f l ] = « a ( 0 + E «fir(f), (12a) 

dt h 

dbr(t) 
i = o ) i 6 y - ( / ) + j c £ 6 r ( 0 , 6 / f ( 0 X 0 , (12b) 

dt 

i-U>r(t),b*-{t)-] 

dt 

= «y{CCfty-(0,fty+(0],&i+(0X0 
+ [ p y - ( 0 , 6 y + ( 0 ] , 6 r ( 0 > t ( 0 ) , (12c) 

together with the ad joints of (12a) and (12b). 
These equations of motion are, in general, nonlinear. 

An exception arises for the case in which the 
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"atoms" are harmonic oscillators, for in this case 

:*r(O,»/+(0>i. 
The general case, however, becomes linear for values 

of KJ sufficiently small that we may replace the operators 
[bf~,bj+2 by constant numbers. To see that this 
replacement is reasonable, we note that since [from (6)] 

[*/-»*/*"] ( mi)= (*/, m+l2~\j\ n?) I Wy), 

it is apparent that an appreciable change in the operator 
would result only from a change in the distribution of 
the atoms among their various energy levels. However, 
for sufficiently small /cy, the chance of any particular 
atom making a transition becomes negligibly small, and 
so we see that P>y~~,£y+] stays constant. Mathematically, 
we see from (12c) that the change in [bf,bj+2 is °f n r s t 

order in Ky, and so enters (12b) in second order in K3: 
I t is not so easy to obtain a physical picture of why 
replacement of [£y~,£y+] by a number rather than by a 
constant operator is reasonable. I t amounts to ignoring 
all commutators of [bf~J)j+~] with the operators bf 
and bj+ as they occur in the solutions to the equations of 
motion. However, direct expansion of the formal 
solution of the equation of motion, i.e., 

a (/) = exp (—iHt/h) a exp (iHt/h), 

in a power series in the coupling constants K3- shows that 
all such commutators enter to a negligible order of KJ. 

Further simplification of (12b) results if we im­
mediately average it over a reasonably large group of 
atoms which have the same frequency «y and the same 
coupling constant. This is permissible since the 
equations are now linear. If we do this, the constant 
[brfij+~] is replaced by its expectation value, viz., 

<Py-»y+]>sZ:P(»y)<«y|C*y-fty+]|«y>, 
mj 

where P(m3) is the probability of finding an atom in the 
state \mj). Using (11), this may be written as 

mj 

= LDP(wy-l)-PK)]Xy,m
2, 

mj 

where we have shifted the index of the first sum down 
by one. Since the atoms have a Boltzmann distribu­
tion, P(nij—l) — TjP(nij) where 

Tj—exp(fiQ>j/kT). (13a) 

Note, therefore, that 

P(m3) = Tr*irZ,Tr*t. (13b) 
mj 

Thus, we have 

<Pr ,*y + ]>=( ry- l )Ay , (14a) 

Ay=£Xy,m2-P(wy). (14b) 
mj 

With these approximations (12) becomes 

da(t) 

dt 

dbf(t) 
i 

dt 

=coa(/)+£;Ky&rOO, 

= «y&/-(*)+K/(r/—l)Ayfl(/). 

(15) 

The harmonic oscillator case is obtained by letting 
(TJ— l)Ay equal unity. 

The solution of these linearized equations has the 
form 

a(t) = u(t-h)a+Y,,- Vj(t-h)br. (16) 

u(t) and Vj(t) are found in Appendix A and are given by 

u(t) — exp[—io)t+ (M/2) (1 — r)Af\, 

Vj (t) = — hj exp (—iKjt) 

1 — expp(o)y—co)H-|/i(l — r)Af\) 
X\ ; , 

i(o)—coy) — J/x(l — r)A J 

(17) 

where r and A are r3- and Ay evaluated at co = coy and ix 
is a constant defined by 

fJL = 2TTK^(J^ (18) 

where 

and where K and a are KJ and cr(coy) evaluated at a)j=u. 
I t will be shown that | ^ ( 0 | 2 is the power gain of the 
field resulting from the interaction. From (17) and (13) 
we, therefore, see that if r > l (T>0) the field is 
attenuated, while if r < l (T <0) the field is amplified. 
Note that when the atoms are harmonic oscillators, 
then A( r—1)=1 . For this case T must always be 
positive, and only attenuation can result from the 
interaction. 

The commutation relation \ji{t),a^{t)~\—\ together 
with (14a) and (16) leads to the relation 

k ( ^ ^ i ) | 2 + L ; | ^ - ^ i ) | 2 A y ( r y - l ) = l , (19) 

between u(t) and the Vj(t). This relation will be useful 
in simplifying later results. 

IV. THE QUANTUM CHARACTERISTIC FUNCTION 

As shown in reference 1 the statistical properties of 
the radiation field at any time t may be obtained from 
the quantum characteristic functions, defined by 

Cff(f,0 = <expC%(0])=Tr{p e x p £ & ( 0 ] } , 

CP t t ,0 = <exp[t^(0]> = Tr{p exp£# (* ) ]} , 

where p is the density matrix for the complete system, 
evaluated at t=h, and £ is a real parameter. I t was 
demonstrated in reference 1 that the expectation value 
of the nth moment of p(t) or q{i) is given by the ^th 
derivative of Cp or Cq with respect to i£c evaluated at 
£=0 . Furthermore, the Fourier transforms of Cv and 
Cq give the probability distributions for p(t) and q,(t) 
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respectively; i.e., 

(p'(t)\p\p'(t))=~- f CP&t) exp[ - ,Wm, 
Z7T J _oo 

<3'WIPIS'(0>=- f Ce(W)exp[-»fe'(OK. 

Both Cg and Cp have the general form 

C&0 = Tr{p exp[i{(a*at(0+aa(0)]}, (20) 

where comparison with (2) shows that 

Cp = C[a^ - t (*w/2) l A sa p ] , 

Cg=CCa=(^/2co)1/2=Q!5]. 

From the solutions of the Heisenberg equations of 
motion, and knowledge of the initial density matrix 
for the system, we can evaluate the characteristic 
function. Let us now do this. 

The first step is to transform the operator in (20) 
into normal product form, in which all annihilation 
operators appear to the right of all creation operators. 

The identity22 

etf [a*at(0+«a(*)] = e -$ 2 | « l 2 /2 e t f a*a t (0^aa(0 ( 2 1 ) 

is a direct result of the commutation relations (9). 
Next, we note that before the atoms are coupled to 

the field, the density matrix of the system factors as a 
direct product 

N 

P = PaIIP/i (22) 

where pa is the density matrix for the field, and pj is the 
density matrix for the jth. atom. Since the atoms have a 
Boltzmann distribution before the coupling is turned 
on, pj is a diagonal matrix in the energy representation, 
with matrix elements 

{mi\pi\mi)^P{mi) = rrmi/YtmiTrmU (23) 

where we have used (13). The density matrix for the 
field is determined by the assumed input conditions; 
we may, however, express it in terms of an appropriate 
input wave function by the relation 

PaH*a><lM. (24) 

Note that the wave functions and density matrices 
are constants in the Heisenberg picture, which we are 
using throughout this work, and are determined from 
the initial conditions of the problem. 

Using the solutions of the equations of motion, (16) 
along with (21), (22), (23), and (24), we find that we 

22 This is a special case of the identity, 
eAeB«e\\A,B]eU+B) ^e[A,B]eBeA} 

which holds when the commutator [^4,B] commutes with A and B. 
For a proof see A. Messiah Quantum Mechanics (North-Holland 
Publishing Company, Amsterdam, 1961), Vol. 1, p. 442. 

can rewrite (20) in the form 

C&O « exp [ - (S2/2) | a | ̂ A ({,*)*« A (25) 

where 

^(g^) = Tr{pa^«*u*(*-fl)aV^w(<-'l)a} 
= <^«| e^a*M*(^ i l)aV^w(e-' l)a|^a), (26a) 

and 
N M 

5(*,fl=n z Pi***) 

X (nij I e*VS-*«-*i) bi+eitavjt*-ti) bj~ | m^t (26b) 

The important result here is that in (25) the charac­
teristic function has been separated into a constant 
factor, which will be related to the zero-point field, a 
second factor which contains operators and wave 
functions relating only to the input field, and a third 
factor whose operators and wave functions depend only 
on the initial atomic states. The second factor A(£,t) 
contains the amplification properties of the interaction, 
while the third B(j;,t) contains the noise properties. 
Product characteristic functions of this sort are obtained 
classically from the sum of statistically independent 
fields.23 Thus, we can consider that each of the three 
terms of (25) represents an individual statistically 
independent field: The sum of the three fields forms the 
total field. 

Consider the first term, 

exp[ - (? /2) | a |* ] . 

This has the classical form of the characteristic function 
of Gaussian noise. Its average energy is 

*[</>2)+^(?2)]=iCI«P|2+"2l«9|
2J=^-

We can thus identify this field with the zero-point 
field. Note that this term is invariant under the amplifi­
cation or attenuation processes considered here. 

Let us now evaluate B(%,t). To do this we note from 
(17) that Vj(t—ti) is a small quantity, of order KJ, SO 
that we can expand the exponentials of (26b), keeping 
only the first order terms. Thus 

N M 

X (mj | (1+i^vfb*) (l+i&vjbr) | mi). 

The terms linear in bf and bj+ have no diagonal matrix 
elements, and from (6), we have 

(ntj | bj+bf | mj) = \j>n?. 

Thus, taking the indicated matrix elements, we obtain 

JV M 

23 W. R. Bennett, Proc. I.R.E. 44, 604 (1956). 
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Using (14b) and the relation £jP(flfcy)=l, we have 

5(f,0=IICl-?|a|2l^-OI2Ay]. 
y«i 

Next, since the v/s are small quantities, we can put 
this expression in exponential form, i.e., 

5 ( y ) = e x p { - ? | a | 2 E y | ^ - O I 2 A y } . (27) 

Lastly, from (17) we note that Vj(t—ti) has a strong 
maximum in the vicinity of wy=co, since the factor 
/x(l —r)A/2 is small compared to o) (so long as the gain 
per cycle is small compared to unity). 

Since Ay and r3- vary comparatively slowly with wy, 
we may reasonably replace them by A and r (evaluated 
at coy=co), respectively, in (19) and (27). Then, substi­
tution of (19) in (27) yields as a final result 

B($,t) = exp{-?\a\Hl-G)/(T-l)}, (28) 

where r=exp(/ku/&r), and we have substituted 

G - | # ( / - / 1 ) | 2 = e x p { M ( l ~ r ) A ( / - / i ) } . 

Here we are taking explicit recognition of the fact that 
G is the power gain of the input field resulting from the 
interaction, a fact which will be shown below. (It 
might be noted that the above approximations to 
obtain B are unnecessary when the atoms are harmonic 
oscillators.) 

Like the zero-point field term, B(£yt) has the classical 
form of the characteristic function of Gaussian noise. 
Note also that none of the detailed properties of the 
atoms remain in B. I t is dependent only on the gain 
produced from the interaction and on the temperature 
of the atoms. The average energy of this field, 
i{(p2)+^(q2)}, equals 

•O- ftco(l-G) 

exp(ho)/kT)-l 

We thus identify it with the thermal, or spontaneous 
emission, noise produced by the atoms. For emphasis, 
we repeat the point that this noise field and the zero-
point field are always additive and Gaussian. 

Finally, let us consider the term 

Xexp^aG^e-^V-^a) |^«>, (29) 

where we have set u(t—t\) of (26a) equal to 
QU2e-i<*(t-ti) [-see (17) a n ( i (28)]. This term represents 
a field which is always a precise amplified or attenuated 
replica of the input field (excluding the zero-point 
field). The zero-point field has already been taken into 
account. To show that it indeed does not affect A ({,/) 
in any way, we note that if the initial state is the vacuum 
state, i.e., if 

If->=|o.> 

then, since 

e x p ( 7 a ) | 0 a > = ( l + 7 « + - - - ) | 0 a > = | 0 o > , (30) 

where y may be any complex number, we see that 
A (g,/) reduces immediately to unity. Thus, all moments 
of the field vanish for all time, and so must the field 
itself. An interesting and fairly general case for which 
the input field may be resolved into a signal field plus 
an additive Gaussian noise field is explicitly worked out 
in Appendix B. However, to understand the general 
nature of A(i;,t), we need only examine its dependence 
on G. Any moment of the field represented by (29), 
say the nth, is given by 

Mn=\-—A&f)] . 

By inspection of (29), it is clear, however, that the 
quantity 

r dn 

Ld(i&My 
A&t) = G-»!*Mn 

£=0 

is independent of G. Thus, at equivalent times in the 
cycle [i.e., for co(t— ti) = 2irl, where I is an integer], 
we have 

This can occur only if, at the output, this field is an 
exact amplified replica of the input, with power gain G. 
And of course if we know the distributions of p and q 
for one time in a cycle, we know them for all times in 
the cycle, since the interaction is presumed to have 
appreciable effects only for times long compared to a 
cycle. 

To sum up this discussion, we see that if, at the 
input to a linear maser-like amplifier or attenuator the 
field can be resolved into the sum an "input" field and 
the Gaussian zero-point field then the output field can 
be resolved into a sum of three fields; first the Gaussian 
zero-point field, which remains unchanged, second a 
Gaussian spontaneous emission or thermal field, and 
third a precisely amplified or attenuated replica of the 
input field. The argument can easily be extended to 
include a sequence of attenuating and/or amplifying 
processes. The zero-point field simply goes unchanged 
through the sequence. The other component fields of 
the output include the precise replica of the input 
multiplied by the overall gain or loss of the sequence, 
and the sum of the thermal or spontaneous emission 
Gaussian noise fields, each such field being of course 
multiplied by the net gain of all stages following the 
one in which it is evolved. A particular conclusion that 
may be drawn from this latter result is that if at the 
important times in the sequence, i.e., at the input and 
at the output, the total field is much larger than the 
zero-point field, then the zero-point field may be 
neglected everywhere, and quantum-mechanical effects 
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enter the process only in the proper determination of 
the thermal or spontaneous emission noise power 
generated by each stage. All of these noise terms are 
additive and Gaussian everywhere in the sequence. 

APPENDIX A 

To solve the equations of motion (15) approximately, 
we take their Laplace transforms. Let a (s) be the 
transform of a(t), bf~(s) be the transform of bf(t)> 
eliminate bf(s) from the coupled equations and we 
find that 

/ . ̂  KJhf~ \ 

a 0 ) = • 
/ K * 2 ( T * - 1 ) A A 
[s+ia+T, ) 
\ k S+tO)k / 

= w ( s ) a + £ Vj(s)br, (Al) 

where u(s) and v}-(s) are the Laplace transforms of u(t) 
and Vj(t), respectively, while a and bf are the Heisen-
berg operators at t=h. 

The sum over k in the denominator of (Al) will in 
general have a real and imaginary part. The imaginary 
part will make a small correction of order K2 to the cavity 
frequency <a which we shall neglect. The real part which 
is also small will act as a loss (or gain) term. We 
approximate the real part of this sum by an integral : 

i Kk2(rk— l)Afc] r™ Kk2(Tk—l)Akor(o)k)do)k 
Re £ : U / - . (A2) 

We assume the numerator is a slowly varying function 
of o)k in the neighborhood of o>k~is. Furthermore, since 
the pole in the s plane is approximately located at 
s—— ico [provided the integral in (A2) is small], we 
may write the sum in (A2) as 

r00 do>k 

K„ 2(T„-1)AW<T(«) / — = I T K V ( T - 1 ) A . (A3) 

J-oo s+icok 

We, therefore, define the parameter 

M=2™„V(«) (A4) 
which we require to be small but finite in the limit as 
(r(co) —» oo and KJ —» 0. 

With these approximations (Al) becomes 
a 

d(s) = 
s+iw+in(T—l)A 

Kjbf _;£ . (A5) 
i (s+io)j)ls+io)+y(r-l)A] 

Taking the inverse transform we find 

aty^uit-tJa+J^jVjit-t^bf, (A6) 

where u(t) and Vj(t) are given by (17) of the text. 

APPENDIX B 

An interesting and rather general case to consider is 
when the input field is resolvable into a signal field 
accompanied by an arbitrary amount of Gaussian 
noise. What is needed for the explicit evaluation of the 
term A (£,£) in the characteristic function is the initial 
wave function or density matrix for the field. Consider 
a wave function of the form 

\fa)=N exp(e*a t+5aV) |0>, (Bl) 
where 

5=[nV(l+^)]1 / 2 , 
€=[(^)1 / 2 / ( l+^)>> 

N~2= (l+nN) e x p [ n * / ( l + n * ) ] . 

In (Bl) we have introduced, for mathematical con­
venience, an auxiliary (fictitious) boson field represented 
by the promotion operator cf, which is denned to 
commute with a and af and to satisfy the boson commu­
tation relation 

[ c ) C t ] = l . 

Finally the ket |0) represents the vacuum state for 
both fields, i.e., |0>s|0 a>|0 c>. The fictitious field is 
introduced simply for mathematical convenience, since 
calculations with the resulting wave function can be 
accomplished by manipulation of the operators. The 
density matrix for the physically meaningful field 
results from taking the trace over the auxiliary field 
of the density matrix 

| * a > < * a | , 
yielding 

Pa=N2 Z n c e x p ( € V ) < » c | e x p ( t o V ) | 0 c ) | 0 o > 

X <0a | (0e | exp (doc) | nc) exp (ea) 

= N2 Z n ( 6 2 V ^ 0 ( ^ ) n e x p ( € V ) |00><0a| (a)w exp(ea). 

I t is clear that the wave function | \f/a) and the density 
matrix pa are equivalent for the evaluation of the 
expectation value of any operator function of a and a1"; 
however, \\f/a) is the more simple. I t will appear that 
at the initial time t=h the physically meaningful field 
represented by the wave function (Bl) is a sum of 
signal and noise fields, with average signal energy 
flshcc and average noise energy (nN+i)ho>. Us and n^, 
respectively, have the significance of the average 
number of signal and noise photons in the "input" field, 
the \fio) being the zero-point energy. 

In working with this wave function we will use two 
identities. The first is 

1 / SflVv 
exp (doc) exp ( toV) 10) exp! ) 10). (B 2) 

1-52 \ 1 - 5 V 

This may be proved directly by expanding the ex­
ponentials in power series in their arguments^ then by 
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repeated commutation carrying all the a and c factors 
to the right until they are eliminated, and finally 
summing the resulting series. The second identity is 

eyaezaf=eyzezafeya^ (£3) 

which holds when y and z commute with each other 
and with a and af.22 

With the wave function (Bl) let's examine the field 
represented by the term (29) of the characteristic 
function. We have, from (29), 

A ({,*) = &a | exp teX*«t) exp (ifra) | *fl>, (B4) 

where 
X=aG1/2 e x p [ - i t t ( * - / i ) ] . 

Using (B3) to commute the central two factors of (B4) 
and writing out the wave function from (Bl), we have 

A(£,t) = N2 exp(£2|X|2)(0|exp(<5a<;) exp[(€+i£X)a] 

X e x p [ ( e * + ^ X * y ] exp(8aV) 10). (B5) 

Using (B3) and (B2) in turn, we can carry the term 
exp(8ac) to the right. The result is 

^ ( ^ ) = [^ 2 / ( l~§ 2 ) ]exp(e 2 |X | 2 ) 

X<0|exp[(€+*fX)fl]exp[(€*+i{X*)at] 

Xexpp(e*+ifX*)c] e x p [ 6 a V / ( l - 5 2 ) ] | 0 ) . (B6) 

Next we use (B3) successively to carry the terms 
expp(e*+i£X*)<f| and exp[(e+i£X)df] to the right until 
they disappear (i.e., become unity) against |0) [see 
(30)]. The remaining operators, exponential functions 
of af, cf, and atcf, similarly become unity when applied 
to the left to (01, and thus we obtain the result 

iltt,0- expfeXM- ). 
1-5 2 \ 1-52 / 

Putting in the values of the parameters from (Bl) and 
(B4) we have 

^ ( ^ 0 = exp{iK^>s)1 / 2Ca^ [ w a- f l ) +*'3+Q:Vtw^-< l )+^]} 

Xexp(-£ 2H 2GnAr). (B7) 

Following our earlier discussion of the complete 
characteristic function, we see that the field represented 
by (B7) may be resolved into the sum of two statistically 
independent fields. There is first the signal field, 
represented by the exponential term in A whose 
argument is linear in £. This is a field whose amplitude 
and phase are precisely defined and whose average 
energy is 

GtlOOUs. 

Second, there is a Gaussian noise field represented by 
the term 

exp(-£2 |a |2Gniv). 

Its average energy is 
Gtioonx. 

We see, therefore, that the wave function (Bl) repre­
sents an input which is a sum of signal and noise fields 
(plus the Gaussian zero-point field when the complete 
characteristic function is considered). Also we see that 
at times t> fa, after the interaction is turned on, both the 
signal and noise fields represented in A (£,t) simply grow 
or decay with power gain G, in accord with the discus­
sion of A (£,/) in the text. 


