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B ^ (S,t) = g2( + ) B <"> (s,t) = gr{ + ) 

\m2—s m2—s/ \m2—s m2—s/ 

+ - [ds'ImB^(s',t)( Y (B6) + - [ds'ImB™(s',t)( + Y 

If / 1 1 \ Comparing these equations, it becomes clear that the 

A^(s,t)=- / ds' lrnA^(sf,t)l- — J, (B7) subtraction is necessary only for the 4<+> amplitude. and 
This is the reason why the charge-exchange scattering 
amplitude was successfully explained.2 
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The space and time Fourier transforms of the Van Hove correlation function are evaluated for the cases of 
coherent scattering from simple crystals and, in a "quantum hydrodynamics" approximation, from liquid 
Hell . A compact approximate expression for the one-phonon part of the crystal correlation function trans­
form is given, and the contribution of the two-phonon term is considered. A new method of obtaining 
quantum-mechanical corrections to the classical expression for the Van Hove self-correlation function is 
discussed. 

I. INTRODUCTION 

IT has been shown that the energy-transfer-dependent 
differential cross section for the coherent scattering 

of cold neutrons1 or gamma rays2 from an assembly of 
N identical atoms is given by 

d2a da A 
—=JV—Z(q,«), 
d&de dQ, 

where 

and 

T(q,0 

Z(q 
1 /-00 

2ir 7_oc 
dtexp(—Ut)T(q,t) (1) 

^ i V - 1 / E e x p [ - ^ T y ( O ) ] i : e x p p q T / ( 0 ] N ) . (2) 

Here d<TA/dti is the appropriate scattering cross 
section for a single atom, q is the momentum transfer 
of the scattered particle, e is the initial energy of the 
scattered particle minus its final energy, and Tj(t) is 
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the Heisenberg position operator for the j t h atom at 
time /. The operator ( )T denotes an ensemble average 
over the states of the target system at constant temper­
ature T) thus we have 

(0)T=Tr[exp ( - 2/3#)0]/Tr[exp ( - 2/3#)], (3) 

where 0 is any Heisenberg operator pertaining to the 
system, H is the system Hamiltonian, and 

I3^1/2KBT, 

where KB is the Boltzmann constant. Unless otherwise 
indicated, units with h—1 will be used throughout this 
paper. 

The evaluation of these functions and their counter­
parts for incoherent scattering has been undertaken by 
several authors1-"6; the work of Van Hove1 and Visscher3 

on crystals and of Vineyard,4 Schofield,6 and especially 
Rahman, Singwi, and Sjolander6 on nearly classical 
fluids is of special interest here. We derive improved 
approximate expressions for Z(q,e) and its three- and 
four-dimensional Fourier transforms for the cases 
of liquid Hel l , idealized crystal lattices, and nearly 
classical fluids. 

3 W. M. Visscher, Ann. Phys. (N. Y.) 9, 194 (1960). 
4 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 
5 P. Schofield, Phys. Rev. Letters 4, 239 (1960). 
6 A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126, 

986 (1962). 
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I. LIQUID Hell 

The exact particle density function is 

p(r,i)= Z «[r-ry(0]. 

Then from (2) and (4): 

(4) 

T(q,t) = N- dhdh' 

X e x p p q . (r-rO](p(r / ,0)p(r ,0)r . (5) 

From elementary "quantum hydrodynamics" argu­
ments,7 approximate representations for the particle 
density function p(r,£) and Hamiltonian H may be 
obtained. In this model, there is a continuous fluid that 
sustains plane wave excitations of momentum k and 
energy co(k). The expressions are 

p(tit) = N/V+i(N/2MV2)1/2 £ *[>(k)] - 1 / 2 

k 

X [ a k exp{^(k-r—w(k)/)} 

—Hermitian conjugate], (6) 

S=i L w(k)(akak
++ak

tak) , (7) 

with 
[a k )a k ' ]=[a k

t ,a k ' t ]==0, [ak ,ak/t] = 5kk', (8) 

Here V is the system volume, M is the particle mass, 
and #k is an annihilation operator for an excitation of 
momentum k. 

By direct evaluation we find that 

<p(r,0>r=<p(r,O>r. 

I t is not so obvious, however, that the relation 

<P(r',0)p(M)>r~<p(r',0)p(r,0>r 

is a reasonable approximation. On the other hand, this 
type of substitution has been fairly successful in other 
treatments of liquid Hel l , and will be assumed here. 
This immediately gives 

r(q,0= 
2Af«(q) 

{{aqa^)T exppco(q)/] 

+Wflq>T exp[-ico(q)/]}. (9) 

Since (aqtaq)r is the expectation value of the number 
operator for the excitation state of momentum q, and 
the excitations obey Bose-Einstein statistics, we find 
that 

W a q > r = « c o t h | > ( q ) ] - l } . (10) 

Upon using (8) and (10), we get 

<flqaqt) r=i{coth[j&o(q)]+l}, (11) 
7 K. R. Atkins, Liquid Helium (Cambridge University Press, 

New York, 1959), pp. 70-73. 

which gives 

r(q,0=- - [ i{co th[>>(q) ]+ l} exppco(q)/] 
2Afw(q) 

+ i { c o t h J > ( q ) ] - l } e x p [ - ^ ( q ) * ] ] . (12) 

The Z(q,e) corresponding to (12) is 

Z(q,e)=-
2Mw(q) 

| { co th03co(q) ]+sgn(e )} 

X 5 [ | e | - c o ( q ) ] , (13) 

where 
sgn(#)= 1, x>0 

s 0, x=0 

= - 1 , x<0. 

If q2/2Mco(q) is replaced by its free-particle value of 
unity, the result for Z(q,e) is just that for ideal He gas. 
This indicates that our results are quite crude, and 
that any support for the approximate validity of (13) 
must be of an empirical nature. Such a check could be 
obtained from measurements of the amplitude of the 
cross section integrated over energy transfers in the 
neighborhood of the peak indicated by (13). 

III. SIMPLE CRYSTALS 

A very general expression for T(q,t) for the case of 
simple crystals has already been derived by Van Hove1; 
the expression he obtains is, however, somewhat 
complicated. We obtain a somewhat more transparent 
result for T(q,t) and give simple approximations 
for the coherent part of Z(q,e) corresponding to one-
phonon processes. The contributions of the coherent 
second-order processes are also discussed. (The incoher­
ent cases have been considered in detail by Visscher,3 

and will not be treated here.) 
For completeness, we shall indicate the procedure of 

derivation starting from Eq. (2). The development 
follows the well-known approach of Zemach and 
Glauber8 and Van Hove.1 First, we make the normal 
mode expansion: 

ry(0 = l / + Z hjU\j{i), 
x 

(14) 

where ly=(ry(/)) r is the average position of the jth. 
atom and e\j and U\j(t) are the direction (polarization) 
and amplitude of its displacement in the Xth normal 
mode. 

We shall need the exponential combination rule: 
If [a,[a,/3]]=D8,[a,j8]] = 0, then 

exp (a) exp (fi) = exp (£[>,#]) exp (a+fi). (15) 

We shall also make use of the Bloch theorem9: If L is a 
linear combination of harmonic oscillator displacements, 

8 A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956). 
9 F. Bloch, Z. Physik 74, 295 (1932). 
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then 
(exp {L))T = exp (%(L2)T). (16) 

If we combine (2) and (14), and use (15) and (16), 
it is easy to show that 

ii' 

X e x p [ - \ £ { (q- exy)2+ (q- ^ ) 2 }xW(0)>r ] 

X e x p [ E (<T hj) (q* hj>)(uv(0)uxf (*))r], (17) 
x 

where 

and 
<«x/(0)>r=<«x2(0)>r. 

A representation of the wxy(tf) is 

uxj(t) = i{2NM)~v* ECcox(k)]-1/2 

k 

X[#xk exp{i[k-ly—cox(k)^]} —Hermitian conjugate]. 

Here #xk is an annihilation- operator for a phonon of 
momentum k and energy cox(k) in the Xth mode. The 
&xk satisfy the relations: 

[axk,#x'k']= C^xkt,^x'k't]:=0, 

E#xk,#x'k' t~| = 5xx'5kk'. 

Upon using these expressions in (17) and noting that 
the phonon excitations corresponding to the operators 
#xk obey Bose-Einstein statistics, we obtain 

r ( q , 0 = ^ ~ 1 E exp(-iq.lyyO exp - J E C G H x ; ) 2 

//' I x 

+ ( 5 - ^ ) 2 ] - E ^ x ° ( k ) ) exp(E(<Hx;) 
N k j I X 

where 

(18) 

summand must be essentially independent of 1/y. The 
condition for this independence is just over-all momen­
tum conservation. Equation (18) can now be rewritten: 

T(q,t) = N~* E exp[-J E{ ($•«*)'+ ($• *w)2} 
JJ' X 

1 
X— E^x°(k)]E exp(-fq-I/jO 

A" k / J ' 

Xexp[£(g-6Xy)(g-€xi') 
x 

1 
X-L{^x^ + (k)+Fx^-(k)}] . (20) 

N k 

Equation (20) is a rather formidable expression. I t 
appears difficult to proceed much further in the evalua­
tion of T(q,0 for crystals without resorting to special 
cases and other approximations. Fortunately, the 
results of greatest interest are special cases which can 
be presented in fairly simple form. 

If the third exponential term in (20) is expanded in 
a Taylor's series, the #th-order term will correspond 
only to ^-phonon processes. For the moment, we 
confine our attention to the one-phonon processes, since 
they are the ones of greatest interest for the practical 
purpose of evaluating oox(k). In this case, the scattering 
is effectively a two-body process, and cox(k) can be 
obtained directly from the relation: 

^ x ( q ) = | e | . 

The one-phonon part of T(q,/) is 

r 1 (q ,0 = ^ - » E C E ( r hj)(q- exiO e x p { - | E [($• *x'y)2 

X / / ' X' 

+ ($• ̂ y ) 2 ] - E ^x'°(k)}][E exp(-iq-l/,0 
AT k JJ' 

X - ZiFxjj'+W+Fxjj ~(k)}] . 
N k 

This leads to the following expression for Zx(q,e): 

2Mcox(k) 
coth[/5cox(k)], 

£ i (q ,*)=- -§[coth(/3|e|)+sgn(€)] 

F^Hk)^ 
2Mcox(k) 

H c o t h [ > x ( k ) ] ± l } 

Xexp{TCk-W-cox(k) / ]} . (19) 

This expression is a generalization of a result obtained 
by Schiff10 in connection with the theory of bremsstrah-
lung from crystals. 

If the process described by (18) is to be coherent, then 
the phases of all the terms in the sum over (j,f) must 
be the same, which implies that, in such a case, the 

10 L. I. Schiff, Phys. Rev. 117, 1394 (196). 

2M\ 

X E [ " — E(<Hx;)(<Hxy) 
X L N2 if 

X e x p J - i E [($• ex'y)2+ ($• W ) 2 ] 

X—E/V>(k) 
N k 

E 5 C | e | ~ c o x ( q - Q ) ] , (21) 

where Q is a reciprocal lattice vector. 
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Equation (21) can be simplified further by making 
the Debye approximation in the argument of the 
exponential term. In many cases this exponential term, 
which is just the Debye-Waller factor, will be only 
slightly different from unity; when this is the case, this 
approximation should entail little error. We then obtain 

Zfae^expl-yRiT/Q)-} r i [coth(£ |e i )+sgn(e)] 
2M\ 

X L — Z (<Z* hj)(q- exyOL d[_\e\ - c o x ( q - Q ) ] , 
X N2 ii' Q 

where ® is the Debye temperature, 

y=q2/2MKB® 

R(x)=3 t coth(t/2x)dL 

and 

For most purposes, the contributions of the higher 
order phonon processes to Z(q,e) are dominated by the 
two-phonon term. We have evaluated Z^^e) in Debye 
approximation; the result is 

)~le[ l-^ ( ^ ^ ^ l e x p E - T ^ W D C T ^ W ] ^ ^ ) - 1 ^ ! - - ^ ) 
\ 2KB®/ 

< " 
xe( l — 

2KB® 

2KB%) 

)§[cothGS|e |)+sgn(e)] 

vq+\e\ 

\ 2KB® ) J 2KB®, 

where 

G ^ l n l s i n h B ^ d e l + ^ c s c h R ^ d e l - ^ ) ] } , 

G2=ln{sinh(l/2o:) csch[^|e | - l / 2 a ] } . 

Here v is the speed of sound, 

a^T/®, 0(*) = [ l+sgn(aO]/2, 

and we have suppressed the reciprocal lattice vector 
sum. 

In the limit of zero temperature, the background 
arising from two-phonon creation processes in the range 
of energy and momentum transfers corresponding to 
one-phonon excitations is 

Z*(<1,*) - • h2 exV(-h)e(e-vq)/{KB®\ 

which is independent of e for e>vq. 

IV. NEARLY CLASSICAL FLUIDS 

Much of the theoretical work on cold neutron 
scattering from matter has concerned the evaluation 

of the quantity: 

r . ( q ,0 ^N-i £ <exp[-*q-1,(0)] exppq- ry(0]>r (22) 
3 = 1 

and its corresponding Fourier transform Zs(q,e) for 
nearly classical fluids. To a great extent, this research 
has been concerned with the development of approxima­
tion techniques for the use of classical results to obtain 
Zs(q,e).4,6 Two of the most fruitful of these approxima­
tions have been the Gaussian approximation4 and the 
use of the Schofield theorem.5 

The Gaussian approximation, proposed by Vineyard, 
is based on the observation that in several cases of 
physical interest T8 (q,/) has the form : 

r . ( q , 0 = e x p [ - & M 0 ] . (23) 

Here s(t) is a time-dependent width function, so that 
the Van Hove self-correlation function: 

G . M a (2TT)-3 / d\ exp(-*q- r ) r . (q ,0 , (24) 

l imG.(r ,0 = iV-1 £ <8{ r -Cry (0 - ry (0 ) ]» r (25) 

is a Gaussian function of the form: 

G8(r,/) = Cfw(0] - 3 ' 2 e x p T — 4 ? 
L 2 s(t). 

(26) 

In this approximation, s(f) = J*dsr r2Gs(t,t). 
For example, the exact result for a perfect gas is 

s(f) = -3ifiM~H+3KBTM-H2, (27) 

where M is the particle mass. Similarly, the form of s(t) 
for the classical Langevin equation is 

s{t)={6KBT/nm)lV\t\~l+^{-rl\t\)-]1 (28) 

where rj is the viscous damping coefficient. 
Vineyard4 suggested the direct substitution of clas­

sical forms of s(t) into (23), but, as pointed out by 
Schofield,6 this procedure leads to a result which fails 
to satisfy the detailed balance requirement, and implies 
zero momentum transfer. To remedy this difficulty, 
Schofield suggested the replacement of Gs(r, t-^ifip), 
which can be shown to be real,5 by £ s ( r , / ) | classical, and 
showed that this substitution satisfies the detailed 
balance requirement. 

Two more recent papers give expressions for Gs(t,t) 
which satisfy the detailed balance principle and take 
some of the recoil corrections into account. Aamodt 
et al.11 obtain the expression: 

Z s(q,€)~exp(fc) e x p ( - ^ V 4 M ) Z s ( q , e ) | classical? (29) 

where Z s(q,e)| classical is the four-dimensional Fourier 
transform of Gs(r,if) [classical- In a paper by Rahman 

11 R. Aamodt, K. M. Case, M. Rosenbaum, and P. F. Zweifel, 
Phys. Rev. 126, 1165 (1962). 
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et al.,e the generalized s(t) function: 

1 cl 

- \ dtf (*-/')<v(0)-v(*')>r, (30) 
S J o 

1 ifit 
- * ( 0 = 7 i ( 0 s + 
6 2M 

where v(0 is the particle velocity operator, is first 
obtained. I t is then used in the expression: 

ff.(q,0 = r . (q , t+iitf), flr.(q,0«exp[-g«yi^+f*/5)], 

which is substituted into the exact formula: 

Zs(q,e) = exp03€) / dt exp(—d)H B (q , t ) . (31) 
27r^7_oo \ * / 

We shall now derive quantum-mechanical corrections 
for Gs (r,0 | classical using an approach somewhat different 
from that of reference (6). Let V denote a smoothly-
varying dimensionless parameter which vanishes when 
the coupling between the particles is zero, and let A be 
a similar dimensionless parameter which vanishes when 
Gs(r,t) has the Gaussian form. For example, V might 
be a coupling constant while A might be the relative 
deviation of Gs (r,0 from its best Gaussian fit. Imagine 
Gs(r,t) to be expanded in the series: 

G.(r,*)« E (am+Vbm+VAcm)hn 

m=0 

(32) 

The dimensions of %m are to be compensated by appro­
priate combinations of ^-independent variables forming 
parts of the coefficients am, bmy cm. No terms propor­
tional to A alone appear, since the expression obtained 
for zero interaction is already a Gaussian represented by 
the sum over the "a" terms. This series is only intended 
to be used as an aid in understanding different approxi­
mations to Gs(t,t); it is of no value otherwise. 

All the approximations presently made correspond to 
truncations of the series (32). Obviously, the Vineyard 
classical approximation has errors proportional to &, 
while the original Schofield approximation has errors 
proportional to fi2. On the other hand, the approxima­
tions given in references (6) and (11) yield the correct 
result in the limit of no interaction, and are certainly 
correct to zero order in %; their errors are, thus, at worst 
proportional to Vfi. 

Since G«(r, t+ififi) is real, and 

Gs(r,/) = exp[-^ /35/^]6 !
s ( r , t+ibp), 

we have by inspection the Schofield relation.5 

ImCG8(r ,0]= -tan(A/35/50 Re[G s ( r ,0] . 

If (26) is applicable, we can also write: 

l m [ > ( 0 ] = -tan(*/35/5/)Re!>(0]. 

We also note that the real parts of the correlation 
functions contain only even powers of fi, and that, for 
a perfect gas, 

R e [ > ( 0 ] = S ( 0 | classical-

Suppose for the moment that Gs(t,t) has the 
Gaussian form. Then 

s(0 = R e [ > ( 0 ] + i lm[>(0] , 
= [ 1 - i tan(ft05/5O] Re[>(0] , 
= [ l - i tan(^5/50X01c iassicai+0(FA2). 

Our result is easily extended to include more general 
forms of Gs(r,t). I t is convenient to use T s(q,0 in the 
development of these expressions. We write 

T.(q,0 
~ e x p [ - ^ ( 0 ] , 
= exp[J^2 tan(*j86/50 Re{*(0>] exp[ -£g 2 Re{*(0}], 
^exp\^iq2 tan(A/55/50^(01 classical] 

X e x p [ — iq2s(t) | classical]. 
In addition, we have 

ff.(q,O=r.(q,H-t*0), 
~exp[^'g2 tan (ft/35/50 exp(iftpd/8t)s(t) [classical] 

X exp[—\q2 exp (if$8/dt)s (t) | classical], 

= exp[—lq2{ sec (ft/35/50 — 1} s (01 classical] 
Xexp[—kq 2s( t ) | classical]. 

Define s(t) by: 

5 (0 = / dh r2Gs (r,01 classical. (33) 

Then it is evident that the following approximations 
correspond to G«(r,0 functions having errors: 0{Vfi2) 
+0(VM) and 0(Vh2)+0(VAh2), respectively. 

X / dh exp (iq • r)Gs (r,01 classical, (34) 

Hs (q,0 « e x p [ - ^q2W$2s" ( 0 ] 

X / dh exp(iq- r)G,(r,01 classical. (35) 

In the special case where Gs (r,01 classical has the Gaussian 
form (26), we have the following simple approximations 
of error 0(¥V): 

r s ( q , 0 ^ e x P C - | g 2 { s ( 0 - i W ( 0 } ] , (36) 

Hs(q,t)~expt-mKt)+m2s"(t)n (37) 

The expression (37) is not really new, for it can be 
derived easily from Eq. (77) of reference 6, which can 
be written in the form: 

Yi(H-**0) = 7i(**0)+ - / dt' (t~-tf)sec(fip—) 
3 Jo \ dt' 

XRe[<v(0).v(*')>r]. 
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(37) is not, however, equivalent to Eq. (81) of reference 
6, which can be obtained by replacing §"(t) in (37) by 
its value for a perfect gas. The reason for this is that the 
derivation of (81) from (77) in reference 6 did not 
consistently take into account all the terms of order fi2. 
For practical purposes the influence of terms 0(Vfi2) 
is negligible, and the improved results do not play an 
important role for classical fluids. 

Let us apply (36) and (37) to the Langevin equation 
result (28) for s(01 classical- If we let s(t) and s(t+ih0) 
denote the new forms of the width functions thus 
obtained, we find: 

^ ( 0 - ( 6 ^ r A 2 M ) [ 7 ? | ^ | - l + e x p ( - ^ | / | ) ] 

- ( 3 t f t / i ? ^ ) C l - e x p ( - i 7 | / | ) ] s g n ( 0 , (SS) 
and 

s(t+ifi/3)~ (6KBT/v
2M)lrj\t\ - 1 

+ {l+i(fiv/2KBTy}exp(-v\t\n (39) 

The most general form of the Gaussian approximation 
admits just the kind of results we have obtained. To see 
this, we note that if the Gaussian result is exact, then 

j ( 0 = S(0 = -V q
2 r . (q ,OU^o, 

= ( [ r « ~ r ( 0 ) ] ^ - E <[*i(0),*i(0]>r, 

= 2 I dt' (*-O<v(0)-v(/')>r 
Jo 

- E [ * ' < [ * i ( 0 ) , ^ ' ) ] > r , (40) 

where %i and vi are components of the position and 
velocity operators, respectively. We have used the 
definition (2) of Ts(q,t) to obtain the second line of this 
result from the first. Notice that this expression gives us: 

S(t) | classical = 2 / dt' (t— *')(v(0) • Y(?))T | classical 

Jo 

which is a result obtained in reference 6. 

Now it is easy to show by using the invariance of 
(v(/) • v ( 0 ) r under time translations that 2 Jlf dtf(t~t') 
X(v(0) • v(t'))T is even in time and is equal to sif) | classical 
with error 0(Vft2). Evidently (40) is in agreement with 
(36) if \(t) satisfies the "consistency condition": 

<v(0). v(0>r= ~~KBT E <[*,(0),i*(0]>r. (41) 

The solution of (41) is: 

v(0 = v (0 ) / ( 0+F( / ) , 

where /( /) and ¥(t) are c numbers and ¥(t) is uncor-
related with v(0). This leads to -3ifiM-lKBTf(t) for 
the "nonclassical" part of s(i), which is exactly of the 
form we have found. 

I t is interesting to note that (38) is not actually a 
new result, but is equivalent to an expression derived 
by Vineyard4 in 1958. His procedure involved the 
evaluation of Ta(q,t) from first principles, treating the 
displacements r(/) as solutions of a "quantum-mechan­
ical" Langevin differential equation involving the 
operator \(t). In view of (41), it is not strange that the 
final results should agree. 

Unfortunately, the corrections we have obtained are 
very small for the cases of scattering for which many 
experimental data are available.12,13 In any case where 
the perfect gas correction q2/8MKBT is significant, 
however, the new factors may also be quite important, 
especially if the viscosity is reasonably large and the 
mass of the particles is low. 
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