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Nucleon Form Factors in the Strong-Coupling Meson Theory*f 
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Expressions for the electric form factors of the proton and neutron have been given in the charged-scalar 
and symmetrical pseudoscalar meson theories. Calculations have been done in the strong-coupling limit. 
Both theories explain the experimental data given by the Stanford and Cornell groups very well. In the 
pseudoscalar theory, however, we have to take an effective meson mass which is about one-half of the rest 
mass. Small effective mass can be understood if a cubic term is introduced in the equation of motion for 
mesons. In the numerical integration of this equation, the strength g \A n a s been obtained from the boundary 
conditions, g and X being the coupling constants of the pion-nucleon and pion-pion fields, respectively. With 
numerical solutions, the nucleon form factors have been recalculated. They fit the experimental data quite 
well. 

1. INTRODUCTION 

AS is well known, the physical nucleons consist of a 
bare nucleon part and a surrounding meson cloud. 

The electric charge of the physical nucleon is, therefore, 
not a point charge but has a spatial distribution given 
by the charge density p (x). We define the electric form 
factor for a nucleon by the Fourier transform of p(x),1-3 

F1(q*) = P(x)ei^dxJ 
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xThe Fourier transform is defined without a factor (27r)~3/2 

throughout this work. The natural units h — c—\ are adopted. 
The K is the meson mass divided by he. 

2 Reviews of the works in this field were done by R. Hofstadter, 
Ann. Rev. Nucl. Sci. 7, 231 (1957); D. R. Yennie, M. M. Levy, 
and D. G. Ravenhall, Rev. Mod. Phys. 29, 144 (1957); and R. 
Hofstadter, F. Bumiller, and M. R. Yearian, ibid. 30, 482 (1958). 

3 We write the current density of the nucleon in terms of two 
invariant functions Fi (q2) and F2 (q

2) which are defined as follows: 

, * (PO DYHF I («2) - o>g-f 2 («2) ]« (P) , 

where p=(v,ipo) and q\—p\—p\. The form factors Fi(q2) and 
Fziq2) describe, in some sense, the distribution of charge and 
magnetization in the nucleon. We also define FCh and Fm&s by 

and 

^(q2)=f. pe{^xdx, 

*(<rXq)/W<?2): 

' / * * 
:i-xdx, 

where J and p are the current and charge distributions in the 
nucleon, respectively. Then the relations between FCh, Fmas and 
Fi, F2 are 

Fch(q
2)=F1(q

2)-(q2/2M)F2(q
2), 

Fmas(q
2) = (l/2M)F1(q

2)+F2(q
2), 

for small q2. In the static model where M —>«>, we have 

FGh(q
2)=F1(q

2), Fm&g(q
2) = F2(q

2). 

Since we are treating the problem in the static limit, we consider 
that Fi describes the charge distribution hereafter. The detail of 
the above relations is given by F. J. Ernst, R. G. Sachs, and K. C. 
Wali, Phys. Rev. 119, 1105 (1960); R. G. Sachs, ibid. 126, 2256 
(1962). 

in the static approximation. Similarly, the physical 
nucleons have a magnetic charge distribution, whose 
Fourier transform is called the magnetic form factor, 
F2(q2).8 The structure of the nucleons is studied in 
terms of these two kinds of form factors. The form 
factors can be studied by measuring the electron-
nucleon scattering cross section, and in fact, they have 
been measured in the last few years by the Stanford4 

and Cornell5 groups. In the present paper, we study 
the electric form factors for proton and neutron 
theoretically. The experimental data on Fi(q2) are 
shown in Fig. 1, where the q is the momentum transfer 
from electron to nucleon. Now let us consider a quantity 

W)-|[V(i+Ay)]-
Here the A is the Compton wavelength of the nucleon. 
The factor (1+A2#2) -1 is the Fourier transform of the 
Yukawa well which is assumed for the source function 
in the static-extended bare nucleon. In the data given 
in Fig. 1 there exists a remarkable relation, 

( F i p r o t o n (q2) ) ~ - ( F i n e u t r o n (q2) • ). 
\ 2 i + A y / \ 2 i + A y / 

That is, a part of the meson cloud is almost equal in 
magnitude and opposite in sign for the proton and 
neutron. In 1942, Pauli and Dancoff calculated the 
magnetic moment for nucleons using the strong-
coupling meson theory.6 They found that the nucleon 
magnetic moment is the same in magnitude but 
different in sign for the proton and neutron. Since the 
situation is very similar in the data for the electric 

4 R. Hofstadter, F. Bumiller, and M. Croissiaux, Phys. Rev. 
Letters 5, 263 (1960); R. Hofstadter, C. de Vries, and R. Herman, 
ibid. 6, 290 (1961); R. Hofstadter and R. Herman, ibid. 6, 293 
(1961); F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter, 
Phys. Rev. 124, 1623 (1961). Note added in proof. After completion 
of this work, new data on Fi and F2 have been published by C. de 
Vries, R. Hofstadter, and R. Herman, Phys. Rev. Letters, 8, 381 
(1962). There, Fi for the neutron may have negative values, 
whose explanation has not been attempted in this work. 

5 D . N. Olson, H. F. Schopper, and R. R. Wilson, Phys. Rev. 
Letters 6, 286 (1961); R. M. Littauer, H. F. Schopper, and R. R. 
Wilson, ibid. 7, 141 (1961). 

6 W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942). 
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FIG. 1. Electric form factors Fi(q2) in the charged-scalar theory. 
The theoretical curves are: (I) for /c = 0.7lF_1 and A = 0.20F, 
(II) for K = 0 . 7 1 F - 1 and A = 0.21F. The experimental data are 
given by the Stanford4 and Cornell5 groups. The errors for F\(q2) 
are not independent of those for F2(q

2), which are not given here. 
Typical deviations are indicated by arrows, see the second paper 
of reference 5. 

form factor, we could hope to explain these data by 
using the strong-coupling meson theory. This is the 
motivation of the present work. 

When the meson-nucleon coupling constant g is large 
(g 2 » l ) , we cannot use perturbation calculation in the 
conventional theory of mesons. We have to make a 
representation in which the meson-nucleon interaction 
is diagonalized and the calculation is performed in 
power series of g-1, instead of g as in the conventional 
perturbation theory. This has been done by Pauli and 
Dancoff in their theory of the strong coupling.6 Re
cently, Pais and Serber have introduced a more general 
transformation than the Pauli-Dancoff transfor
mation.7-8 The Pais-Serber transformation can be 
applied not only in the strong coupling but also in the 
variational method and others. In the present work, 
we adopt this Pais-Serber transformation to calculate 
Fi(q2) in the strong-coupling approximation. The 
formulas of Fi(q2) are given in the charged-scalar and 
symmetrical pseudoscalar theory. Both theories explain 
the experimental data of Fi{q2) very well. In the pseudo-
scalar theory, however, we have to take an effective 
mass for the meson which is about one-half of the rest 
mass. A possible reduction of the effective mass can be 
understood, e.g., if a cubic term is introduced in the 
equation of motion for mesons, 

{2ic)li*g dU 
£—A+(K2—\(Pa2)2<Pa= , X positive. 

K dXa 

In the zeroth approximation, the effective mass 
(K2—\<pa

2)112 is smaller than the rest mass K. The cubic 
term can be obtained by taking into account the TT-T 

7 A. Pais and R. Serber, Phys. Rev. 105, 1636 (1957). 
8 A. Pais and R. Serber, Phys. Rev. 113, 955 (1959). 

interaction.9 The existence of the W-T interaction has 
been emphasized in the so-called TT-TT resonances.10 The 
effect of the T-TT interaction is examined numerically 
and it can explain the experimental data on Fi(q2) 
quite well. 

In Sec. 2, the Pais-Serber transformation is reviewed 
in the charged-scalar meson theory. Using this theory, 
the Fi (q2) is calculated and compared with experimental 
data in Sec. 3. In Sees. 4-12, we discuss the symmetrical 
pseudoscalar meson theory. In Sec. 4, the Pais-Serber 
transformation is reviewed. In Sec. 5, the ^-wave 
functions for mesons are given in the strong-coupling 
limit. In Sec. 6, the Fi(q2) is calculated and compared 
with experimental data. To fit the data, the effective 
mass for mesons must be about one-half of the rest mass. 
Therefore, we introduce the T-TT interaction in the 
symmetrical pseudoscalar theory in Sec. 7, where the 
equation of motion is given in the partial-wave repre
sentation. In Sec. 8, explicit forms for the equation 
of motion are given for s and p waves. We prove that 
the p waves couple with the s waves but the effect of s 
waves is negligible. In Sec. 9, we also prove that the 
higher partial waves have negligible effect on the ^>-wave 
equation. In Sec. 10, we give a relation between the 
mean square radius and the meson mass. The mean 
square radius is proportional to the product of the 
meson mass and nucleon mass in the symmetrical 
pseudoscalar theory, but to the square of the meson 
mass in the charged-scalar theory. In Sec. 11, a pro
cedure of numerical integration is given for the differ
ential equation for the meson wave function with the 
cubic term due to the TT-TT interaction. In Sec. 12, the 
results are shown. The form factors are calculated with 
the meson wave functions obtained by the numerical 
integration. In the Appendix, the meson wave function 
is studied with the square-well source function in the 
symmetrical pseudoscalar theory. 

2. PAIS-SERBER TRANSFORMATION IN THE 
CHARGED-SCALAR MESON THEORY 

For the charged-scalar meson theory, Pais and 
Serber7 have shown a sequence of transformations. I t 
gives the Hamiltonian of the extended source model a 
form bringing out the strong coupling characteristics. 
This procedure consists of two distinct sets of trans
formations: The first group leads to a rigorous trans
formation of the Hamiltonian which brings into 
evidence the dependence of the Hamiltonian on the 
charge of the system. This result is formally valid for 
all values of the coupling constant and independent 
of any relativistic approximations. The second group 
of transformations are those which refer to expansions 

9 Similar physical ideas are contained in W. G. Holladay, Phys. 
Rev. 101, 1198 (1956); W. R. Frazer and J. R. Fulco, Phys. Rev. 
Letters 2, 365 (1959); Phys. Rev. 117, 1609 (1960). 

10 The pion-pion resonance phenomena have been discussed at 
the American Physical Society Meeting, New York, 1962, by 
H. Kraybill, Bull. Am. Phys. Soc. 7, 81 (1962). 
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valid only for the extended source model and for large 
values of the coupling constant. We shall briefly review 
these two stages. 

The basic idea of the first step is to split the meson 
fields <pa into a bound part parallel to / and a free part 
orthogonal to i t : 

!> <Pu= Va'+F-1/ / f<padX, 

7Ta = 7 r a
, + F - 1 / / flTadx, « = 1, 2, 

(2.1) 

where / is an arbitrary spherically symmetric function 
of x and F= f j2dx. The bound part is characterized by 
collective coordinates Qa=F~ll2ff(padx, Pa=F~1J2 

X^ffiTadx which satisfy the canonical commutation 
relations. We next transform the Pa, Qa to polar co
ordinates: Qa—> (Q,0), Pa--> (P,0). The variable 6 can 
be eliminated from the Hamiltonian by making a 
rotation such that <pi and n lie in the direction of the 
vector Qa. The final procedure of the first step is to 
eliminate P and Q by introducing new variables <pa"} 

7ra" defined by 

(2.2) 

The foregoing results are now applied to the strong-
coupling model. The central theme of strong coupling 
is that for very large values of the coupling constant g 
one should first diagonalize the interaction energy H'int 

which is proportional to g. This can be done by putting 
/ = U, where U is the spherically symmetric function of 
x which describes the extended source and is normalized 
according to 

/ 
Udx=l. (2.3) 

The interaction energy is in the form of 

Hint=gn(2irr2 fuW'dx. (2.4) 

Accordingly, we work in a representation in which n 
is diagonal. We next split <pi" into a static part, v, and 
a fluctuating part, (pn. The self-field is proportional to 
the coupling constant and by expanding in the ratio of 
free-field to self-field we obtain an expansion of the 
Hamiltonian in descending power of g. In the static 
approximation the ground state of (ri}= —1 states 
corresponds to the physical nucleon. The Hamiltonian 
for the physical nucleon is 

£T=- vco2vdx-g(2T)^ j Uvdx+(Pe2/2V)} (2.5) 

and v satisfies the equation 

o>2v-g(2Tryi2U- (Pe
2/V2)v=0, (2.6) 

where co2=— A + K 2 , Pe is the third component of the 
total isotopic spin of the system, and 

= / v2dx. (2.7) 

3. ELECTRIC FORM FACTORS IN THE CHARGED-
SCALAR MESON THEORY 

The charge density of the system of nucleon and 
meson fields is given by 

p(x)=<£>i7T2— <£>27ri+!(l+r3)c7. (3.1) 

In order to find the expression of p(x) in the strong-
coupling approximation, we perform the Pais-Serber 
transformation given in Sec. 2. Then the old variables, 
7ra, <pa, are given in terms of the new variables, vy Cf, 6, 
Pe, as follows: 

Pe iU cos0 1 U sin0 
7Tl= V SU10+ 1 — T3, 

V 2 q 2 q 

PQ i U sin0 1 U cos0 
7T2 = V COS0H T3, 

V 2 q 2 q 

<pl=V COS0, 

<P2=vsmd, 

Uvdx. 

(3.2) 

Substituting (3.2) into (3.1), we have 

Pe iUv 1 
p (x )=— »2 Tt+-(l+n)U. (3.3) 

V 2 q 2 

Since ( r 3 )=0 , (3.3) becomes 

(p(x))=((Pe)/Vy+W. (3.30 

Here (P$) = %(—%) for proton (neutron). U, v, and V 
are given as follows. We assume the Yukawa well for 
the nucleon source function, 

1 *rr/k 

u= f = X 
4TTA2 

(3.4) 

where A is the Compton wavelength of the nucleon. 
From (2.6), the v has to satisfy 

(~A+K2)z;-g(27r)1 /2-
1 r-rlk Pe2 

4TTA2 

- D = 0 . (3.5) 

The last term in the above equation can be neglected, 
since the (Pe2)/V2 is of the order of g~A. The solution of 



836 R . M O R I T A 

(3.5) has a form of 

4TT(1-K2A2) r 

Substituting (3.6) into (2.7), we have 

f 1 

(3.6) 

(3.7) 
4K ( 1 + K A ) 3 

As a result, the charge density becomes11 

VK(1+KA) 1 1 e~rlK 

p ( x ) = (<,-*,_ < r r / A ) 2 + _ _ . (3 > 8) 

4TT(1-/CA)2 r2 8TTA2 r 

Here rj= 1(— 1) for proton (neutron). 
The electric form factor, Fi(q2), is the Fourier 

transform of the charge distribution p(x) and is defined 
by 

7?x(g2)= p(xy*-*dx, (3.9) 

where q is the momentum transferred to the nucleon 
from an electron. 

7}K(1+KA)/ 2K 2 
Fi(q2) = ( cot" 1 —hcor 1 — 

q(l — KA)2\ q qA 

K+(1/A)\ 1 1 
- 2 cot"1 ] + , 

q J 2 1+A2q2 

with ?? = 1 (— 1) for proton (neutron), (3.10) 

for the charged-scalar meson theory. Here we take the 
principal values for cot -1. 

Experimental data on Fi(q2) have been given by the 
Stanford4 and Cornell5 groups. In comparison with 
experimental data, we have adjusted K and A in (3.10) 
as parameters. As is shown in Fig. 1, the best fit is 
obtained with 

K = ° - 7 1 F - X ' (3.11) 
A=0.20F. 

These values are very close to the rest mass of the 
meson (0.7IF -1) and the Compton wavelength of the 
nucleon (0.2IF). 

4. PAIS-SERBER TRANSFORMATION IN 
THE SYMMETRICAL PSEUDOSCALAR 

MESON THEORY 

The transformations for symmetrical pseudoscalar 
theory are almost parallel to those for the charged-
scalar theory.8 We first perform a transformation on 
meson fields <pa and their canonical conjugates way 

11 More precisely, p(x) should be read as <p(x)), that is, the 
expectation value of p(x). Throughout this paper, we drop the 
symbol ( ) if there is no confusion. 

leading to new fields (marked by a prime) 

<P« = <Pa'+F-V2 Zk Q«kdf/dXk, 

wa=Ta
f+F-ll2ZkPakdf/dxk) a = l , 2 , 3 , (4.1) 

where / is again a spherically symmetric function of x 
and F—\f(yf)2dx. The bound part is parallel to the 
gradient of / a n d characterized by collective coordinates 

Q*k=F~V2 1L 
dxk 

<P*dx, Pak=F~V2 71 

dxk 

xdx. 

The free part is orthogonal to the gradient of / and 
characterized by <pa\ TTJ. One next transforms the nine 
collective coordinates Qajc into a set of three angular 
variables in space, a similar set in isotopic space, and 
three radial variables. For this purpose we introduce 
the orthogonal matrix Aki which corresponds to the 
solid rotation in the ordinary space. Similarly we 
introduce an orthogonal matrix Bap for the isotopic 
variables. The new variables qr and prs are related to 
Qak, Pah b y Qak~Ylr BraArkqr, P'afc=:2«,r BraA skprs-
Here the transformation for qrs is a principal axis 
transformation, that is, qrs=qr^rS' The prs is specified 
by pr, canonical conjugate of qr, Lrs, ordinary angular 
momentum, and Ir8, isotopic angular momentum. The 
angular variables contained in A and B can be elimi
nated from the Hamiltonian by a canonical transfor
mation as a result of which Ia represent the components 
of the total isotopic spin vector along the axes of the 
rotating system. Finally, it is possible to eliminate 
entirely the radial oscillator variables pr, qT from the 
Hamiltonian by introducing new fields 

<P*"= tpa'+F-V2qadf/dxa. 

IT", ip" satisfy the anomalous commutation relations 

Dra"(xW(xO] 

5(x-x')-F~lZ' 
k d%k dXk 

df(r) 3/(f ' )- | , x 

where the prime on the summation over k means that 
the term k=a is to be excluded. The orthogonality 
relations are 

f df f 
J <Pa" <fo= / 7] 

J 3%Q J 8XR 

dx=0, a?*p. (4.3) 

In the strong-coupling treatment a particular choice of 
the distribution function / is made: the choice / = U 
diagonalizes the interaction energy. In the case in hand, 
the interaction is 

f 6U 

r J dXr 

For the minimum interaction energy, (rro-r)= — l.6 
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After dropping the small contributions in the strong-
coupling limit the Hamiltonian becomes 

H=-Z I (T«"2+ *«"«V„")*I 
2 « J 

gW reu 
E / —W'dx. (4.4) 
r J dXr 

The relations between the unprimed variables <p, -K and 
double primed ones <p", ir" are 

(4.5) 

in the strong-coupling limit. This strong-coupling 
approximation is valid if g^>nA or g2;£>0.01.6 

5. j)-WAVE MESONS 

In this section, we give the equation of motion for 
<pa", and the explicit forms of the wave functions. As 
is well known, the canonical equation of motion is 
obtained from the general rule 

df/at=%n,n, (5.1) 

for /— <pa" and wa". Using the Hamiltonian (4.4) and 
the commutation relations (4.2), we obtain 

( A+/c2W'-
\dt2 J 

g(27r)1'2 dU 

dXa 

1 dU r dU(r') 
£ ' — / tpa"(v!W <*x' = 0. (5.2) 

F k dxk J dXk 

Here the prime on the summation over k means that 
the term k—a is to be excluded. Since we are interested 
in the time-independent solution, we drop the d2/dt2 

terms from (5.2) hereafter. The meson wave function 
(pa" can be decomposed into partial waves as 

00 * Xi t m ;«(r) 

1=Q m==— I Y 

(5.3) 

Here the subscripts /, m, and a for Xiim.a are the orbital 
angular momentum, its magnetic quantum number, 
and the type of fields, respectively. We use the phase of 
the spherical harmonics Yi,m defined by Condon and 
Shortley.12 If we assume the p waves to be dominant, 

» - i X i , w ; a ( f ) 

m==—1 T 
(5.4) 

The nine radial wave functions XitTO;a (<a=l, 2, 3 and 
m = l , 0, —1) are not independent because of the 

12 E. U. Condon and G. H. Shortley, in Theory of Atomic Spectra 
(Cambridge University Press, New York, 1935), Chap. 3. 

boundary conditions 

/ 

dU 
<pa"—dx=0 for ciT^k. 

dxk 
(5.5) 

r( 
27TX1/2 dU 
- [ F W ( 0 , 0 ) - F l f l ( 0 , * ) ] — 
3 / dr 

Since the nucleon source function is spherically sym
metric, the derivatives of U are given by 

dU 

dxa 

for a = l , 

/27T\1/2 dU 

= * ( - ) lY1„1(dJ<l>)+Ylll(d,<t>)l— 
\ 3 / dr 

for a = 2, 

= ( - ) Fll0(W)— 
for a = 3 . 

(5.6) 

Equations (5.5) and (5.6) together with the orthogo
nality of the spherical harmonics give 

^1,0;1—^1,0; 2—^1,±1 ; 3—0, 

- X 1,1;1 = X 1 , -1 ; l = X1 : i ; i j 

X 1 ) 1 ; 2 —X 1 _i ; 2=X 1 ; 2 , 

^ 1 , 0 : 3 = ^ 1 : 3 . 

(5.7) 

The symbols X i ; a are introduced for convenience. 
Equation (5.7) will hold at any r where rdU/dr^O. 
For the Yukawa well of U, this is true for all r. For the 
square well, rdll/dr^O only at r=a. Since, however, 
we are looking for regular solutions (X 1 ; a=0 at r = 0 ) , 
we conclude that (5.7) can always hold for all r, if 
these relations are once satisfied at a given r ( r^O). 

The differential equations for three ^>-wave functions 
are given below explicitly. We notice that the inte
gration term in (5.2) vanishes by (5.7). 

/ d2 2 \ lirgdU 
+ - + K 2 Xi ;« -C a r = 0 , (5.8) 

\ dr2 r2 J V3K ~ dr 

with Ca— 1, i, and v2 for a— 1, 2, and 3, respectively. 
From (5.8), one can easily see that the differential 
equations for X1;1, X1;2/i and Xi;3/V2 are identical. Since 
the second-order differential equation has only one 
solution which is regular at the origin, we can put 

X i : W*==W^=Xi (5.9) 

Here %i satisfies (5.8) with C«= 1. Thus, the ^-wave 
functions are 

3\1f2X1 < 

<pi' = [ — ] — sin0 cos<£, 
/ 3 y* Xi 

. "= ( — ) - s i 

/ 3 \ ^2 Xx 

" = ( — ) -\2irJ r 

( 3 \ 1 / 2 XX 

\2TT/ r 

sin0 sin<£, (5.10) 

file:///2irJ
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The meson wave functions in the original system are 

Va=ZeBPavfi". (4.5) 

Here the transformation B is the rotation matrix in the 
isotopic space. I t is obviously real and orthogonal. 

The explicit form of the radial wave function, Xh for 
the p-w&ve meson can be given in the case where the 
Yukawa well is the nucleon source function. We intro
duce nondimensional quantities 

nA=a. 

The differential equation (5.8) with C « = l becomes 

/ d2 2 \ 2ir g dU 

[ + -+1 )x1 p=o, (5. 
\ dp2 p2 / vJ K3 dp 

(5.11) 

12) 

-p/a 

with the source function 

U= 
4TTA2 p 

Equation (5.12) with (5.13) is 

d2 2 
-+• 

(5.13) 

/ d2 2 \ 1 g/1 1\ 
+ - + 1 )X1+ (-+-y-P/«=o. (5.14) 

\ dp2 p2 J 2V3a2 \p a/ 

The solution of this equation with the following two 
boundary conditions 

Xx=0 at p=0, 

Xi does not diverge at p —» oo? 

is given by 

1 g r / 1 1\ / l \ -| 
X I I )e~pla 1 1 1 \e~p 

2vJl-a2LVp ' af \p ' V J 

for all p. 
Near the origin, 

gp 
Xi= |-0(p2) for p -»0 . 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
4\fos 

6. ELECTRIC FORM FACTORS OF NUCLEON IN THE 
SYMMETRICAL PSEUDOSCALAR THEORY 

In the last section, we have studied the meson wave 
functions in the strong-coupling limit for the pseudo-
scalar mesons. Using these meson wave functions, we 
first give the charge distribution p(x) of the system of 
meson fields and nucleon. Then we take the Fourier 
transform of p(x) to find the electric form factors (3.9). 
The definition of the charge distribution of the system 
is given by 

P(X)= (<Pl7T2-<P27ri) + i(l + TZ)U. (3.1) 

The meson part, (^i7r2— ^2^1), can be written as 

<piTT2— <P27Tl = 0)(<Pl2+(p22), 

where co is the total energy of the meson. Using the fact 
that 

/ < 
( p ( x ) y x = l for protons, 

= 0 for neutrons, 

we can eliminate 00 and we have the charge distribution, 

V <Pi2+ V22 

p(x)= + j ( i + T 8 ) t f . (6.1) 
2 r 

(<Pi2+ n2)dx 

Here 77= 1 (— 1) for protons (neutrons) and the ex
pectation value (T3) = 0 in the strong-coupling limit. 
Using (4.5), we have 

<Pi2+<P22=T, ( * « " ) 2 - E Ba*Bfi*<Pa"ri'> (6.2) 

where BaZ transform as the components of the vector 
B(s) in the isotopic space. The expectation values of 
Ba% in the state specified i, n, j , m can be obtained by 
the method of angular momentum as given by Condon 
and Shortley.12 Here i, n, j , and m are the isotopic spin, 
its third component, the total angular momentum, and 
magnetic quantum number, respectively. For the nu-
cleons, i—\y n=zhi, j=h m=^. In these cases 

1 
^i2+^2=IE(^ , /)2=-(Xi2A2). 

Therefore, the charge distribution is given by 

« Xf/r2 

(p(x)}= +\U. 
2 

(6.3) 

(6.4) 

/ 
(Xf/r^dx 

Finally, the electric form factor defined by (3.9) is 

VK2A(l+KA)<r2q2 2(l+/cA)2 4" 
Fl(q

2) = P K2A2 

1 4 - | 

KAJ 2 (l-KA)2q [LK2 

\1+KA/ \K2 K2A2/ \ 2 / KI+KA 

-OhiB 1 1 
+ , (6.5) 

2 i+Ay 
with 77= 1 (— 1) for protons (neutrons). Here we take 
the principal values for tan - 1 . 

The formula (6.5) has been compared with the data 
given by the Stanford4 and Cornell5 groups. We have 
adjusted K and A as parameters. As is shown in Fig. 2, 
the best fit is obtained with 

A=0,22F, 
(6.6) 
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FIG. 2. Electric form factors Fx(q
2) in the symmetrical pseudo-

scalar theory. The theoretical curves are: (I) for /c = 0.7lF~1 and 
A=0.2IF, (II) for /c = 0.60F~1 and A = 0.22F, (III) for /c = 0.35F~1 

andA=0.22F. 

The adjusted value A=0.22F is very close to the 
Compton wavelength of the nucleon (0.21F). On the 
other hand, the adjusted value /c=0.35F~1 is about 
one-half of the rest mass of the IT meson which is 
0.71F -1. This means that the K in Fx(q2) is not the rest 
mass itself but some sort of effective mass. Therefore, 
to find some reason why the effective mass should be 
so small is a further problem. The reduction of this 
effective mass can be explained if we take into account 
the 7r-7r interaction whose existence has been recently 
suggested by the so-called TT-TT resonances.10 In order to 
investigate the effect of the TT-TT interaction on the 
charge distribution of the nucleon in detail, we will 
study the equation of motion for meson fields including 
the effect of the T-W interaction in the next section. 

7. PARTIAL-WAVE REPRESENTATION OF MESON 
WAVE FUNCTION WITH THE w-* 

INTERACTION 

If the 7T-7T interaction is present, the Hamiltonian H 
has an additional term Hr-T: 

H = HQ -{-Hint +Z7V-7I (7.1) 

Here the T-TT interaction Hamiltonian is assumed to be 
rotationally invariant in the isotopic space, 

Hr-r=— UL(<Pcc)2Jdx with positive X. (7.2) 
4 J a 

That is, we are considering the four-pion vertices where 
either four pions are the same fields or two pairs of two 
different fields. Under the Pais-Serber transformation, 
the meson fields obey the rule 

<Pa=E/3 Bpa<pp". (4.5) 

The Hjr-r in terms of the fields with double prime is 

HIT- -7 /"HEW: 
4 J « 

yjdx. (7.3) 

The total Hamiltonian (7.1) becomes 

gW2 f g(27T 

a J K 

r dU X r 
X E / <pa"dx— Ini^a'YJdx. (7.4) 

« J dxa 4 J a 

From this Hamiltonian, we have the equation of motion 
for the meson fields <pa" by the same procedure as in 
Sec. 5. 

( - A - H H — W ' X*>a"(E w"2) 
\ dt2/ K dxa fi 

1 dU 

— £' — 
F k dXk 

*«"(x')«* 
dU(r') 

dXk 

-X*«"(x')(E <Pt"*(x')) k x ' = 0 , (7.5) 
dXk 

with 

4/ (vU)2dx. 

Since we are interested in the time-independent solu
tion, we drop the d2<pa"/dt2 term from (7.5) hereafter. 
As we expect, the differential equation for <£></' has 
cubic terms due to the effect of the TT-TT interaction. 
Furthermore, these cubic terms involve the coupling 
of different fields <pp". An extra complication comes 
from the coupling of various partial waves in the cubic 
terms, as will be shown below. 

The decomposition of ipa" into the spherical com
ponents is given by (5.3) which is abbreviated as 

* « " = £ Yl,m. 
l,m f 

(5.3') 

The differential equations for the radial wave function, 
Xi,m-,a, can be obtained in the following way. As is well 
known, the Laplacian is given in terms of the spherical 
coordinates as 

l d/ d\ l d/ d\ l 
i= [r2-)+ (siitf-)+ 

r2 dr\ dr/ r2 sinfl dd\ 36/ r2 sir 

d2 

• sin20 d<t>2 

From this the first term in (7.5) becomes 

l r d2 1(1+1) -i 
(-A+/c2W=EH + +*2 \Xltma7h, 

i,m rL dr2 r2 J 

l,m 

-• (7.6) 

(7.7) 
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Here we abbreviate the following identity twice.13 

l r d2 1(1+1) -i /(2Z1+l)(2/2+l)\1/2 

Z>i, ,*«=ZWto=H + +*2 Xlimsa. (7.8) Yh,miYh,m2 = j : ( — — ) 
ri dr2 r2 J l \ 4TT(2/+1) / 

The derivative of U in the second term of (7.5) is given X(hh00\l0)(lil2m1m2\Im)8mi+m2,mYi,m. (7.10) 
in (5.6). T h e cubic t e rms can be expressed simply b y a Here (hhmim^lm) is t he Clebsch-Gordan coefficient 
tr iple p roduc t of (5.3). for vector addition.12 ,13 Applying (7.10) and taking into 

tfrsr ( n\f\ account t he conservat ion of magnet ic q u a n t u m number , 
I we have 

fi h,mi l2,m2 h,ms T* A <?« L 2 L W ) J~ ~ 2^ O Z,m; a ^ Z,m, t / . l l j 
y y , y 7 y , f 7 Q \ 0 47r i,m 

with 
The product of three spherical harmonics is reduced to <SVm;«=]L/3 Si,m;a,p 
a sum of single spherical harmonics, by application of and 

0^,«i;a,|3 = *>?,m;a,i3(^)— 2 ^ 
/(2/i+l)(2fc+l)(2/,+ l)x1'* 

Zl,?2^8,?/.*»l,TO2 \ ( 2 / + 1 ) )
l/2 

(W200|TO)(njDO|») 

X (/1/2W1W21 Vm1+m2) (lfhmi+m2fn W i ^ 2 J i'^)^li,mi;a^l2,m2;^h,in—mi--m2;fi (1A 3) . (7.12) 

I n t h e first t e rm of the integral in (7.5), we have 

dU r dU 2w dU r dU 
— <pa"o>2 dx'=—(Fi,_!=FFi,i)— (Di ( - i i a TDi , i ;« ) - rW 5 for &=lor2 
dxk J dxk 3 dr J drf 

4TT dU r dU 
= — F 1 > 0 — IDitoa—r'Hr', for 6 = 3 (7.13) 

3 dr J dr' 

where t he upper and lower signs in t he first expression refer to k= 1 and 2, respectively. Here we have used the 
or thogonal i ty of Yi,m. T h e a rgumen t of D and U in the integral is / . F r o m a similar consideration, we have 

dU r dU dU r dU 
— /^/'[ZW)2] dxf=i(Ylt^1^Y1,1)— / (S1riiSFSltlia)—r'2dr\ for fc=lor2 
dxk J P dxu dr J dr' 

dU r dU 
= iF i , 0 — /5ii0;«—r'2dr', for k=3 (7.14) 

dr J dr' 

where the upper and lower signs in the first expression refer to k= 1 and 2, respectively. Here the argument of S 
and U in the integral is r'. 

Summarizing the above results, we have the differential equations in the partial-wave representation as below. 

/ X \ 2wgdU 2<!rdU f 
Z [Dl,m;a St,m]a 1 F , | W - (i)*"1 [ F l , - l + ( - l ) « F i f l ] / {[Fl,-1+ (~ l J ^ F i . J 
*.». \ 4x / vJ/c dr 3F dr J 

dU \ dU r 
X[Di l-i;«+(-l)r-12? l li.a]+2F l loDi lo;«}—VW+ / {[F 1 )_ 1+(- l )«- 1F l l l ] 

dr' 6F dr 7 
d£7 

X[5 l t_1 ; a+(-l) a-151 > 1 ; a]+2F1 ,o5i,o ; a}—VW=0, for a = l a n d 2 , (7.15) 
dr' 

E 
/ A \ 2M2vgdU birdU f dU 

C ( *W S*,M;a JF*,W F l i 0 / (Fli-.1Dii-i;a+FiiiZ)iii;«)—r*dr' 
,m\ 4TT I V3/c dr 3F dr J dr' 

X dU r dU 
+ / (Fi.-i5ii..i;a+Fltl5iii;«)—r'2dr' = 0, for a = 3. 

32? dr 7 Jr' 
13 See, for example, M. Morita, in Lectures in Theoretical Physics, edited by W. E. Brittin (Interscience Publishers, Inc., New York, 

1962), Vol. 4. 
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When Dif7n]a, Sitm;a, and U are inside the integral, their and 
arguement should be read as / . However, the Yi,m has Xo;iXo;2X1;2=0. (8.6) 
no primed angular variable. 

8. EXPLICIT FORMS OF DIFFERENTIAL EQUATION / d2 2 \ 2TZ dU X 
FOR PARTIAL WAVES ' ~ \ . « 

For a = 2, 1=1, m = ± l : 

/ d2 2 \ 2wgdU X 
+-+Kz )x1.2~i r (Xo;i2+3X0;2

2 

\ dr2 r2 I V3K dr 4TT The explicit forms of the /, m component of the 
general differential equation, (7.15), are studied in this 6 18 3 XV2 

section, by assuming only 5 and p waves +X0-3
2H—Xi-i2 Xi.2H—Xi;3

2) = 0 , (8.7) 
5 5 5 r2 

r<pa =Xo ; aFo,o+Xi,i;aFi ti+X l f0;«Fi,o a n ( j 
+X1>_1 ;aF1 ,_1 . (8.1) X0;iXo;2X1;i=0. (8.8) 

That is, we introduce 4 X 3 = 12 radial wave functions. For a= 1, 1= 1, tn—0: 
However, as is shown in Sec. 5, the boundary condition , , 
(5.5) gives some restrictions on the p-w&ve functions, 0;1 0;3 1;3~~ ' \ • J 
(5.7), which give only three p-w&ve functions, X1;a, to F o r a = 2 , 1=1, m=0: 
be independent. Therefore, the initially introduced 
twelve radial functions reduce to three s waves X0;a and X0;2X0;3X1;3=0. (8-10) 
three p waves X1;«. Integrations in (7.15) always vanish p o r a = 3 /— \ m=l\ 
if the boundary conditions (5.5) or equivalently (5.7) 
are satisfied. I t is noticed here that X0;« with a = 1, 2 ,3 , Xo;3(-Xo;iX1;1+X0;2Xi;2) = 0. (8.11) 
Xi;i, iX1;2, and X1;3 are all real since <pa" are real. For a: = 3 1=1 m= — l' 

Now we give the explicit forms of the differential 
equations, which are coupled equations for six radial X0;3(Xo;iX1;1+Xo;2X1;2) = 0. (8.12) 
functions. Some of the I, m components of (7.15) give y —3 7=1 m=0' 
not the differential equations but subsidiary conditions 
among various x's. The differential equations for a = l / d2 2 \ 2y/2irgdU A 
and 2, 1=1, m==tl are divided into real and purely ( ~~~^ hK2)x1;3 ~-r—-—(X0;i

2+Xo;2
2 

imaginary parts. V dr r J ^K dr 4T 

F o r a = l , l=m=0: +Sx 2 + _ x 2 _ _ x 2 + _ x jtyHls=0m (8.13) 
5 5 5 r2 

A 
(-d2/dr2+K2)X0;1-—(X0;i

2+Xo;2
2+X0;3

2+6X1:1
2

 s i n c e t h e p s e udoscalar mesons are dominantly p 
x waves, we assume the s waves |x0 ;«| to be small and 

— 2Xi;2
2+Xi;3

2)—^-=0. (8.2) |X0;«/Xi;/3| is of the order of e, ( e « l ) , where a and 0 
r2 are any values of 1, 2, and 3. The set of twelve equations 

F o r a = 2 , l=m=0: (8.2)-(8.13) shows various symmetric properties with 
respect to the radial wave functions. They are given 

(-d2/dr2+K2)X0;2 (X0;i2+Xo;2
2+X0;3

2+2X1;1
2 b e l o w* 

4?r A. If we overlook all subsidiary conditions, (8.6), 
_5X 2_i_Y 2)_?i!_Q /g3) (8.8)-(8.12), then the other six coupled differential 

2̂ ' ' equations are satisfied by 
F o r a = 3, l=m=0: Y __Y _ Y _ Y ,ft 1Av 

^0 ; l— * 0 ; 2 ~ *0 ;3=*0> V°«J-^7 

(-d?/dr*+K>)X0.,z--(X0.J+X^+X0J+2X1;1> X 1 ; 1 = X 1 ; S / * = X 1 ; ! / ^ X , (8.14') 

4?r The differential equations for X0 and Xx are 

-2X 1 ; 2
2 +3X 1 ; 3

2 ) -^=0 . (8.4) 
r2 

For a= 1, / = 1, m= dbl : 

/ d2 \ X X0 
+K2 )X0 (3X0

2+10X1
2)-=0, (8.15) 

\ dr2 I 4x r2 

/ d? 2 \ 2irgdU \ ( d2 2 \ 2irgdU 
+-+/C2 X1;1 r (3X0;1

2+X0;2
2 + - + / C 2 )X1 r 

\ dr2 r2 J v3/< dr 4TT \ dr2 r2 J V3K dr 

18 6 3 X H X Xx 
+ X 0 ; 3

2 + — x 1 ; 1
2 — x 1 ; 2

2 + - x 1 ; 3
2 ) ~ = 0 , (8.5) (5x 0

2 +6X 1
2 ) -=0. (8.16) 

5 5 5 r2
 AT r2 
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Here the error involved in the solution is of the order 
of e2, compared with those of the differential equations 
using a subsidiary condition properly. 

B. Taking the subsidiary conditions correctly, we have 
four possible sets of solutions, either 

Xo;a = 0 for all a, 

or 
Xo;a=Xo;0=O and X 0 ; 7 ^ 0 , a, (3, y cyclic. 

For the former case, we have 

Xi ;i=Xi ;2/i=Xi;3/V2 = Xi, X0;«=0, 

with 

2wg dU 3X Xx
3 

/ cP 2 \ 2wgdU 6\XX
6 

+-+K2 X l r = 0 . 
\ dr2 r2 J V3K dr 2TT r2 

(8.17) 

For the latter case, the equations of motion are de
pendent on which Xo;a is nonzero. For example, 

Xo;i=0, X0 ;2=0, and X0 ; 3^0, 

( + K2)x0] 

\ dr2 J 

(X„; 32+4X1; !
2+3X1; 3

2 ) — = 0, 
4x r2 

(8.18) 

• 19) 

/ d2 2 \ 
+ - + K 2 X1;3 

\ dr2 r2 / 

2v2Vg dU 
— r 

SIZK dr 

A / 12 9 \X1 ;3 

— ( 2 3X0; 3
2+—X1; f+-XL. 3

2 = 0 , (8.20) 

( d 2 \ 

\ dr2 r2 ) 

- - ( 
4 T T \ 

5 5 

2irgdU 

v3"/c dr 

X / 24 3 \X 
X0;3

2+—X1;1
2+-X1;3

2 

5 5 

Xlj2 = iXl ; l . 

\ X i ; i 

— = o , 
/ r2 

(8.21) 

(8.22) 

The solutions Xi;a of (8.20) and (8.21) are nearly equal 
to Xi in (8.17), that is, 

ential equation. We prove that 

2wg dU 3X Xx
3 d2 2 

+ 
dr2 

r2 J Vvk dr 2ir r2 
= 0, (8.17) 

holds in a good approximation and there is no coupling 
of the higher partial waves if we neglect 0(e2). 

The proof is simply derived from the parity con
sideration. Let us first examine the general expression 
for the equation of motion of mesons, (7.15). The 
coupled terms of different partial waves always come 
through Si,m;a, which is a sum of the terms, Xn,miXz2,m2 
XXz3)m3.

14 Here the subscripts, lh mi, etc., are conven
tionally printed as 11, ml, etc. The 1 is the sum of the 
three angular momenta, li, 12, and I3, 

l = U - l 2 + l 3 . (9.1) 

(9.2) 

The parity condition is, therefore, given by 

1+ h+h+h = even, 

and, of course, it is 

1+^1+^2+^3= even for the p wave. (9.3) 

One notices that these conditions are properly taken 
into account in the product of the two Clebsch-Gordan 
coefficients with vanishing quantum numbers for Si,m;a, 
(7.12). Now we assume 

X i ( W - 0 ( l ) , 

X0 and X2 ,m^O(e), 

X3,m~0(e2), and so on, 

(9.4) 

where e is a certain small quantity. The case where none 
of h, h, h is unity is out of consideration, since Xzl>mi 
XXZ2(m2Xz3,m3 is at most 0(e3). Therefore, we take, e.g., 
/ i= 1. The parity condition in this case is 

^2+^3=even. (9.5) 

This guarantees that h and h are of the same parity. 
Possible cubic terms of Xz>m are expressed by 

Xl,mlXz2,m2Xz2+2w,m3 
with n= 0 or positive integral. (9.6) 

Here, the subscript, l2-\-2n, should be read as /2+2/z. 
If /2=even, they are 

X 1 ; a = [ X l 0 f E q . (8 .17)] [ l+0(e 2 ) ] . (8.23) XltmlX0
2, X1)mlX2)m2X2>w3, XhmlXQX2tm2, 

The relation (8.14') also holds in this approximation. 
Concluding these analyses, the ^-wave radial wave 
function is always given by (8.17) to a very good 
approximation. 

9. EFFECT OF HIGHER PARTIAL WAVES 
ON THE p-WAVE EQUATION 

Until now we have assumed only s and p waves for 
the meson wave functions. In this section, we study the 
effect of the higher partial waves on the ^-wave differ-

Xl,mlX2,m2X4,m3, e t c . , ( 9 .7 ) 

of which the magnitude for the largest terms is 0(e2). 
If /2=odd, they are 

Xi,mlXi)m2Xi,w3, Xi)miX1)m2X3,m3, 
Xi,miX3im2X3)m3, etc., (9.8) 

of which Xi,miXliTO2Xi,m3 is the largest and the others 
are at most 0(e2). Therefore, the summation of the 

14 In this Section throughout, Xi,m;a are replaced by Xi,m. This 
does not change the conclusion. 
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cubic terms, Si>m;a with 1=1, has only one term, 
Xi,miXitW2Xi,m3, if we neglect 0(e2) and higher powers 
of e. Finally, the differential equation for the p wave 
does not couple with any other waves and Eq. (8.17) 
holds generally up to 0(e). 

10. MASS DEPENDENCE OF MESON MEAN 
SQUARE RADIUS 

The dimension of mass is the inverse first power of 
length. Therefore, it is natural to assume that the mean 
square radius of the meson wave function, (R2), is 
inversely proportional to the second power of the mass. 
We must be careful that in the theory of mesons there 
are two kinds of mass, namely, the meson mass and the 
nucleon mass. One may take the mean square radius 
to be inversely proportional to the square of the meson 
mass. In fact, this is true in the case of the scalar theory. 
For example, the dominant term in the expression of 
the mean square radius, {R2}, is 

(R>)~1/2K\ 

for the scalar meson with the Yukawa well source 
function.15 Here the 7r-7r interaction is not considered. 

In the case of the pseudoscalar theory, the situation 
is different. The mean square radius is defined by 

(m=f( {<PiiJr<piYdrdQ / \ {<p?+cpiYdrdtt 

- (XfpMp / L* txw\ (10.1) 

Here Xx is given in (5.17), when the source function is 
the Yukawa well and the ir-ir interaction is not present. 
The result of integration is 

f a ( l + a ) 2 - 8 a 2 [ l + a / ( l + a ) 2 ] 
(10.2) \±v/~ 

with 

The dominant term is 

K2(l-a)2 

a=/cA. 

S a 5 A 5 1 
< j R ? i > « . 

2 K2 2 K 2MK 
(10.3) 

The mean square radius in the pseudoscalar theory is 
linear in meson mass as well as in nucleon mass. We 
assume that this proportionality to {MK)~X holds 
approximately in the pseudoscalar theory with the TT-TV 
interaction. The difference between the mass propor
tionality of the mean square radius in the scalar theory 
and the pseudoscalar theory seems to originate from 

15 In the charged-scalar theory, the radial wave function (the 
quantity corresponding to Xi of the pseudoscalar theory) is 
analytically solvable, if we take the Yukawa well for the nucleon 
source function. The mean square radius is given by 

{R2) = l(l+ay(l+az)-16a?~]/2(l-a2)2K2. 

the nucleon source function in the meson wave function. 
We have the derivative of the source function in the 
pseudoscalar theory, while we have the source function 
itself in the scalar theory. 

In the end of Sec. 6, we studied the electric form 
factors for the nucleons by adjusting the A and K as 
parameters. We have found that A is nearly equal to 
the Compton wavelength of the nucleon and K is about 
half of the rest mass of the meson. This can be seen 
explicitly. Expanding Fi(q2), (6.5), in the power series 
of q2 and using (R2), (10.2), we have 

Fi(g2)== 1 - ^ 2 ( | ( ^ 2 ) + 3 A 2 ) + • • -for protons, (10.4) 

for low momentum transfer. The coefficient of 
experimentally known and it is4-5 

i<£2)+3A2=0.64-0.72F2 . 

With A=0.22F, we have 

(R% :1.0-1.2F2. 

(10.5) 

(10.6) 

From (10.2) and (10.6), the effective meson mass is 

K ^ O ^ O - O ^ F - 1 , (10.7) 

which is about 0.6-0.8 times the rest mass. This value 
gives the best fit of Fi{q2) at the low momentum 
transfer, while the best fit in the over-all energy region 
is given by 

K=0.3$¥~\ (6.6) 

which is about half of the rest mass. 
The mean square radius of the nucleon source func

tion is 
(R2)P=6A2 for the Yukawa well. (10.8) 

Thus 
±(R2)+3A2=±(R2)+±(R2)P. (10.9) 

This is equal to the mean square radius of the charge 
distribution defined by 

/ • 
r2p(x)dx, 

p(x) being given by (6.4). Consequently, the form factor 
becomes 

F1(q
2)=l-^ fr2p(x)dx~\+' (10.10) 

This expression is also given by a power series expansion 
of (3.9) directly. The factor \ in (10.4) and (10.9) is 
essential for the symmetrical pseudoscalar theory in 
the strong-coupling approximation. 

11. NUMERICAL SOLUTIONS OF MESON WAVE 
FUNCTIONS WITH THE «-« INTERACTION 

The meson wave functions with TT-TT interaction are 
given by (5.10), where Xx satisfies the differential 
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equa t ion (8.17). Fo r convenience, we in t roduce 

p—KY a n d # = A K , 

X1== (2TT/3X) 1 / 2 X 1 , 

-p/a 
(11.D 

u=-4TTA2 

T h e n (8.17) becomes 

/ d2 2 \ Xi3 

+ ~ + l ] X i 
\ dp2 p2 J p2 

X l / 2 

+ 
2 ( 2 T T ) ^ a*\p 

T h e a sympto t i c form of Xi in (11.2) is 

Xi—ae~p a t p—•» oo, 

1/2 g / 1 1\ 
[ - + - J e - > / o = 0. (11.2) 

TT)1'2 a2\p a) 

(11.3) 

where a is constant. Here the nucleon source function, 
ir-ir interaction, and the centrifugal force have no effect. 
In the region where the former two are almost zero but 
the centrifugal force is still effective, the solution of 
(11.2) is p times the spherical Hank el function of the 
first kind,16 

constph1^(ip)=a(l+l/p)e-f}. (11.4) 

The hia) is defined by 

Ai(1)(fp) = ii(fp)+*»i(*p). (H.5) 

The behavior of Xi near the origin is examined by 
expanding Xi in terms of p. 

X1=a1p+a2p
2+aspz+ • 

The results are 

a i=—C/2 , 

(11.6) 

(11.7) 

(11.8) 

with 

C / 1 C\ 
, = 1 + ), (11.9) 

8 \ a2 4 / 

C=-
X1'2 

2(2x)1 '2 a2 
(11.10) 

T h e coefficients a± a n d #2 are de te rmined b y con t inu i ty 
of Xi and its derivative dXi/dp at p—a. The a\ deter
mines the magnitude of gA1/2. 

Numerical solutions of (11.2) have been obtained by 
the following procedure. 

A. We assume the asymptotic form (11.4) in large p. 
Without loss of generality, we take a positive value for 
a. With this Xi, we integrate (11.2) from large p to 
small p. At p — a, the wave function is connected with 
the appropriate inner solution, (11.6)-(11.10). The 

16 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1949), p. 78. 

TABLE I. Mean square radius and coupling constant 
as functions of a. 

u 
a 

(&) in F2 
1 
0.90 

-3.3 

Cutoff Yukawa 

1.4 1.75 
1.16 1.38 

- 2 . 5 - 2 . 2 

3 
2.2 

- 1 . 9 4 

Yukawa 

1.2 1.4 
1.08 1.24 

- 1 . 0 1 - 1 . 1 3 

E x p . 

1.0-1.2 

s t reng th of the TT-TT in te rac t ion (in a form of gA1/2) will 
be given b y this connect ion. A different va lue of a 
corresponds to a different va lue of gA1/2. 

B. We first solve (11.2) with the cutoff Yukawa for 
the nucleon source function. The tail of the Yukawa 
well is simply omitted in the numerical integration.17 

Using the solution, we calculate the mean square radius 
(R2). We perform similar calculations with different 
value of a. From the curve, a vs (R2), we can find the 
value of a which gives the mean square radius 
<i?2)=1.0-1.2F2. 

C. We integrate (11.2), taking into account the tail 
of the Yukawa well. As a trial wave function we take a 
and the strength g\1/2, both given in process B to obtain 
(R2)= 1.0-1.2F2. In the end of integration, the strength 
can be calculated with the boundary conditions at 
p = a. The consistency for g\l/2 has to be obtained by a 
trial and error method. Assuming the constructive 
effect of the TT-TT interaction and the nucleon source 
function, the required value of gX1/2 is little smaller than 
that of the cutoff Yukawa. 

D. We find a solution Xi of (11.2) which gives 
(Z?2)=1.0-1.2F2 in the above method. Using this wave 
function we calculate the nucleon form factor as a 
function of momentum transfer q. 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0 6 

<R2>inF2 

Yukawa - ^ z 

- / 

L 

^ - c u t - o f f 
Yukawa 

i 

-

H 

-

-

-

~ 

- i 

- j 

FIG. 3. Mean 
square radius as a 
function of a. 

1.0 2.0 3.0 

17 The normalization of U> (2.3), holds approximately. If we 
adopt the square well for U, the calculation is rigorous. In this 
case, there is no tail effect, since the derivative of the source func
tion has nonzero value at p = a only. The mean square radius is 
nearly equal to that given by the cutoff Yukawa, since the wave 
functions for both cases are equal in the region p>a, if a is the 
same. The meson wave function for the square-well case is also 
studied in the Appendix. 
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FIG. 4. Electric form factors Fi (q2) in the symmetrical pseudo-
scalar theory. The effect of the TT-TT interaction is taken into 
account. The numerical solutions of the differential equation 
(11.2) have been used. The theoretical curves are: (I) for a=1.2 
(gXi/2=-1.01), (II) for«=1.4 feV/2=-1.13). 

12. RESULTS AND CONCLUSION 

The mean square radius, the product of coupling 
constants, g\1/2, and the form factors have been calcu
lated in the manner described in Sec. 11. The adjustable 
parameter involved in our calculation is only a. [That 
is the K and A are chosen as 0.71F-1 (rest mass of meson) 
and 0.22F (Compton wavelength of nucleon), respec
tively.] Calculated values of the mean square radius 
and the coupling constant g\1/2 are summarized in 
Table I. There the error involved in (R2) is of the order 
of a few percent, while that of g\1/2 is about 30%. This 
large error comes from the uncertainty of the slope of 
the wave function near the origin. For the cutoff 
Yukawa well, the (R2) is almost linear in a in the region 
a = 1 — 3, see Fig. 3. With the tail of the Yukawa well 
taken into account correctly, the solutions are given 

FIG. 5. Meson wave-functions: (I) No TT-TT interaction, (5.17) 
withK = 0.71F-1. (II) With TT-TT interaction, solution of (11.2) with 
a =1.2. One notices that the wave function is, in fact, pushed out 
with the effect of the TT-TT interaction. 

for a== 1.2 and 1.4. For these two solutions, the electric 
form factors of the nucleons are calculated and shown 
in Fig. 4. The solution a =1.2 [corresponding to 
g\i/2= — 1.01] reproduces the form factors quite well. 
This solution has much better fit than the wave func
tion with /c=0.35F_1, A=0.22F and no TT-TT interaction, 
[compare I in Fig. 4 and I I I in Fig. 2 ] . The calculated 
(R2) are 1.08F2 for the former and 1.66F2 for the latter, 
while the experimental value is 1.0-1.2F2. This supports 
the existence of the TT-T interaction. The wave function 
with a= 1.2 is shown in Fig. 5. 

In conclusion, the electric form factors for proton 
and neutron can be explained by the charged-scalar as 
well as symmetrical pseudoscalar meson theory in the 
strong-coupling limit. In the latter theory, the effective 
meson mass is about one-half of the rest mass of the 
meson. The introduction of the T-TT interaction is 
consistent with this reduction of the effective meson 
mass. 
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APPENDIX 

Radial Wave Functions in the Symmetrical 
Pseudoscalar Meson Theory with Square 

Well for Nucleon Source Function 

As is easily seen, the radial wave function of ^-wave 
meson depends on the nucleon source function. In this 
Appendix, we study the radial wave function with the 
square-well nucleon source function, for the purpose of 
comparison. The differential equation for the p-wave 
mesons is 

d2 2 \ 3XXi3 2>irgdU 
_ _ + _ + , 2 W 1 r = = 0 , (8.17) 
dr2 r2 / 2TT r2 V5/c dr 

with the square well 

£/=3/4TTA 3 , f ^ A 

The derivative is 

= 0, r>A. 

dU 3 
— = 8(r-A). 
dr 47rA3 

(Al) 

(A2) 

1. No TT-TT interaction (X=0) 

In this case, (8.17) becomes 

d2 2 

dp2 p« 

/ d2 2 \ 

\ dp2 p2 I 
(A3) 
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with P=TK and s= ty3/2)(g/a?). Equation (A3) is The asymptotic form is 
solvable. The solution is given by 

s r / l \ / l \"1 X i = a ( l + - ) e r . 
X1==-(l+a)e~a\--e-4-+l)+e4—111, ?<a ^ \ p / 

2 L \p / \p / J Near the origin. 

P at p-^<*>. (A8) 
\ p / 

Near the origin, 

= i& . ( 1^ a )_ e - . ( 1 + a ) ] e - . (V I ) , p>0. (A4) w.th X . ^ W W - K , ^ . . , <A9) 
o i = a 8 = 0 , (A10) 

a 2 ^ 0 , (Al l ) 

a^ at/10. (A12) 

2 V 

This solution satisfies two boundary conditions 

Xi=0 at p = 0 , 

X i - ^ 0 at p—»<*>. 
^ T , . ^ , ,, j - j r i Here a% is determined by the continuity of Xi at p— a, 
The dominant term of the mean square radius denned J J r ' 
b y ( 1 0 . 1 ) i s a 2 a 2 ( 1 + ^ 2 ) = X l o u t e r W . ( A 1 3 ) 

zo a zo 1 
9A~^=9A7f"' The Xiouter(a) is known from the numerical integration 
24 AC 24 J4* o f ^ f r o m p== oo to p = a . The strength gX1'2 is given 

This is again linearly proportional to (MK)~\ as in the b y t h e discontinuity of the derivative of X1 a t p = a , 
case of the Yukawa well, (10.3). r ^ x inner ^ outer 

2. With 7r-7r interaction (X^O) L dp dp Jps=a 
JXiouter 

Let us introduce =2a 2 a ( l+^a 2 ) 

X1= (27r/3X)1/2X1. (A6) 3X1/2 g ^P 

Equation (8.17) becomes = ~~2f2 W2~2* (A14) 

/ d2 2 \ Xi3 3 / X \1 / 2 j? 
[ | 1-1 ]Xi = ( ) —~pb{p—a). (A7) Here Xi inner and Xiouter represent the solutions for p<a 
\ dp2 p2 J p2 2\2TT/ a? and p > a , respectively. 


