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The Boltzmann transport equation is solved taking into account vibrational, dissociation, excitation, 
and ionization losses in hydrogen at E/p0 between 40 and 450 V/cm-mm Hg. No approximations are made 
regarding the angular dependence of the electron distribution function. At the high E/po the distribution 
function is sufficiently anisotropic that it cannot be represented by a two-term expansion in spherical har
monics. It is shown that the concept of "effective" field in microwave breakdown remains valid in the pres
ence of anisotropies provided the circular frequency is much larger than the electron growth rate. The tem
poral growth rate of the electron density is calculated and compared with the experiments of Rose and of 
Cottingham and Buchsbaum. The effects of anisotropy on the diffusion coefficient and on the microwave 
breakdown equation are discussed. 

I. INTRODUCTION 

THE exponential growth of electron density in the 
microwave breakdown of hydrogen gas has been 

studied by Cottingham and Buchsbaum1 under condi
tions which allow the gas to be regarded as being of 
infinite spatial extent. They obtained values of the 
growth rate /?, [iV=iVo exp(J3t)2, for a range of Ee/p0, 
the ratio of the effective electric field intensity to the 
pressure,2 from 36 to 200 V/cm-mm Hg. The conditions 
of the experiment facilitate comparison of the results 
with the theory of Allis and Brown3 and with the theory 
of Pearlstein and Stuart.4 In both cases the agreement 
is poor. The microwave measurements do agree well 
with dc measurements by Rose5 in which the Townsend-
alpha coefficient (exponential spatial growth rather than 
temporal growth) was observed. The disagreement with 
the two theories is to be expected for reasons which will 
be apparent immediately; the agreement between the 
microwave measurements and the dc measurements has 
interesting consequences regarding the validity of the 
"effective-field'' concept at high Ee/po. 

The disagreement with the theory of Allis and Brown 
is to be expected because the theory, concerned pri
marily with low values of Ee/po, contains approxima
tions which become less valid as Ee/po is raised. One set 
of approximations is connected with the energy de
pendence of the various collision frequencies. Allis and 
Brown took these to be linearly increasing functions of 
energy. Also, Engelhardt and Phelps6 have recently con
cluded that there is an appreciable probability that 
low-energy electrons will excite vibrational states of 
the hydrogen molecule. In order to obtain agreement 
with the microwave breakdown data, Allis and Brown 
had to disregard this process in their calculations. 

1 W. B. Cottingham and S. J. Buchsbaum, preceding paper 
[Phys. Rev. 130, 1002 (1963)]. 

2 The effective electric field intensity Ee represents an equivalent 
dc field in the plasma. See H. Margenau, Phys. Rev. 69, 508 
(1946). See also, reference 3. 

3 W. P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952). 
4 L. D. Pearlstein and G. W. Stuart, Phys. Fluids 4,1293 (1961). 
5 D. J. Rose, Phys. Rev. 104, 273 (1956). 
6 A. G. Engelhardt and A. V. Phelps, Bull. Am. Phys. Soc. 7, 

637 (1962). 

Another approximation in the Allis and Brown theory 
is that the angular dependence of the electron distribu
tion function is described by the first two terms in the 
spherical-harmonics expansion. On the basis of this 
approximation, they show that the microwave field may 
be replaced by an appropriately defined dc field, the 
so-called "effective" electric field. Our solution of the 
Boltzmann equation for the distribution function indi
cates that this angular approximation breaks down at 
high E/po, and that the distribution function becomes . 
sufficiently anisotropic that it cannot be adequately 
described by only two spherical harmonics. One then 
wonders whether the effective electric field concept loses 
its validity at high Ee/po. The agreement between 
Cottingham's microwave measurements and Rose's dc 
measurements suggests strongly that in this case, at 
least, the effective electric field concept does hold. This 
serves to raise the question of whether the distribution 
function is really as anisotropic as our calculations 
suggest, or, whether the effective field concept is valid 
independently of the angular dependence of the 
distribution. 

Finally, if we assume that the effective electric field 
concept is valid, then Cottingham's measurements can 
be compared with the theory of Pearlstein and Stuart,4 

which, without use of any angular approximations, 
predicts the growth rate for a dc discharge in an infinite 
medium. The lack of agreement here suggests that the 
Pearlstein-Stuart theory, essentially concerned with 
extremely high E/po contains approximations which 
lose their validity at lower values of this parameter.7 

The purpose of this paper is threefold. First, we show 
that at high E/po, the distribution function is suffi
ciently anisotropic that it cannot be represented by a 
two-term expansion in spherical harmonics. Second, we 
prove that the effective field concept is valid even at 

7 The main concern of Pearlstein and Stuart was to obtain upper 
bounds on the growth rate /3 as a function of E/p using simple 
models amenable to rapid calculations. Their treatment of the 
energy loss is compatible with these objectives, and their values 
of j8 certainly lie well above the measured values. In this sense the 
experimental result may be cited as support of the Pearlstein and 
Stuart theory. 
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high E/po, that is, in the presence of large anisotropics. 
Third, we calculate the growth rates as a function of 
E/po and compare the calculated rates with experiment. 
We also point out the tensor nature of the diffusion 
coefficient at high E/pQ and the need for modifying the 
diffusion-controlled breakdown equation when the dis
tribution function is highly anisotropic. 

The structure of the paper is as follows: In Sec. I I we 
discuss the data on various collision frequencies which 
we use in the theory and the assumptions we make where 
data are lacking. Section I I I contains the derivation of 
the equations from which the distribution function and 
growth rates are calculated in the dc avalanche break
down. Our method here is an extension of the approach 
initiated by Stuart and Gerjuoy.8 We obtain a pair of 
equations whose simultaneous solution gives the spheri
cally symmetric part of the distribution function and 
the exponential growth rate. From the spherically 
symmetric part of the distribution function it is possible 
to regain its full angular dependence. In this section we 
deviate from the procedure of Gerjuoy and Stuart8 by 
introducing the inelastic collisions. We repeat many of 
the steps of reference 8 because in the derivation of the 
effective field in the microwave breakdown (Sec. IV) we 
need to establish contact with some of the intermediate 
equations of the dc case. Our final expression for the 
calculation of /3 differs somewhat from that used by 
Stuart and Gerjuoy. Finally, in Sec. V, we present and 
discuss results of the detailed calculations using the 
data of Sec. II . 

II. BASIC CROSS SECTIONS AND ASSUMPTIONS 

Let ve, vv, vx, vd, Viy and v be the elastic, vibration, 
excitation, dissociation, ionization, and total collision 
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FIG. 1. Electron collision frequencies in H2 vs energy for 
vibrational excitation, dissociation, electronic excitation, and 
ionization. 
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FIG. 2. Total collision frequency v/p vs energy. The solid curve 
is from reference 6; the dashed line represents the value 4.8X 109£0 
as used in the present work. 

frequencies, respectively. They are functions of the 
speed C of the electron; but for electron energies above 
about 4 eV, the total collision frequency v depends only 
weakly on the speed. Hence, we shall take 

v^ve{C)+vv{C)+vx{C)+vd(C)+Vi{C) (2.1) 

to be a constant, independent of the electron speed and 
shall regard ve(C) as being calculated by means of (2.1). 
The quantities on the right-hand side of Eq. (2.1) have 
recently been determined by Engelhardt and Phelps6 

who give sources for their data and express their results 
as cross sections for collision. The corresponding 
collision frequencies for the last four processes on the 
right-hand side of Eq. (2.1) are shown plotted in Fig. 1. 
For the total collision frequency we use the value 

^ = 4 . 8 X 1 0 % (2.2) 

where pc is the pressure in mm Hg reduced to 0°C of 
the neutral hydrogen gas. This value of v results in best 
agreement between the microwave and dc measure
ments of the ionization frequency.1 The total collision 
frequency v as given by Eq. (2.2) is plotted in Fig. 2, 
where it may be compared with the corresponding 
frequency of reference 6. 

We assume that the scattering is isotropic for each of 
the processes listed in Eq. (2.1), but that each process 
may have a different effect on the energy of the colliding 
electron. We list here our assumptions about the energy 
losses associated with each process and defer till later 
the justification of these assumptions. 

(a) Elastic collisions leave the electron energy 
unchanged. 

(b) Vibrational collisions decrease the electron energy 
by Ev = 0.516 eV, the threshold for vibrational energy 
transfer. 

(c) Excitation, dissociation, and ionization result 
either in maximum energy loss, leaving the electron with 
zero energy, or in minimum energy loss, leaving the 
electron with its original energy reduced by the thresh
old energy for the process in question. 

(d) Ionizing collisions release another zero-energy 
electron into the system. 

When there is no need to distinguish between the 
various processes which leave an electron with most of 
its energy or between the various processes which 
return it to zero energy, we shall refer to the vibrational 
collisions as elastic, or near elastic, and shall refer to the 
remaining three processes as inelastic. 
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III. THE dc AVALANCHE BREAKDOWN 

In this section, we consider the Boltzmann equation 
governing the electron distribution function for the case 
of the dc field. Initially, there is a single electron of zero 
energy in the system. I t accelerates under the influence 
of the field and collides elastically with the gas molecules 
until it achieves sufficient energy to suffer an inelastic 
collision which returns it to nearly zero energy. If the in
elastic collision is an ionizing one, a second electron of zero 
energy is released. After the collision, the newly released 
electrons continue the cycle of acceleration and collision. 
The problem is to calculate the rate of growth of the 
total number of electrons in the system and their dis
tribution in energy and direction. 

The history of the electrons in the distribution may 
be divided naturally into intervals between successive 
inelastic collisions, because in each such period, the 
time development of the distribution function of the 
electrons released at, or returned to, zero energy is the 
same as that of the original electron during the first 
acceleration period. This point of view will appear early 
in the mathematical description. I t is an extension of the 
idea contributed by Gerjuoy and Stuart8 in their theory 
of dc breakdown of a gas in which all collisions were 
assumed to be elastic. We shall also follow Gerjuoy and 
Stuart in performing the angular integration of the 
Boltzmann equation so as to obtain an integral equation 
for the angular average of the distribution function. 
This frees us from the necessity of making approxima
tions about the angular dependence. Having found the 
angular average, we shall be able to compute from it the 
angular dependence of the distribution function. 

The distribution function f(\,t), which gives the 
number of electrons in the velocity element around v at 
time t, is governed by the following Boltzmann equation 
and initial conditions: 

/d d \ 
l-+o—+v)f(v,t) 
\dt dvz I 

= — [dv'f(r',t)Zve(C')d(c-c) 
4TTC 2 J 

+ vv(C')b(C-C")^+S(t)b(C)/(^C2)) (3.1a) 

S(t) = Jdv C ^ ( C ) + w ( C ) + 2 ^ ( C ) ] / ( v , 0 ; (3.1b) 

/ ( V , 0 ) = 5 ( C ) / ( 4 T T C 2 ) ; (3.1C) 

C = | v | , C ' = | v ' | , C,f=[_{Cfy-2Ev/mJ/\ (3.1d) 

Here, a is the acceleration caused by an electric field 
directed towards negative z, and Ev is the fixed vibra
tional energy loss. The term vf(y>t) on the left-hand side 
of Eq. (3.1a) represents the scattering of electrons out 
of the velocity interval d\ at v. The first term on the 

right of Eq. (3.1a) represents elastic scattering into this 
velocity interval from all other velocities with the 
same energy. The second term on the right of Eq. (3.1a) 
represents scattering into this velocity range by vibra
tional processes, from all velocities for which the energy 
is greater than mv2/2 by an amount Ev, the threshold for 
vibrational excitation. The third term on the right of 
Eq. (3.1a) represents the inelastic collisions which 
supply electrons at a rate S(t) to the velocity element at 
zero energy. This rate of supply is given in (3.1b)—one 
for each excitation and dissociation, two for each 
ionization. Thus, Eq. (3.1) corresponds to the assump
tion of "maximum energy loss" on inelastic collision as 
discussed in Sec. I I . A similar equation can be written 
to correspond to the "minimum energy loss" assump
tion. I t can be solved by the same method as that used 
for Eq. (3.1). We shall only quote the results of such a 
parallel calculation, and will label them "minimum 
energy loss." 

Neglected in Eq. (3.1a) is the (2m/M) energy loss 
on elastic collision, where m and M are the masses of the 
electrons and hydrogen molecules, and the energy loss 
due to excitation of rotational degrees of freedom. These 
energy losses are indeed negligible over the whole range 
of E/po that we shall consider. 

The study of Eq. (3.1) is facilitated by taking its 
Laplace transform with respect to time. On defining 

f(v,P)=[ dt<r"f(?,f), (3.2) 
JO 

§(p) = f dte-^Sit), (3.3) 
Jo 

and making use of the delta function in the elastic 
collision terms, the Laplace transform of (3.1) becomes 

(p+a— +v)f(v,p) 

=— [da lve(C)f(c^p)+(cf/c)vv(C)f(cf^p)-] 
Air J 

+ [l+S(£)]5(C)/47rC2 ; (3.4a) 

C=(C2+2Ev/tn)1/2; v ' = C ' Q ; (3.4b) 

S(p)= fdv tvx(C)+vd(C)+2vi(C)1~f(v,p\ (3.5) 

We divide Eq. (3.4a) by ( 1 + 5 ) to show that there is a 
function g(\,p) satisfying 

(p+a—+v)g(v,p) = — [da lve(C)g(Ca,p) 
\ dvz J 4TT7 

+ (C/C)vv(CTg(Cf&S~]+KC)/^C\ (3.6) 



1010 G. A. B A R A F F A N D S. J . B U C H S B A U M 

which is related to / by means of 

f(v,p) = Ll+S(pm(v,p)- (3-7) 
Multiplying (3.7) by vx-\-va-\-2vi and integrating yields 

S(p)=R(p)Li-mp)~\-\ (3.8) 
or 

where 

ff(p)=f dv lvx(C)+vd(C)+2Vi(C)-]g(y,p). (3.9) 

Combining (3.8) and (3.7) gives 

Kv,p)=0--$(P)~Yl~g(y,P\ 

and the Laplace inversion of (3.10) yields 

1 

2irt J y 

dp ept — . 

(3.10) 

(3.10a) 

The long time behavior of f(v,t) is controlled by the 
singularity of the integrand furthest to the right in the 
complex p plane. In Appendix A, we show that this 
singularity is a simple pole, located at p=p, where 

# 0 3 ) = 1. (3.11) 

Further, we show that Eq. (3.11) always has a unique 
positive real solution for @ and that any solution of 
(3.11) for p off the real axis necessarily lies to the left of 
the real solution. This means that the long time behavior 
of f(y,t) is 

f(v,t)«2(v,P)ef", (3.12) 

where ft is the real positive solution of (3.11). Thus the 
experimentally observable exponential growth rate may 
be calculated from Eq. (3.11). This is the procedure 
followed in reference 8. Actually, Eq. (3.11) is not 
convenient for numerical calculations, partly because 
it is implicit in 0, and partly because its solution is very 
sensitive to the normalization of g. Both drawbacks 
may be overcome as follows: Consider the integral of 
(3.6) over all velocities. Setting p=fi and making use 
of (2.1) gives 

/ 
dr D 3 + ^ ( C ) + ^ ( C ) + y i ( C ) ] I ( v , / 3 ) = 1. (3.13) 

Now consider Eq. (3.11), using the definition (3.9) 

fdv tpx(C)+vd(C)+2Vi(C)~]g(v,P) = 1. (3-14) 

Subtracting these two equations and solving for the 
explicit j8 gives 

0 = fdv t(yfi>i(C)/ fdy g(v,/3), (3.15) 

which is independent of the normalization of g. Equa
tion (3.15) is analogous to that used in conventional 
calculations of /3,3 that is, in calculations which start 
from the steady-state Boltzmann equation in which the 
gain in particle density through ionization is exactly 
balanced by loss of particles through diffusion or 
attachment (the breakdown equation). If G(v) is the 
solution of such a steady-state Boltzmann equation, it 
takes place of g(v,/3) in (3.15) in a conventional calcula
tion. Note that G(v)?*g(v,0) but is more closely related 
to g(v,/3). This is because Eq. (3.6) can be interpreted 
as a steady-state equation in which there is a constant 
collision frequency for particle loss. This frequency p 
must be set equal to fi to yield g(v,/3). Equating p, the 
frequency for particle loss, to ft, the exponential growth 
rate in our theory is precisely analogous to the assump
tions of a steady-state breakdown equation; growth of 
particle density by ionization is equal to loss due to 
diffusion and attachment. 

Having found a convenient relation between ft and 
g, we turn our attention now to the equation determin
ing g. We rewrite Eq. (3.6) with p set equal to ft, as 

Q(C)= 

(P+od/dva+v)U(vfi) = vQ(C)/4nc; (3.16a) 

(vC2) 
- fda \re{c)g{cafi) 

+ f^rv{C)g(Ca^ (3.16b) 

re(C) = ve(C)/v; rv(C) = vv(C)/p. (3.16c) 

Equation (3.16) may be integrated readily to give 

A change of variables to spherical coordinates 

vz—w — R, 

vx=Csm0sin<p, 

Vy—C sin0 cos<p, 

vz= C cosd=C/Ji, 
yields 

2(y,]8)= / dRe-*w*Q(C"), (3.17a) 
4wa Jo 

C"= (C2-2fxRC+R2)1/2. (3.17b) 

Finally, the angular integration may be performed, 

fgdtt=— j dfxj dRe-R^+v)laQ{C"). (3.18) 

Using C" rather than /z as a variable of integration in 
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Eq. (3.17), yields8 

W ( T ) 
where 

K(C,C")Q(C")dC", (3.19a) 

- J Z ^ I C + C ' l ^ ) ] , (3.19b) 

£i(*) = / —dt, 
Jx t 

and 

(3.19c) 

is the tabulated exponential integral function. It is 
convenient to define 

3,C)=C2 f, p(0,C)=C* da%(v,l3), (3.20a) 

so that, by use of (3.16b) and (3.20a) the integral 
equation (3.19) can be rewritten as 

p(j3,C) = arie-W+>)c/a 

+ f dC"K(C,C'%re(C")p(P,C") 
Jo 

+ (C/C*)rv(C*)p(fl,C*)l, (3.20b) 

C*=l(C',y+2Ev/mJ,i. (3.20c) 

The inhomogeneous term in (3.20b) arises in taking 
the limit K(C, C"->0) which is implied by the 5(C") 
appearing in (3.16b). In terms of p, Eq. (3.15) for j8 
becomes 

P/v=[ dC p(0,Qn(Q/ f dCP((3,C), (3.21a) 

n(C) = vi(C)/v. (3.21b) 

The difference between Eq. (3.20b) and the analogous 
equation of reference 8 is the presence of rv and re in the 
integrand. Without these factors, or, in the special case 
in which re were independent of C and rv were zero, the 
solution of Eq. (3.20b) could be obtained using the 
methods of reference 8. The factors arise, of course, 
because we wish to allow inelastic collisions to remove 
electrons from the speed range at C . 

Equations (3.20b) and (3.21) must be solved simul
taneously. For this purpose, a new set of variables is 
useful : 

x=C/y, (3.22a) 

y=a/(p+v), 

77= (l+P/v)-\ 

N(x,v)^ap(P,C). 

The equations to be solved become 

(3.22c) 

(3.22d) 

(3.22e) 

7? /*°° /X\ 

N(x,v) = e-*+- / dy[-)tE1(\x--y\)--E1(\x+y\)l 

X{re(yy)N(y,V)+(y/y^rv(yy*)N(y^V)}y 

(3.23a) 

y*= Qy2+2£v/m72]1/2, (3.23b) 

1/77=1+ J dxN(x,rj)ri(yx)/ f dxN(x,rfi (3.23c) 

Equations (3.23) must be handled numerically. The 
solution may be obtained by iteration. Having chosen a 
value for 7, one chooses a trial form for N(xyrj) in 
(3.23c) and computes 7?. The computed 77 and trial form 
of N are used in (3.23a) to obtain an improved form 
for N. The improved form is then used in (3.23c) again 
and the cycle repeated until 77 converges.9 Having ob
tained 77 for the chosen value of 7, one obtains via 
(3.22d) and (3.22c) 

0A= l/17-l, 

a/v=y/y. 

(3.24a) 

(3.24b) 

By choosing other values for 7 and repeating the 
process, a plot of ft/V vs a/v may be constructed. Since 
v is directly proportional to the pressure, the plot can be 
expressed in the conventional units of fi/po vs E/po. 

Finally, having obtained N(x,rj), one evaluates Q(C)7 

Eq. (3.16b), by means of (3.20a) and (3.22e). From 
Q(C), the angular-dependent distribution function may 
be obtained by performing the integration indicated in 
Eq. (3.17a). 

IV. MICROWAVE AVALANCHE BREAKDOWN 

We shall now consider the time-dependent solution of 
the Boltzmann equation in the presence of a high-
frequency electric field. Our aim is to establish the 
validity of the "effective" field concept without recourse 
to an expansion of the distribution function in spherical 
harmonics. Our technique here will be to separate the 
time dependence arising from the harmonic time de
pendence of the field direction from the slower time 
dependence arising from the transfer of energy from the 
field to the electrons (and to the gas) and the resulting 
growth of the electron density. The functions describing 
the slower time dependence will prove to be the 

y=c"/y, (3.22b) 
9 It can be shown that such iterative procedure converges 

provided vfeiQ < 1; this is obviously so in this problem. 
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analogues of the function which appeared in the 
dc treatment. We carry the study of the high-fre
quency case only so far as to establish contact with 
such intermediate equations of the previous section 
which will allow a proper definition of the "effective" 
field to be made. Our steps and notations duplicate 
most of the steps and notations of the previous section 
although many operations which previously were per
formed on Laplace transforms will have to be performed 
on the time-dependent functions. We shall set vv and 
vd equal to zero in order to simplify the notation; it will 
be quite evident, from the close parallel with Sec. I l l , 
just how the equations can be modified to include these 
processes. Such modifications do not affect the validity 
of any step in this section. 

The time-dependent Boltzmann equation and initial 
conditions that describe the electron distribution result
ing from the release of a single zero-energy electron into 
an infinite system in the presence of a high-frequency 
electric field are 

fd d \ 
( —Ya cosco/ \-v )f(y,t) 
\dt dvz J 

=— [da ^(C/)/(v,,0+5(0«(O/(4»C2), (4.1a) 
4?r J 
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FIG. 3. Electron distribution function p(C) vs electron speed 
calculated assuming "minimum energy loss." 

s{ty- •- I dv [>, (C)+2,i(C)]/(v,0, (4.1b) 

/ ( V = 0 ) = 5(C)/(4xC2). (4.1c) 

We introduce the Green's function for this equation, 
g(y,t,tf), which satisfies 

fd d 
— \-a cosco/ \-v 

\dt dvz 

4TTJ 
da v.(p)g{y'tf), 

g(v,t>,t') = 5(C)/(MC*). 

Then direct substitution shows that 

(4.2) 

/ ( V ) = «(v,/,0)+ I dt'g{y,t,t')S{t'). (4.3) 
Jo 

Equation (4.3) is, of course, the analog of Eq. (3.7). We 
proceed in much the same way as in Sec. I l l , multiply
ing (4.3) by vx+2vi, integrating over v and using (4.1b) 
to obtain 

S(t) = N(t,0)+ f &? N(t,t')S(t'), (4.4) 

N(t: ! / ) = fdYlva (C)+2^-(C)]g(v, / / ) . (4.5) 

Now suppose that the times t and tf were to enter 
Eqs. (4.4) and (4.5) only through their difference, 
(t—t1). Then these equations would be exactly analogous 
to Eqs. (3.8) and (3.9) of Sec. I l l because on taking 
Laplace transforms, Eqs. (4.4) and (4.5) would become 

S(p) = ll+S(p)-]ft(p), (4.6) 

N(p) = [dv lvx(C)+2vi{Cmv,p). (4.7) 

The same line of reasoning as was used in Sec. I l l would 
again lead to the conclusion that the density grows 
exponentially with a growth rate fi determined by 

N(0)=1. 

There would then remain the problem of calculating 
N(p). If we could show that ftf(p) corresponds to the 
analogous function in the preceding section, the equiva
lence between the microwave case and the dc case 
would be established. 

We show in Appendix B that under certain conditions 
an N(p) can be defined which is analogous to the corre
sponding function in dc-field case. These conditions 
require that the circular frequency co of the microwave 
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field be larger than the growth rate /3 and that the 
amplitude of the microwave field be not so large that 
the first collision is likely to be inelastic. When these 
conditions are satisfied and the correspondence is 
possible, there emerges an effective electric field given 
by 

1 E 
Ee= , (4.8) 

V2[l+co2/(^+/3)2]1/2 

which plays the same role in the microwave growth 
rate equation as does the dc electric field in Sec. III. 

The equivalence between the microwave and dc cases 
goes further than the growth rates, of course. We also 
show in Appendix B, that a function g°(v,/3), which gives 
the time dependence of the slowly varying part of 
distribution, also exists, and is obtained by averaging 
the dc distribution function over the directions in which 
the microwave field points [Eq. (B17)]. 

V. RESULTS AND CONCLUSIONS 

We have evaluated the distribution function g(v,/3) 
and the coefficient (3 for a range of E/po from 40 to 
450 V/cm-mm Hg using the two assumptions of 
"minimum" and "maximum energy loss" of Sec. II. We 
also evaluated the average energy u and the diffusion 
coefficient D. 

The Distribution Function 

In Figs. 3 and 4 is plotted the function p(J$,C) 
[Eq. (3.20a)] as function of the speed C for various 
values of E/po and for the two assumptions of "mini
mum" and "maximum energy loss." The function is so 
normalized that Jo* p(C)dC=l. The presence of elec
trons at zero speed in p (C) is, of course, a consequence of 
our assumption of the appearance of such electrons as a 
result of inelastic collisions. It is interesting to compare 
p(C) with a suitably normalized Maxwellian distribu
tion of the same average energy; such a representative 
comparison is shown in the inserts in Figs. 3 and 4 for 
an E/po of 100 V/cm-mm Hg. It can be seen that at 
high speeds p(C) falls off less steeply than the Max
wellian, the effect being more pronounced for the 
"maximum-energy-loss" assumption. Thus, an experi
mental measurement of the dependence of the tail of 
the distribution on energy, generally will lead to an 
overestimation of the average energy of the distribution. 
Such effect was observed by Whitehouse.10 

The plots of Fig. 5 depict the anisotropy of distribu
tion function for various values of E/p and for various 
speeds at a given E/p. These are polar plots, the radius 
vector from the origin to any point on the curve being 
proportional to the number of electrons traveling at the 
given speed in the direction that the radius vector 
makes with the direction of acceleration. The scale on 

X108 

2 4 6 8 10 12 

ELECTRON SPEED, (C ) , IN CM/SEC X10" 

10 D. R. Whitehouse, Ph.D. dissertation, Department of 
Electrical Engineering, Massachusetts Institute of Technology, 
1957 (unpublished). 

FIG. 4. Electron distribution function p (C) vs electron speed 
calculated assuming "maximum energy loss." 

these plots is relative; for a given E/p the scale is the 
same for all speeds but changes for various E/p's in 
order that all plots be of approximately the same 
physical size. 

The anisotropy has two forms: a "spike" in the direc
tion of the acceleration and a "flattening'' of the over-all 
distribution into an elliptical shape. The "spike" is 
made up of those "fortunate" electrons which have 
eluded collisions and which continue to travel along the 
direction of the acceleration. The number of electrons 
within the "spike" is very small and decreases with 
electron speed. The flattening of the distribution is very 
pronounced at high E/p and survives even at electron 
energies of the order of the excitation and ionization 
energies. As expected, it is larger for the "maximum" 
than for the "minimum energy loss" assumption. This 
pronounced flattening is the reason for failure of the 
spherical harmonics expansion to properly represent the 
distribution function with only two terms in the expan
sion. Since low-speed electrons are more anisotropic 
than high-speed electrons, the spherical harmonic 
expansion will fail at even lower E/p for calculation of 
the transport coefficients (such as diffusion) which 
depend more strongly on low-speed electrons. 

The Average Energy and Growth Rate 

In Fig. 6 is plotted the growth-rate (3 as a function of 
po/Ee. The experimental results of Rose and of Cotting-
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ham are shown as a dashed curve. I t is gratifying that 
the measured values fall between the two calculated 
curves. 

Not much weight is attached to the fact that the 
experimental curve is closer to the "maximum energy 
loss" curve than to the "minimum energy loss" curve. 
I t must be remembered that the cross sections as 
quoted in Sec. I I are (with the exception of the ioniza
tion cross section) not measured cross sections, but are 
deduced by Engelhardt and Phelps by fitting theoretical 
calculations to transport coefficients measured at low 

E/po. The resulting set of cross sections, although it is 
realistic, is admittedly not unique. We also remind the 
reader that we assumed that in an ionizing collision an 
electron is born with zero energy regardless of whether 
the initial electron loses the "minimum" or "maximum" 
energy. Actually, the energy excess over the ionization 
threshold is shared by the two emergent electrons. This 
will tend to raise the "maximum energy loss" curve in 
Fig. 6 and lower the "minimum energy loss" curve, and 
thus reduce the spread between the two. 

In Fig. 7 is plotted the average energy u as a function 

MAXIMUM ENERGY LOSS MINIMUM ENERGY LOSS 

u=4.11 eV E/p=40 
^ 2 ^ v \ u = 4.86eV 

fc\5 /10 15--2<r~~25 

J J = 4 ^ 9 3 e ^ E /p = 50 
^ " ^ ^ ^ Q=5.i6eV 

\ 
.24 

15-— 20 25 

- u=2.5eV E/p=i07 
^=7z=s^5<iJ=7.04eV 

^ - ^ V 1 L̂ -io J 

"^TT-RIRPV E/p=206 

^3i|5^\^\—\ 
^55.21 T 4—J 
^ T _ 4 ^ 6 - - ^ 8 10 

E / p = 4 3 8 
U = 28.4eV 

f E/p = 50.i 
U=6.64eV^ 

u=neV \ \ l 

^ s 5 / 10 15 20-^25 

E/p=ioi.5 
[u=ioeV/" 

R \ 5 l<r*"15 ^ 2 0 ^ 5 
FIG. 5. Polar plots of the elec

tron velocity distribution for var
ious values of E/p and the cor-
esponding average energy u. The 
energy u for which the angular 
distributions are plotted are 
indicated. 

E/p = 215 
Q=2ieV^: 

^ = 6 . i 6 e V y ^ \ \ 

Z^<C55.2 \ \—4n 
^ 2 ^ ^ 4 6 B j f i J 

[E/p=471 
U=62.8eV_ 7u=i5.4eV^V 

^ ^ n 3 8 \ \ \ 

t^\ n—ul S ŝJ ? 3 4—5 



E L E C T R O N D I S T R I B U T I O N A N D B R E A K D O W N I N H 2 1015 

of po/Ee. The average energy increases rapidly with 
Ee/po for Ee/pQ greater than about 200 V/cm-mm Hg, 
more rapidly in fact than the growth rate 0. The rapid 
increase of u results from the fact that at very high 
Ee/po the electrons are able to "punch" their way in 
energy past the inelastic sinks of energy. 

The Diffusion Coefficient 

Because the distribution function is highly aniso
tropic at large E/p0, the diffusion coefficient 

> / D=(l/p) yyf(Cjfx)dh (5.1) 

10* 

i io» 

> tn 6 

2 A 

107 

10* 

1 l \ 

V V \ MINIMUM 
A \ENERGY LOSS 

\ \ \ 
VO 
\ v x 

^ \ v 

_ MAXIMUM 
ENERGY LOSS 

N̂ ^ ^ 
\ \ , 

^ 
ROSE AND J^is. 
COTTINGHAM <s v 

N 
10 20 25 

p0/Ee IN MMHg/VcM"1 
3 0 

X10~3 

FIG. 6. Plot of the growth rate /3 vs po/Ee; the dashed curve 
represents the measured values of /3 obtained by Rose and by 
Cottingham and Buchsbaum. 

is no longer a scalar, but is a diagonal tensor with com
ponents Dlh Di, Di, where the subscripts "||" and "JL" 
denote the components along and perpendicular to the 
direction of the applied electric field. By expanding / in 
Legendre polynomials in /x, 

/(C,M) = Z I / I ( C ) P I O * ) , (5.2) 

it can be easily shown that Dn and Dx are rigorously 
given by 

A. = !^e [ l+f6] , (5.3a) 

(5.3b) 

5 = [ / / 2 ( C ) C^C]/[/°°^(C)C 4^]' (5-3c) 

100 

80 

60 
50 

0 
j 40 
> 
5 30 

ui 
Z 
m 

\ \ ENERGY LOSS! 
V IV.—-MAXIMUM 
W | Vt-MINIMUM 

ALLISiiROWN 

I 
10 15 20 25 

p 0 / E e IN MMHgCV/CM)"1 
30 35 

X10~3 

FIG. 7. Plot of the average energy vs po/Ee; the dashed curve 
is from the theory of Allis and Brown. 

where u is the average energy in eV and fxe=e/mv is 
the electron mobility. Note that Du and DL separately 
no longer obey the Einstein relation.11 The correction 
factor 8 is shown in Fig. 8 as a function of po/Ee. At 
low Ee/po, 8 tends to zero, while at high Ee/p0j 8 tends 
to its limiting value 5 which obtains for a needle-like 
distribution. Since 8 is a measure of the importance of 
the second spherical harmonic in the expansion of / , an 
expansion in which only the terms /0 and / i are retained 
must fail when 8 becomes appreciable. 

V 

Z 31 
o 
t3 
UJ 

cc 
CL 
O 
O z o 
<0 
D 
U-
u. 
o 

ENERGY LOSS! 
V ^MAXIMUM 

X MINIMUM 

\ / 

10 15 20 

Po/Ee IN MMHg/VcM-1 
2 5 30 

X10* 

FIG. 8. Plot of the diffusion-coefficient 
correction factor vs po/Ee. 

11 W. P. Allis, in Handbuch der Physik, edited by S. Flugge 
(Springer-Verlag, Berlin, 1956), Vol. 21, p . 414. 

file:///ENERGY
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Breakdown g(v,t-*o)=d(c)/(^c*), (A2) 

When the distribution function is nearly isotropic the 
diffusion-controlled microwave-breakdown condition is 
defined by the equation12 

/3=Z)/A», (5.4) 

where D is free-diffusion coefficient and A is diffusion 
length for the fundamental or lowest diffusion mode. 
From the Einstein relation D=%Ujj,ej Eq. (5.4) can be 
written as 

which exhibits the fact that the proper variable12 (pA) 
depends on (Ee/p) only. 

As we have seen, in general D is a tensor, so that the 
more general breakdown equation must be written as 

p=Du/Au
2+DjAL\ (5.6) 

where An and Ax are the lowest-mode diffusion lengths 
along and perpendicular to the direction of the break
down field. Using Eq. (5.3) the breakdown equation can 
be written in the form 

where 

2u(fxep)r 2-(A„2/AJL
2)-

3<j8/*)L l+(A„VAi*)J 

l / A ^ l / A n H - l / A x 2 . (5.8) 

Equation (5.7) indicates that at high Ee/p where 8 is 
appreciable, the variable (pA) depends not only on 
Ee/p but on the ratio An/Ai as well, and thus on the 
shape of the container. 
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APPENDIX A 

Analytic Properties of the Transform 

Consider the equation of which (3.6) is the Laplace 
transform. 

(-+o—+v\(y,t)=— J da \g(C&,t)ve(C) 
\dt dvz I 4iJ L 

+(-)^(C'k(C^,0], (Al) 

12 S. C. Brown, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 22, p. 531. See especially 
Sec. 4. 

2(v,#)= / dter*'g(v,t), (A3) 

and the equation of which (3.9) is the Laplace transform. 

#(<)= f dv tvx(C)+vd(C)+2Vi(C)MvA (A4) 

N(p) -f 
JO 

dt e~ptN(t). (AS) 

Equations (Al) and (A2) indicate that g(v,t) is the 
electron distribution in a gas which is similar to hydro
gen, except that the excitation and ionization collisions 
in hydrogen become absorption collisions in this gas. 
This means that g(y,t) is real and positive, and, because 
electrons can be absorbed, g will eventually decrease 
exponentially with time. From these properties, it 
follows solely because of (A3), that 

(1) | is analytic for all p with Rep>0, 

/g y\ (2) g is real for p real and positive, 

(3) | is a monotonically decreasing function 
of p, for p real and positive. 

(A7) 

(A8) 

(A9) 

Equations (A4) and (A5) indicate that these same 
properties apply to fit as well. Thus f(v,p) in Eq. (3.10) 
can have a singularity at R e ^ > 0 only where N(p)—l. 
Properties (A7) and (A9), applied to N, limit the 
singularity of / to be one or more simple poles. Property 
(A9) guarantees that there will be one and only one pole 
on the real axis if N(0)> 1. That this is the case may be 
verified by comparing (3.13), with /3 set equal to zero, 
with (3.9) with p set equal to zero. This comparison 
shows that 

N(0)=1+ fdYviiQgivfl)^!. 

The last point which must be established is that any 
solution of 2V(£)=1 lies to the left of p. This will 
guarantee that exp/32 is the dominant term at large t. To 
show that this is indeed the case, let p—pr+ipi in (A5) 
and take the absolute value of this equation 

\sm -Vrtp—iv m(t)dt 

< I le-^We-^WNiOldt 
Jo 

= N(Pr). (A10) 

The equality holds only if the oscillating exponential 
is constant, i.e., if pi=0. Now if N(pr+ipi) = 1, then, by 
(A10), N(pr)>l which, by (A9), means pr<p. 
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APPENDIX B 

The Effective Field Ee 

We wish to show that provided co>/3, an effective field 
Ee can be defined which reduces the microwave-break
down growth rate equations to those of the dc field case. 

Define 
T=t-t', (Bla) 

<p=o)t\ (Bib) 

and 

g,(v,T) = g(v,M')- (Blc) 

Then Eq. (4.2) becomes 

d d l 
\-aco$(o)T+<p) \-v \g<p{v,T) 

ST dvz J 

= - [dQVe(C)g,(v',T), 

4TT J 

g , ( v , r = 0 ) = 5(C)/47rC2. (B2) 
Equation (B2) indicates that g9 is a distribution 

function of electrons in a gas which is similar to hydro
gen except that the cross sections for inelastic collisions 
in hydrogen have here become cross sections for absorp
tion. The single electron is released into the system at 
time r = 0 and, under the influence of field and collisions, 
diffuses upwards in energy until it is absorbed. The sole 
dependence of the distribution on the time t', to which 
r = 0 corresponds, is through <p, the phase of the electric 
field at the time of release of the electron. After the 
electron has collided once or twice so that its direction 
of motion has been randomized, it is likely to lose all 
memory of the precise phase of the field at the time of 
its birth. That is, we expect that <p dependence of g $ to 
damp out for r> 1/v. 

If we consider the relation between N(t/) and 
g(y,t/) given by Eq. (B2), it is evident that N depends 
only on the behavior of the electrons with energies above 
the inelastic threshold energy. The majority of these 
relatively high energy electrons will have suffered at 
least one collision since their birth at r = 0 with zero 
energy. Hence, we expect that ip dependence of N to be 
even weaker than that of g, leaving N to depend mainly 
on T=(t—t'). This expectation motivates the mathe
matics that follows. 

One should note, however, that this reasoning does 
imply an upper limit on the field strength for which 
these conditions are valid. If the field strength is 
sufficiently high that the first collision is likely to be an 
inelastic one, then N itself will decay before its <p 
dependence has disappeared. In that case, we would not 
expect the <p independence of N to be useful. 

We assume now that the time variation of g <p can be 
factored into parts which vary slowly during a single 
period, 1/co, and parts whose time variation is com

parable to, or faster than that of the field. We are then 
able to write 

g*(v,T) = g*°(v,T)+g/(v,r) sincoT+g/(v,r) coscor 

+g<P2s(v,r) sin2cor+g^2c(v,r) cos2coH . (B3) 

Such an expansion is reasonable only if all the coeffi
cients of the trigonometric terms are slowly varying 
with respect to the field; otherwise there is no clear-cut 
way of deciding whether a part of the time dependence 
should be associated with one of the coefficients or with 
one of the trigonometric terms. This sets a lower limit on 
the frequency: 1/co must be small compared with the 
decay time of g, that is, small compared with an 
inelastic collision time. 

Assuming that the frequency is high enough for this 
separation, we may substitute (B3) into (B2) and 
consider the equations obtained by equating the coeffi
cients of like powers of exp(icor). We shall satisfy these 
equations only up to and including the first power of 
the exponential, a procedure which is justified if varia
tions in times shorter than 1/co are insignificant. This 
again implies the same lower limit on the frequency. 
The equations we must consider are 

(d/dr+v)f 

+%a(d/dvz)(coscp gc-sm<p gs) = VeN°, (B4a) 

(d/dT+v)gc+a coscp(d/dvz)g°+o)gs= veN
c, (B4b) 

(d/dr+v)g8-a sm<p(d/dvz)g°-ugc= veN
8, (B4c) 

N*=— dttg*; x=0,c,s. (B4d) 
4:T J 

The task is now to obtain simple uncoupled equations 
for the angular averages Nx, since it is only these which 
are needed in (4.7). For the purpose of performing the 
angular average, it is convenient again to introduce the 
polar coordinates 

M=C, 

vz=fxC, 

d d ( l - V ) e 

dvz dC C d/i 

and to define a current density r ° 

I V ( C , T ) = — fdQg,°(Y,T)vC (B5) 

Then the angular average of (B4b) and (B4c) may be 
converted, by means of an integration by parts, to 

/ a \ tb 2 \ r ° 
( Yv-ve )Nc+a cos<p[ 1— —\-a)N8=0, (B6a) 
\ d r / \dC C/C 
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Yv-ve )Ns-a sm<p[ 1— ) o)Nc==0. 
\6T 1 \dC CJC 

(B6b) 

Consider r / ( C , r ) , the slowly varying part of the 
current at time r carried by electrons of speed C. As a 
current—a vector quantity—it must be identically zero 
unless there is some spatial direction which is of 
physical significance. There are only two spatial direc
tions, however, on which g^ can possibly depend. One 
of these is the direction of the electric field at r = 0 , when 
the electron was released, and the other is the electric 
field at r, the present. On the time scale to which T° 
corresponds, the high-frequency field at r can establish 
no directional preference because r^0(C,T) is nearly 
equal to I V (C, r—7r/co) by reason of the slow variation 
of g°, while the field at the earlier time is directed 
opposite to itself at the later time. This leaves only the 
field direction at r = 0 as a significant direction, but 
once the electron loses memory of the initial phase, then 
this direction too has no special significance. Hence, 
there is no preferred direction after times greater than 
1/v and F° must vanish. 

The vanishing of P makes it possible to solve Eqs. 
(B6). We find 

Nc= ^iN*^ const exp [ (> e - jd=fco)r]. (B7) 

We have explicitly taken Nc and Ns to be slowly varying 
compared with the field variation, while the solution 
above states just as explicitly that they oscillate at 
frequency co. We must, therefore, take the constant in 
Eq. (B7) to be zero, so that Nc and Ns also vanish 
identically and can, therefore, be deleted from (B4). 

The Laplace transform of the Eq. (B4), with trans
forms denoted by tildes and initial values by G, is 

(p+p)g°+Md/dvz)(cos<pr-s™<Pr)== vQ/fa), (B8a) 

(p+p)gc+o>gs=Gc-a cos<p dg°/dvz, (B8b) 

{p+v)g8-wgc= G8+a sincp dg°/dvz, (B8c) 

4?r r 
Q=—G°+re dag0. (B8d) 

v J 

Equation (B8b,c) may be solved for g8 and gc in terms of 
the quantities on the right-hand side of the equation. 
From the solution, we construct a term appearing in 
(B8a) 

cos<p gc-sin<? gs= -A (d/dvz)g°+B(y,(p); (B9a) 

a{p+v) 

B = -

l+a>2/(p+v)2 

[(p+v)Gc-wGs2cos<p 

(B9b) 

(p+p)2+a>2 

[_(p+v)Gs-\-uGc~]$mcp 

(p+vy+co* 
(B9c) 

The functions Gs(\) and GC(Y) are the, as yet un
specified, initial values of gs(v, r = 0 ) and gc(v, r = 0). 
The choice of these initial values will be deferred till the 
end. For the present, let us define the effective 
acceleration 

a2 

(BIO) 
2[\+o>y{p+vy-] 

Then inserting (B9) into (B8a) yields 

1+ 
a2 

(p+p)2 dvz
2J 

°= \—Q+ |. (Bii) 
(^+^)L47r - * ' 

adBn 
I 

(£+*>) L47r" 2 dvj 

The Green's function K for inverting the differential 
operator on the left of (Bl l ) is given by 

K(vz,w)=-[ \e-\v1r-w\(v+v)/aet 

2\ ae J 

Using it, we integrate Eq. (Bl l ) to obtain 

2<P°(V,P) = — / dw 
1 /•« 

) = — / 

X \—Q (CO + 7 —B (v', <p) V l — l̂ (i^)/a.-; 
2 dw _47T 

C ' = | v ' | , 

The region of integration may be split at w = vz and 
the second term integrated by parts. On introducing a 
variable 

R= \ve—w\ = \fiC—w\, 

we obtain 

2,°(V: 

1 r00 r v p 
9p) = — / dRe~R^v^la\ —Q(C')+—Q{C") 

2aeJo L47T 4TT 

- (p+J,)B(v\<p)+(p+v)B(v>',cp)\ (B12a) 

v'=(vz,vv,nC—R)\ 

C>= | v ' | = (C2-2v,CR+R2y/2, (B12b) 

v"=(vx,vv,pC+R); 

C"= \v"\ = (C2+2»CR+R2)1/2. (B12c) 

Now let us construct f °, the Laplace transform of the 
r ° defined in (B5), by multiplying (B12a) by //C/4x and 
integrating over angle. A change of integration variable 
from ju to — ix in those terms which depend on C" or v" 
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causes the terms in Q to drop out, leaving 

r*°(c,p) (p+v) r r 
/ dR da 

C 4:irae Jo J 

Xne~R W-IB (vh <p)+B (v2, <p)]; 

vi= (vx, vy, fxC—R), (B13) 
2̂== (vx, Vy, R-llC). 

If we were to substitute (B9c) into (B13), it would 
become evident that f ° would change sign if the phase <p 
were altered by IT radians. This indicates that T° con
tains, at the most, a memory of the initial phase but no 
component that results from the instantaneous value 
of the field. This is gratifying, because it is consistent 
with the assumption that the field varies too rapidly to 
establish a spatially preferred direction to which the 
relatively sluggish g° could respond. 

Since the entire development so far followed from the 
assumption that T° in (B6) could be ignored, we must 
choose the initial functions Gs and Ge so that f ° in (B13) 
also vanishes. The simplest choice is to take G8 and Gc 

both zero. Then f ° vanishes because B vanishes. This 
leaves only G° available for satisfying the initial condi
tion (B2). The initial condition requires, then, that 

G°=$(C)/(4TTC2). (B14) 

We may now integrate (B12a) over angle and, inserting 
(B14) into (B8d) we obtain the pair of equations: 

r v r1 r 
\ da g°=— J dp dR e-R^v)/a°Q(C), (BISa) 

J 2aeJ-i Jo 

Q(C') = S(C)/(vO)+re / da 2°. (BISb) 

Note that to this order of approximation, there is 
no <p dependence in the angular integral of g°. We 
already found that the angular integrals of gc and gs 

vanish; this means that to this order of approximation, 
the angular integral of g<p(v,r) itself also is independent 
of <p. It follows that the function N(t$) defined by 
(4.5) is really a function of the single variable T=t—tf, 
rather than of t and t' separately. Hence, we may take 
the Laplace transform leading from Eqs. (4.4) and (4.5) 
to Eqs. (4.6) and (4.7). Observe now the identity 
between Eqs. (B15) and (3.16b)-(18), between (4.6) 
and (3.8), and between (4.7) and (3.9). These identities 
are sufficient to establish that the density in the micro
wave avalanche breakdown increases exponentially like 
exp (fit) and that fi depends on the effective acceleration 

a/y/2 
ae= , (B16) 

[l+coV(*+/3)2]1/2 

in exactly the same way as the dc-growth rate fi depends 
on the dc acceleration provided that a)>fi. 

The equivalence between the microwave and dc 
cases goes further than just the growth rates, of course. 
A comparison of Eqs. (B12) and (3.17) reveals that 

' 2°(v,/5) = i[gdo(v,/3)+gdc(V',/3)], (B17) 
where 

Vf=(vx, vy, —vz). 

This result is to be expected because the slowly varying 
g° in the microwave treatment is unable to distinguish 
between the two directions in which the field can point. 


