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Modified effective-range formulas recently developed for electron-atom scattering are employed first to 
analyze the Ramsauer-Kollath (RK) electron-rare gas atom cross sections, and then to compare them 
with determinations of the same quantities made by different and newer methods. It is found that these 
cross sections can be extrapolated unambiguously down to zero energy. The extrapolated RK scattering 
lengths are found to be approximately 1.19, 0.24, —1.70, —3.7, and — 6.5ao for He, Ne, Ar, Kr, and Xe, re­
spectively. Good agreement is found, in general, both in sign and magnitude with the pressure shift estimates 
of the scattering lengths. Momentum transfer cross sections are also extended down to zero energy and are 
compared with some drift velocity and microwave results. The best agreement is found with the Gilardini 
and Brown curve for Ne, and with those of Pack, Phelps, Frost, and Voshall for the other rare gases, although 
there are some differences with the latter. In particular, a "pressure effect" is discussed in connection with 
these results. 

I. INTRODUCTION 

THIS paper is concerned with the problem of the 
elastic scattering of electrons from the five rare 

gases (He, Ne, Ar, Kr, and Xe) in the energy region 
from zero to several eV. This is a problem which has 
been attacked experimentally by many different 
investigators and by a variety of different methods. The 
total scattering cross sections were studied extensively 
by direct methods during the late twenties.1-3 Of these 
investigations, the most thorough were those of 
Ramsauer and Kollath (RK),2,3 whose measurements 
extended in energy as low as a sixth of a volt, and who 
studied the differential cross sections at slightly higher 
energies. An indirect method, that of pressure shifts, 
was devised by Fermi4 and employed by a number of 
experimenters5 during the thirties to estimate the 
scattering lengths. The more recent investigations6-13 of 
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the electron-rare gas cross sections have been done by 
microwave and drift velocity measurements of the 
electron mobility, mostly in the thermal energy region. 

If one looks for agreement or disagreement between 
the cross sections determined by these different 
methods, it is found that it has never been possible to 
compare them quantitatively, mainly because they 
cover different portions of the energy region (zero, 
thermal, and eV energies). It is here that the possible 
value of effective range theory is evident. What effective 
range theory says in effect is that the scattering ampli­
tude in a certain energy region (here the region from 
zero to several eV) is completely determined to a certain 
accuracy by a small number of parameters; and so, in 
principle just a few experimental points, anywhere in 
the region, are sufficient to determine the amplitude 
over the entire region. Thus, effective range theory is 
the simplest consequence of considering the scattering 
amplitude as an analytic function of the energy. Now 
it has been shown14 that the unusual effective range 
formulas are not valid for electron-atom scattering, 
because of the 1/V4 polarization interaction at long 
distances. This reflects the fact that the analytic func­
tion in this case has a branch point at the origin.15 

Fortunately, it has been possible to work our modified 
effective range formulas,16,17 applicable to scattering of 
a charged particle by a neutral polarizable system. 
These might be called "atomic effective range 
formulas."18 In the paper we shall employ these formulas 
to analyze the RK scattering experiments. In particular, 

14 L. Spruch, T. F. O'Malley, and L. Rosenberg, Phys. Rev. 
Letters 5, 347 (1960). 

e
 15 Roger G. Newton, J. Math. Phys. 1, 344 (1960). The polariza­

tion potential is a special case of Yukawa-type potentials with fi = 0 
and p(a)~a3 as a —> 0. The branch point however disappears for 
scattering in the forward direction, a fact which was used by 
E. Gerjuoy and N. A. Krall, Phys. Rev. 119, 705 (1960) in apply­
ing dispersion relations to electron-atom scattering. 

16 T. F. O'Malley, L. Spruch, and L. Rosenberg, T. Math. Phys. 
2, 491 (1961). 

17 T. F. O'Malley, L. Spruch, and L. Rosenberg, Phys. Rev. 
125, 1300 (1962). 

18 I t was from an attempt to find experimental confirmation for 
these formulas that this research arose. The result has been more an 
extension of the experimental cross sections than a confirmation 
of the formulas although there has been some of the latter. 
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the parameters of the theory will be chosen to fit the 
experimental cross sections. The result is an extrapola­
tion of the results to zero energy. I t then becomes 
possible to compare these extrapolated results with the 
pressure shift estimates near zero energy and with the 
drift velocity cross sections in the thermal region. 

This method of analysis might be characterized as a 
short circuiting of the procedure used by Holtzmark19 in 
his remarkable analysis of the Ramsauer cross sections 
for argon and krypton. Holtzmark added to the Hartree 
charge distribution of the atoms an "empirical" 
polarization potential with a variable effective cutoff 
parameter. By integrating the resulting radial equation 
by hand and varying the cutoff parameter, he was able 
to match the experimental cross sections fairly closely. 
What the present analysis does is to put the variable 
parameters directly into the phase shifts or the cross 
sections themselves. 

In Sec. I I , we briefly recapitulate the formulas of 
atomic effective range theory for the phase shifts, 
together with other relevant formulas. The simplest 
and most striking application of these formulas is to the 
Ramsauer-Townsend effect. This is the subject of 
Sec. I l l , where it is shown that the scattering length is 
very simply related to the energy of the minimum. 
Another simple relation is found between this energy 
and that for the minimum in the momentum transfer 
cross section. In Sec. IV, we report the results of a 
detailed fitting of the RK cross sections for all five rare 
gases, and the resulting analytic expressions for the 
phase shifts. In Sec. V, the extrapolated RK scattering 
lengths are compared with those found in the pressure 
shift experiments (which also require a slight extrapola­
tion). Some comparison is made in Sec. VI with 
momentum-transfer cross sections found by a number 
of drift velocity and microwave experiments. Section 
VII is a brief summary and discussion of the results. 

II. SUMMARY OF PERTINENT FORMULAS 

We first write for reference the well-known partial-
wave expansions for the total scattering cross section,20 

as, and the less well known momentum transfer cross 
section, <TM-10 (This cross section controls the diffusion 
of electrons in gases and, thus, is what is found by 
modern drift velocity experiments.) The expansions are 

*s= (^/&)ZL-<r(2L+l) sm2(rjL), (2.1) 

<TM= (4ir/k2)T,L=<r(L+l) an«( i7 L - i7 W ) , (2.2) 

where k2= (2m/fi2)E. I t might be pointed out in passing 
that while the Ramsauer-Townsend minimum occurs 
in as when t/o—0 (mod ir) at very low energy, it will 
occur in aM when 7?o—?7i==0. This is discussed further 
in Sec. I I I . 

19 J. Holtzmark,^. Physik 66, 24 (1930); 55, 437 (1929). 
20 The cross sections as and <XM are related to the corresponding 

quantities Ps or PM, the probability of collision at 0°C and 1 mm 
Hg, by <r/a0

2=1.01P (cm-1). See reference 24, p. 2. 

The atomic effective range formulas found in refer­
ence 17 for electron-atom scattering phase shifts may 
be written 

tan?7o = — A k — (w/3ao)ak2 

- (4/3ao)aAW ln(ka0)+O(k*), (2.3a) 

tanin= {ir/\SaQ)ak2-Alk
z+0{¥), (2.3b) 

t a n ^ L = T T [ ( 2 L + 3 ) (2L+1) ( 2 L - 1 ) ^ ] " 1 

Xak2+0(k*), (Z>1) (2.3c) 

where ao is the electron Bohr radius and a is the electric 
polarizability of the atom. The numerical values of a 
for the rare gases are 1.36, 2.65, 11.0, 16.6, and 27.0 #o3 

for He, Ne, Ar, Kr, and Xe, respectively.21 I t was seen 
that these formulas apply to any neutral atom not 
possessing a permanent electric quadrupole moment 
(approximately half the atoms in the periodic table). 
The energy region in which these formulas are applicable 
is limited, for any L, by the necessary condition that the 
k2 term in the appropriate Eq. (2.3) be small compared 
to unity.22 

I t should be noted that t&mj on the left-hand side of 
Eqs. (2.3) could be replaced by simy or even by 77 
(mod 7r), and the expansions remain valid to the order 
in k to which they are written (only higher order terms 
are changed). In the course of the paper, these alternate 
forms for Eqs. (2.3) will sometimes be used. With this 
in mind, let us substitute Eqs. (2.3) into Eqs. (2.1) and 
(2.2), to obtain the low-energy expansion of as and aw 
The result is 

(r (S=47r[^2+ (2ir/3a0)aAk 

+ (S/3aQ)aA2k2 \n(kao)+Bk2+ • • • ] , (2.4) 

(?M = 47r[^42+ (Aw/Sao)aAk 

+ (S/3a0)aA2k2 ln(ka0)+Ck2+ • • - ] , (2.5) 

for k sufficiently small. The parameter B could be 
expressed in terms of17 rpo (modified effective range), a, 
and A, while C involves A1 as well. For the purposes of 
this paper, they are considered simply as parameters to 
be determined by experiment. Notice that both cross 
sections have the same zero-energy limit, but that aM 
has a steeper slope. 

For the sake of completeness, we will also put down 
the expansion of the differential cross section through 
powers in k2hi(kao), although the straightforward 
phase-shift analysis will generally be more useful. The 
expansion is 

a(6) = A2+ (ir/a0)aAk sin(0/2) 

+ (S/3a0)aA2k2 ln(ka0)+O(k2). (2.6) 

21 J. H. Van Vleck, The Theory of Electric and Magnetic Suscepti­
bilities (The Clarendon Press, Oxford, 1932). 

22 An interesting study of the extent of this energy region for 
higher L was made for the e~ H problem by P. G. Burke and 
H. M. Schey, Phys. Rev. 126, 147 (1962). This work consisted in 
comparing the predictions of Eq. (2.3c) (with appropriately 
chosen polarizability) against the solutions found in the 1S-2S-2P 
approximation. 
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FIG. 1. Behavior of 
.S-wave phase shift in 
the Ramsauer-Townsend 
effect. 

Equation (2.6) was obtained by substituting Eqs. (2.3) 
into the general formula for a (9) and noting that a 
certain sum over all the PL can be done exactly giving 
sin (0/2). I t is interesting to note that the linear k term, 
peculiar to the long-range force, vanishes in the forward 
direction. This is related to the fact that the branch cut 
mentioned previously15 is not present in the forward 
scattering amplitude. 

III. THE RAMSAUER-TOWNSEND EFFECT 

Probably the best known feature of the electron-rare 
gas atom cross sections is the Ramsauer-Townsend 
minimum which appears at about half an electron volt 
in the argon, krypton, and xenon cross-section curves.23 

What is understood theoretically about this effect is 
summed up by Massey and Burhop.24 The essential 
features are that the S-wave phase shift is equal to 
some positive multiple of ir at zero energy and that the 
scattering length must be negative. The phase 770, 
consequently, begins to rise as the energy increases 
above zero as in Fig. 1; then it must quickly reach a 
maximum and fall back through the same multiple of 7r, 
while the higher partial waves are still small. The result 
is the nearly vanishing cross section which has been 
observed. 

Now consider the first two terms on the right-hand 
side of Eq. (2.3a) for the S-wave phase shift. We will 
show that they are quite adequate to describe, at least 
qualitatively the observed Ramsauer-Townsend effect. 
The analysis of the next section will confirm further 
that they also give quite accurate numbers for the 
atoms in question. This equation may be written at 
sufficiently low energy 

rj0=i--Ak— (ir/3ao)ak2 (3.1) 

mod 7T. If A is a positive number (as it will be seen to be 
for He and Ne), 770 will simply decrease monotonically. 
If, however, A happens to be negative, the phase shift 
will behave in exactly the manner described above 
(Fig. 1). There will be an initial increase in the phase 
followed by a maximum and a passage through zero as 

23 Recently, another case of the Ramsauer-Townsend effect has 
been found theoretically for the problem of positron scattering by 
atomic hydrogen at a few eV (assuming that the P-wave phase 
shift will not be large). See reference 34. 

24 H. S. W. Massey and E. H. S. Burhop, Electron and Ionic 
Impact Phenomena (Clarendon Press, Oxford, 1951), p. 113 ff. 

the two terms become equal. The energy range during 
which all this takes place will be determined by the 
relative magnitudes of A and a. In fact, by setting the 
right-hand side of Eq. (3.1) equal to zero we find, to 
first approximation, an extremely simple relation be­
tween the scattering length, A, and the energy, Es, of 
the scattering cross section minimum (with wave num­
ber ks), namely, 

A ^ - (w/3ao)akS- (3.2) 

This relation would be exact in the limit of small ks. 
We may use it, together with Ramsauer and Kollath's 
determination of the energy ks, to determine A at least 
to a first approximation. The minima were found by RK 
to lie approximately at 0.37, 0.60, and 0.65 eV for Ar, 
Kr, and Xe, respectively, giving &#=0.164, 0.209, 
0.218 Go-1. Substituting these values, together with the 
known polarizabilities (11.0, 16.6, and 27.0 a0

3), into 
Eq. (3.2), we find immediately 

A^-1.9, - 3 . 7 , - 6 . 2 a 0 

as first approximations for the argon, krypton, and 
xenon scattering lengths. I t is seen in the next section 
that values are very close to those which follow from a 
fitting of the detailed cross section curves. 

Minimum in Momentum Transfer Cross Section 

I t might be guessed that the Ramsauer-Townsend 
minimum should occur at approximately the same place 
in both scattering and momentum transfer cross sec­
tions. A reason for this expectation might be the fact 
that the two cross sections become identical when 
phases higher than the S wave are neglected, combined 
with the assertion that higher order phases are negligible 
at the Ramsauer-Townsend minimum. However, such 
reasoning can be misleading since, for example, Eqs. 
(2.1) and (2.2) show that while 771 appears only to 
second order in <rs, it is a first-order effect in aM. In fact, 
it is shown below that there should be a significant 
difference in the location of the two minima, expecially 
in the limit of small energies. 

According to Eq. (2.2), <rM will have its minimum 
approximately when 770—771=0 mod v, at an energy EM 
with an associated wave number kM. Using Eqs. (2.3a) 
and (2.3b) for 770 and 771, we find to the same approxima­
tion as above (neglecting terms beyond k2) 

Vo-Vi^-Ak-(2w/5a0)ak2, (3.3) 

and, setting this equal to zero, 

A^~ (2w/5a0)akM- (3.4) 

Comparing Eqs. (3.4) and (3.2) we find the desired 
relation between the two minima, namely, kM=(S/6)ks, 
or 

EM/Es^25/36, (3.5) 
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for E sufficiently small. For the case of argon, the value 
of EM has been investigated by Frost and Phelps25 and 
found to be approximately 0.25 eV as compared with 
Ramsauer and Kollath's reported value of 0.37 eV for 
Es, in surprisingly good agreement with Eq. (3.5). 
Measurements of EM for Kr and Xe do not seem to 
have been completed as yet.26 

The Vanishing of t?i 

If one looks closely at the RK angular distribution 
curves,3 it can be seen that there is an analog of the RT 
effect which occurs in the P-wave phase shift for all the 
rare gases but He. It appears that the P-wave phase 
shift for all these gases vanishes somewhere between 1 
and 1.5 eV. A closer analysis of these angular distribu­
tions, using Eq. (2.3c) for the higher waves,27 indicates 
that the energies (which we denote as Ei) lie at approxi­
mately 1.5, 1.1, 1.0, and 0.8 eV for Ne, Ar, Kr, and Xe, 
respectively. This information together with Eq. (2.3b) 
for rji can be used exactly as above to determine the 
quantity Ai in the P-wave phase shift. In place of 
Eq. (3.2) one finds 

A1^(Tr/15ao)akr1; (3.6) 

hence, for these four atoms, 

^ i ^ l . 6 6 , 8.0, 12.8, 23.2 a0
3 (3.7) 

for Ne, Ar, Kr, and Xe, respectively. The absence of 
this effect in He is not surprising because the zero-
energy limit of 771 is believed to be zero28 for He while it 
is at least 7r for all the other rare gases; thus, if the He 
phase shift were to pass down through zero it would 
indicate a repulsive interaction. 

With the determination of the parameter A1 for the 
four heaviest rare gases, the right-hand side of Eq. 
(2.3b) for ?7i is completely determined for these atoms, 
and so the P-wave phase shifts may be considered 
known, in the light of effective range theory, for the 
energy range from zero up to several eV. For the higher 
partial waves (L>1), since the right-hand side of 
Eq. (2.3c) is very small throughout this energy region, 
we expect that the approximation it gives for TJL should 
be good. With the exception of He, then, we are now in 

25 L. S. Frost and A. V. Phelps, Bull. Am. Phys. Soc. 5, 371 
(1960). 

26 We have been informed that preliminary investigations by 
Phelps et al. seem to indicate that, at least for Xe, EM will not differ 
very much from Es. This is probably related to the fact that the 
phase shift, 771, which is responsible for the difference between Es 
and EM, passes through zero very soon after r)0 for Xe (see next 
subsection), and so Eq. (3.3) is really too drastic an approxima­
tion in this case. 

2 7To the extent that the partial waves for L=3, 5, ••• are 
negligible, the vanishing of 771 will make the angular distributions 
symmetrical about 90°. However, for the rare gases at the energies 
in question, these phase shifts, though very small, do have a 
noticeable effect. Hence, a more careful analysis has to be done 
to determine just where 171 vanishes. 

28 See reference 24, p. 118. 

the position of knowing all the phases except the S 
wave in the energy region from zero to several eV. For 
Ar, Kr, and Xe, in fact, Eq. (3.1) with the subsequent 
estimate of A could be taken to complete our knowledge 
of the phase shifts, at least up to the minimum. How­
ever, we shall try in the next section by fitting the 
detailed RK measurements at the lowest energies to 
get a more accurate (2 parameter) representation of the 
S-wave phase shifts which at the same time includes Ne. 
The He cross sections will then be analyzed separately 
using Eqs. (2.4) and (2.5). 

IV. DETAILED EFFECTIVE RANGE FITTING OF 
RAMSAUER-KOLLATH CROSS SECTIONS 

Ne, Ar, Kr, and Xe 

Our procedure in this section will be essentially to 
substitute the effective range formulas Eqs. (2.3) into 
Eq. (2.1) for the total scattering cross section, as, and 
then attempt to choose the undetermined parameters 
in such a way as to match the experimentally deter­
mined RK points at the lowest measured energies. Since 
the parameter A1 was determined in the previous section 
for these four gases, so that the partial cross sections for 
L>0 are considered to be already known from zero to 
several eV, there remains only to determine the param­
eters in the 5 wave.29 For our present purpose it is most 
convenient to write Eq. (2.3a) in terms of the sine.30 It 
becomes simply 

(smrjo)/k= —A— (Tr/3ao)ak 
- (4:/3a0)aAk2 \n(ka0)+Dk2+ • • •. (4.1) 

There are then two free parameters, A and D, which we 
are to choose so as to give the best fit to the experi­
mental points. As mentioned earlier, the applicability 
of the expansions for the 5 wave is expected to be 
limited to the region where the second term in Eq. (2.3a) 
is small compared to unity. For neon this region extends 
up to a couple of eV, while for the heavier gases it 
reaches to the neighborhood of the minimum. This takes 
in six or seven experimental points in the case of Ar 
and Kr, but only two to three for Xe. The best fits to 
the data give scattering lengths which for the three 
heavy rare gases are very close to those determined 
more approximately in the last section. They are 

.4 = 0.24, -1.70, -3 .7 , -6 .5 a0 (4.2) 

for Ne, Ar, Kr, and Xe, respectively. 
The analytic expressions for the respective phase 

29 This procedure differs from that used in deriving Eqs. (2.4) 
and (2.5), where like terms were combined and all terms higher 
than quadratic were finally dropped. Here the different partial 
waves are treated independently. 

30 When written for the sine rather than the tangent, the 
formulas are determined only to within a factor of ± 1 , essentially 
because sinOH-W7r)==±sin(x). We have chosen the sign to agree 
with that of the tangent. 
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'E(eV) 

FIG. 2. Total scattering cross section for electrons on argon, 
plotted against the square root of the energy. The solid curve 
represents the effective range fit found in this paper to the 
Ramsauer-Kollath experimental points. 

shifts were found to be 

(Ne) (simjo)/k= - 0.24-0.75 6E1'2 

-0.031E ln£+0.317£, (4.3a) 

(Ar) (smVo)/k= 1.70-3.13E1'2 

+0.92E ln£+ 1.23E, (4.3b) 

(Kr) (sim7o)/&=3.7-4.74£1/2 

+3.01Eln£+1.84£, (4.3c) 

(Xe) (sini7o)/A=6.5- 7.68E1'2 

+8.58E ln£+6.10£, (4.3d) 

where E, the energy in eV, is related to k by £ = 13.6 
(kao)2 eV. The total scattering cross sections, as, deter­
mined from these expressions, together with Eqs. (2.3b), 
(3.7), and (2.3c) for the higher partial waves, are plotted 
in Figs. 2, 3, and 4. 

The fit for Ar and Kr is seen to be especially good. 
The fact that so many points are matched accurately 

h> 

by the two parameter curves would seem to be a good 
consistency check on the RK experiments and also, to 
some extent, a vindication of the theory. For Xe there 
are too few points in the energy region for such con­
sistency, although the closeness of the scattering length 
to that found by matching a different point (the 
minimum) in the last section is encouraging. 

There are two noticeable features of the Ne curve, 
Fig. 4. The first is that all the experimental points 
below 1 eV lie more or less on a straight line when 
plotted against the square root of the energy. This 
makes the RK neon results probably the only clear 
experimental example of the linear El/2 behavior of the 
low-energy scattering31 cross sections predicted by the 
theory [see, e.g., Eq. (2.4)]. The second feature is a 
negative one. It will be noticed that the best fit which 
the theory with two parameters could give to the experi­
mental Ne points is a sort of average about which the 
experimental points oscillate somewhat. The same effect 
appears in a more pronounced way in the helium curve 
and is discussed in connection with the He results. 

x« *££!& 

FIG. 4. Total scattering cross sections for electrons on He and Ne. 
RK experimental points together with their effective range fit. 

This finishes our analysis of the RK electron scatter­
ing cross sections for Ne, Ar, Kr, and Xe. It should be 
pointed out that, since we have obtained each phase 
shift separately, the momentum transfer cross sections, 
aM, are also determined (see Sec. VI), as well as the 
differential cross sections. 

Helium 

Up to now, helium has been omitted from the 
analysis. The reason is that the P-wave phase shift was 
not found to pass through zero at low energies and so 
its parameter, Ai, could not be determined by the 
simple procedure of the last section. However, the cross 
sections taken as a whole (both as and aM) can be 
expanded according to Eqs. (2.4) and (2.5). The 

FIG. 3. Total scattering cross sections for electrons on Kr and Xe. 
Experimental points together with their effective range fit. 

31 The same is also true of the Gilardini and Brown curve, 
reference 7, for the momentum transfer cross section. 
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parameters in Eq. (2.4) for as are then chosen to fit the 
RK total scattering cross section. The momentum 
transfer cross section, aw, is matched to that deduced 
by Barbiere32 from the RK angular distributions. The 
same scattering length is found in matching both sets 
of data (which are not really independent), namely, 

4 (He)=1 .19 0O. (4.4) 

The analytical curves chosen according to Eqs. (2.4) 
and (2.5) which give the best fit to the experimental 
points in the energy domain appropriate for He (up to 
about 5 eV) are 

<r8/a<?= 17.8+llAEl'2+2.36E \nE-7.98E, (4.5) 

aM/a0
2= 17.8+13.7E1/2+2.36E l n £ - 8 . 5 7 £ . (4.6) 

The scattering cross-section curve, as, is plotted in 
Fig. 4 together with the RK points which it was chosen 
to match. (See Sec. VI for aM-) I t is noticed that the 
experimental points exhibit what Ramsauer called a 
"fine structure" below 1.5 eV. Equation (2.4) is not 
compatible with such a fine structure. The closest fit 
which can be made using it is a cross section which is 
essentially constant through the entire experimental 
region, taking on an average value of the experimental 
points, and which decreases somewhat as the energy 
approaches zero. [ I t should be pointed out that this 
decrease in the cross section near zero energy is a 
necessary consequence of the second term in Eq. (2.4).] 

This "fine structure" in the RK He cross section is 
the only serious problem encountered in analyzing these 
data. For a number of reasons it is very difficult to 
believe that the fine structure could be a property of 
the actual He-electron cross section. Both experiment3 

and theory83 indicate that the higher phase shifts are 
almost negligibly small below 2 eV, so that the structure 
would have to come from the S wave. Now there has 
never been any mechanism suggested which might 
account for such fine structure in the S-wave phase 
shift. What calculations have been done on He,33 

together with the very precise electron-hydrogen 
calculations,34 tend to indicate that r)o should vary 
smoothly, even monotonically. 

If, then, the observed fine structure is not considered 
to be a property of the actual He cross section, it must 
be regarded as a spurious effect of some sort. I t might 
be explained, for example, by the small random errors 
which one expects in an experiment. However, the large 
number of points involved and the very systematic 
movement which they show would seem to make this 
explanation unlikely. This leaves the possibility that 
some systematic source of error is responsible for the 
maxima and minima. The most likely systematic error 
would seem to be the presence of a small amount of 
impurity in the helium. If it is assumed that this is so, 

32 D. Barbiere, Phys. Rev. 84, 653 (1951). 
33 P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933). 
34 C. Schwartz, Phys. Rev. 124, 1468 (1961). 

TABLE I. Electron-rare gas atom scattering lengths (in Bohr 
radii), extrapolated from different experiments. 

RK 
Pressure shift* 
Pressure shiftb 

PFB 
Other microwave 
PVP, PP 

He 

1.19 
1.12 
1.06 
1.14 
1.19° 
1.15e 

Ne 

0.24 
0.14 
0.03 
0.39 
0.18d 

Ar 

-1 .70 
-1 .40 
-1 .86 

-1 .69 

Kr 

- 3 . 7 
- 3 . 1 
- 3 . 8 
- 3 . 2 

- 3 . 2 

Xe 

- 6 . 5 
- 5 . 7 
- 6 . 9 
- 5 . 6 

- 6 . 0 

a Uncorrected, reference 36. 
b Extrapolated to zero energy. 
0 Gould and Brown, reference 7. 
d Gilardini and Brown, reference 9. 
6 See reference 41 (also 42). 

then a good part of the fine structure, particularly the 
sharp minimum at 1 eV, can be explained by the 
presence of a few percent of N2 in the helium.35 The 
hypothesis of an N2 impurity is strengthened somewhat 
by the fact that the RK cross section for Ne seems to 
show a similar structure with a minimum at 1 eV, 
although there are fewer points involved, for Ne and 
the effect tends to be obscured by the slope of the Ne 
curve below 1 eV. 

Rather than actually subtract off the supposed effect 
of the impurities and calculate what might be a better 
estimate of the true He cross section, we have thought 
it better to extrapolate the actual RK (average) cross 
section as it was found and to let further refinements 
await more accurate experiments. This closes our 
analysis of the RK results. In the following sections we 
shall compare these extrapolations with other experi­
mental results especially in the limit of zero energy. 

V. SCATTERING LENGTHS DETERMINED BY 
PRESSURE SHIFT METHOD 

Indirect measurements of the electron-rare gas atom 
scattering lengths were made during the thirties,5 using 
a method due to Fermi,4 that of pressure shifts. This 
method, a summary of which can be found in Massey 
and Burhop's book,86 relates the scattering length to 
the shift caused in the energy of highly excited alkali 
atoms when these atoms are perturbed by a small 
quantity of the gas in question. The effect is observed 
as a shift in the spectral lines associated with the states 
of high principle quantum number, nP 

In the second row of Table I, are listed the scattering 
lengths found by the pressure shift experiments,38 which 

35 Some numerical work done on this assumption indicates that 
subtracting out the effect of a 3 % impurity of N2 and also a 
comparable amount of O2 has the effect of removing the largest 
part of the systematic fine structure from the RK curve. The cross 
section, which is thereby reduced by between 10 and 20%, can 
then be fitted by Eq. (2.4) much more closely than the original 
cross section. The scattering length is found to be approximately 
1.13ao. 

36 See reference 24, p. 178, ff. 
37 These excited states are characterized by a valence electron, 

practically free, moving in a Bohr orbit of radius n2ao about a 
positive core, and with wave number &z=(wao)-1. 

38 The table represents the same selection of pressure shift 
results used in reference 36. For He and Ne, an average of the two 
values is used. 

file:///nE-7.98E


1026 T H O M A S F . O ' M A L L E Y 

may now be compared with the RK scattering lengths 
in the first row. However, what was found by these 
experiments was not quite the scattering length. The 
theory considers states of the alkalis of principle 
quantum number n, in the limit as n—» oo, so that 
k— (nao)"1 —•» 0. In practice, the observations were made 
for states of n between twenty and thirty, corresponding 
to thermal energies, and, in general, no extrapolation 
to n= oo was attempted. 

We should like to extrapolate these results to 
n= oo (&=0), although the difference proves to be 
relatively small. If one looks at the derivation of the 
relation between pressure shift and scattering length, 
it will be recognized that the contribution to the shift 
coming from the electron-rare gas atom interaction 
follows almost immediately, at zero energy, from the 
identy for the scattering length 

A^{2mj¥) Ivfdr. 

The integral on the right is interpreted as a certain 
average energy for the system ((F^)av£=F$), due to 
the electron-atom interaction V, and averaged over an 
appropriate region of space. This average energy is seen 
to be proportional to the scattering length. Now if the 
energy of the electron is very small, but not exactly 
zero, we may expect that the energy shift is proportional 
(at least to first order in k) to the quantity, — (ta,nrjo)/k, 
of which A is the zero-energy limit. By Eq. (2.3a) this 
quantity is equal, to first order in k, to A+(7r/Sao)ak. 
An extrapolation of the pressure shift results to zero 
energy is then possible (given the above assumption) 
by subtracting this linear k term from the reported 
values of the scattering length. As was mentioned 
earlier, the wave] number of the valence electrons in 
question is given by &= (nao)"1, and the n values for 
the experiments lay somewhere between 20 and 30. For 
simplicitythe extrapolation was done with a value of k 
corresponding to n= 25 (0.022 eV) for all five rare gases. 
(The actual n values were all fairly close to this.) 

The corrected pressure shift scattering lengths are 
listed in row 3 of Table I. If these are compared with 
the extrapolated RK scattering lengths in row 1, the 
agreement in general can be seen to be quite good.39 This 
is taken as lending some weight to both sets of results. 
The only exception is Ne where the agreement looks 
poor (although the magnitude of the difference, 0.2#o, 
is not much larger then those for the other atoms). In 
the next section it will be seen that the results of drift 
velocity measurements are in much better agreement 
with the higher RK scattering length. The exceptionally 
low value of the pressure shift scattering length for Ne 
seems to indicate a limitation of the accuracy of the 
pressure shift method. Apparently, the measurements 

39 Actually, the uncorrected values are equally close on the 
average, the two tending to lie on opposite sides of the RK 
scattering lengths. 

themselves were fairly precise. A probable source of 
error lies in a theoretical correction36 which must be made 
to the experimentally observed frequency shift in order 
to account for the polarization of the gas atom by the 
positive alkali cores. This correction, which involves a 
fairly rough averaging process, is only a small correction 
for the other rare gases; for Ne, however, where the 
observed shift is practically zero, this rough correction 
is the dominant term. The difference between the RK 
and pressure shift scattering length for He and Ar, while 
small, is not negligible, while for Kr and Xe the agree­
ment seems extremely good. 

VI. COMPARISON WITH DRIFT VELOCITY AND 
MICROWAVE CROSS SECTIONS AT 

LOW ENERGIES 

In preceding sections, we have used the atomic 
effective range formulas of I to extrapolate the RK 
cross sections to zero energy. In the process, the momen­
tum transfer cross sections were determined as well. In 
the last section it was shown that the zero-energy 
results are in good agreement with the results of 
pressure shift experiments. In the present section we 
wish to compare these scattering lengths and also the 
extrapolated momentum transfer curves with the 
results of microwave and drift velocity experiments, 
which represent the most recent determinations of the 
low-energy cross sections. 

Phelps, Fundingsland, and Brown 

Phelps, Fundingsland, and Brown (PFB), studying 
all five rare gases, used microwave methods to find 
average momentum transfer cross sections in a small 
energy region centered about 0.039 eV. In order to 
compare these cross sections with the extrapolated RK 
and pressure shift results, it will be most convenient to 
make an extrapolation of the PFB cross sections to zero 
energy, so as to obtain a scattering length. This is done 
most readily by taking the square root of Eq. (2.5) 
for <TM 

=fc (aM/^)1/2 = A + (2ir/5a0)ak+ • • •. (6.1) 

To apply this formula to the present case, the PFB 
average cross sections are taken to represent approxi­
mately the values of the cross sections at 0.039 eV, the 
average energy. The sign of the square root, of course, 
is not given by the PFB experiment. It must be taken, 
in general, to agree with the sign of the scattering length 
in the zero-energy limit. For this we have assumed the 
sign of A measured directly by the pressure shift 
method, and found independently in extrapolating the 
RK data. The resulting scattering lengths are plotted 
in the fourth row of Table I.40 Again the agreement with 
the RK scattering lengths is good, especially if we 

40 The argon result is not included because it was subsequently 
discovered [see reference (12)] that the electrons for this experi­
ment were not in thermal equilibrium. It has also been suggested 
that the same may be true for Ne. 
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FROST 8 PHELPS 

FIG. 5. Momentum transfer cross sections for electrons on argon, 
plotted against the square root of the energy. The extrapolated 
Ramsauer-Kollath curve, constructed from the phase shifts found 
in this paper, is compared with the three two-parameter curves of 
Pack and Phelps, and with the minimum point of Frost and 
Phelps. 

remember that the extrapolation by Eq. (6.1) is only a 
first approximation. The result for Ne lends some sup­
port to the higher RK scattering length as against the 
pressure shift result. 

Pack and Phelps—Pack, Voshall, and Phelps 

The very recent experiments of Pack and Phelps12 

and of Pack, Voshall, and Phelps (PVP)13 include all 
the rare gases except neon. By measuring the drift 
velocities at two or three different temperatures, the 
authors were able to deduce two parameters momentum 
transfer cross-section curves (three for each gas) for the 
energy region between about 0.003 and 0.08 eV. There 
are a number of ways in which these experiments could 
be analyzed in the light of atomic effective range theory, 
but for the sake of brevity we will only make some 
simple observations. 

First of all these results, just as the PFB cross 
sections, implicitly contain the scattering lengths. At 
low enough energies, as was seen, only one experimental 
point is needed for this purpose together with Eq. (6.1). 
The fact that the investigators found three different 
cross sections each for Ar, Kr, and Xe would seem to 
be a problem. However, in each case, there are two 
points where the three curves almost exactly come 
together (see Figs. 5 and 6). Taking the lowest in energy 
of these points, which lies at approximately 0.012 eV 
for argon and 0.023 eV for Kr and Xe, we may substi­
tute the value of the cross section into Eq. (6.1) to 
obtain the scattering length to a first approximation. 
For He, where only one curve was found, the approxi­
mate midpoint (1/40 eV) was used41 just as with the 

41 Since Pack and Phelps found the helium cross section to be 
nearly energy independent at thermal energies, the extrapolated 
He scattering length will be lower than that indicated by their 
constant cross section. See Discussion in this section on the 
"pressure effect." 

PFB results. The scattering lengths found in this way 
were 1.15, —1.69, —3.2, —6.0 a0 for He, Ar, Kr, and 
Xe, respectively.42 These are included in row 6 of Table I 
from which it can be seen that they are quite close to 
the RK values. 

The methods of this paper might also be used as a 
means to help remove the ambiguity of the three 
different curves43 found by these authors for the heavy 
rare gases, for example by attempting to fit these curves 
as was done in Sec. IV. However, we shall merely 
compare these curves with the extrapolated RK curve 
(see Figs. 5 and 6). We see that, in each case, at energies 
above 1 or 2 hundredths of a volt it is the highest of 
the 3 drift velocity curves (called vi by the authors) 
which lies closest to the RK curve. Perhaps, more 
significantly, the shape of this curve (ai) is closest to 
that of the RK curve whose shape is determined almost 
entirely by the theory. 

Finally, something should be said about the "pressure 
effect/' or the influence of the gas density on the cross 
sections, since the experiments involved pressures of up 
to an atmosphere. As pointed out by Kivel,44 the long 
range nature of the r~A interaction between electron 
and atom may make the average separation between 
atoms a relevant parameter near zero energy. Since the 
distance between electron and nearest atom is never 
much more than half the average interatomic separa­
tion, at distances larger than this the electron will be 

4 0 0 
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\ 11 

XENllON 

\ 

• A 
\ \ \ \ \ \ 

KRYPTON \ \ \ 
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RK 
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FIG. 6. Momentum transfer cross sections for electrons on Kr 
and Xe. The results of the present paper are compared with the 
families of curves found by Pack, Voshall, and Phelps. The average 
cross sections found by Phelps, Fundingsland, and Brown are also 
shown. 

42 A measure of the error introduced by the simple extrapolation 
process used may be found by evaluating the third and fourth 
terms in Eqs. (4.3) at the energies in question. The resulting 
uncertainties are 0.01, 0.03, 0.2, and 0.6 a<> for He, Ar, Kr, Xe. A 
similar estimate could also be made in connection with the PFB 
results above. 

43 It has been pointed out to us by Dr. Phelps that this am­
biguity in the cross-section curves is now in the process of being 
removed by studying the ratio, D/p, of the diffusion coefficient to 
the mobility. 

44 B. Kivel, Phys. Rev. 116, 926 (1959). 
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FIG. 7. Momentum transfer cross sections for He and Ne. 
Various results are compared. The solid curves are the extrapola­
tions of the Ramsauer-Kollath results found in this paper, and 
the circles are the RK points as analyzed by Barbiere. 

interacting with several atoms at once, thus changing 
the contribution to the cross section from this region 
of space. 

To get a quantitative notion of this effect, consider 
the contribution to the scattering length due to the 
polarization potential, — e2a/(2r*) from distances greater 
than R. If R is large, this is given very accurately by 
the Born approximation, AA = —a/Rao. At finite 
energy, the contribution to the 5-wave phase shift is 
similarly found to be Ar]o/k = (a/k2a0) JR00^ sin2 (kr)dr. 
This has its maximum value (—AA) at k = 0 and falls 
off rapidly with energy, becoming negligibly small 
above kR~\. For example, if R=40aa, which is of the 
order of the separations near atmospheric pressure, 
there should be an uncertainty of 0.04 and 0.27 in the 
directly measured He and Ar scattering lengths, while 
at finite energy this uncertainty should become negli­
gible somewhat above 0.01 eV. 

In the drift velocity experiments, where all the 
electrons at the higher temperatures and nearly half 
of those at the lowest temperature were above such an 
energy, the effect of the pressure on these results should 
be fairly small in general, even in the low-energy range 
which they represent. However, such a pressure effect 
could very well be responsible for the abnormally 
constant cross section which Pack and Phelps found 
for helium (see Fig. 7). If one accepts the simple 
picture proposed by Kivel that the potential seen by 
an electron is effectively screened beyond a distance R 
determined by the density of the gas, one should then 
subtract the contribution from this region (as found 
above) to the phase shift. The effect on the cross 
section would then be to "round off" the a vs \/E curve, 
so that it is essentially constant up to kR~X and then 
smoothly joins the correct curve somewhat above this 
energy. When less ambiguous curves are found for the 
heavier rare gases, it should be possible to look for this 

effect on them. I t should be more pronounced for the 
heavier rare gases due to their greater polarizabilities. 

Helium and Neon Curves 

Most of the other drift velocity and microwave 
experiments which give low-energy cross sections 
concentrate on the lighter gases, He and Ne. Among 
these the neon curve found by Gilardini and Brown9 

(Fig. 7) represents the most clear-cut experimental 
example of the Elf2 dependence of the electron atom 
cross section required by the theory. The extrapolated 
RK curve may be seen to be in excellent agreement 
with this curve, lying just slightly above it. The PFB 
result6 as mentioned is somewhat higher, while the 
Bowe10 curve lies close to the RK result in the energy 
region it covers. 

The He curves, which are plotted in Fig. 7, show a 
diversity of results. I t can be seen that the RK curve 
lies fairly close to the Phelps, Pack, and Frost11 curve 
in the higher energy range from about 1/10 to 2 eV, 
while at lower energies it passes down through the Pack 
and Phelps curve mentioned previously. If these two 
curves are taken together to indicate a single energy-
dependent cross section, as these authors suggest, then 
the over-all agreement with the RK curve is good, 
although the difficulty of the lack of slope of the Pack 
and Phelps curve has already been mentioned. The 
PFB 6 value, as was mentioned, lies very close to the RK 
and Pack and Phelps curves at 1/25 eV, while that of 
Gould and Brown7 is somewhat lower except near zero 
energy. The Bowe10 and the Anderson and Goldstein8 

curves, on the other hand, are consistently higher. 

VII. SUMMARY AND CONCLUSIONS 

In applying the atomic effective range formulas to 
the results of experiment, it has been found, first of all, 
that scattering experiments such as those of Ramsauer 
and Kollath, which were done down to energies a little 
below 1 eV, could be extrapolated unambiguously to 
zero energy, where they could then be compared with 
various other results. In the course of this analysis it 
was found that these formulas are very well suited to 
an analysis of the Ramsauer-Townsend effect. Rough 
estimates of the scattering length found by the pressure 
shift method were found to lie fairly close to those 
extrapolated from the RK experiments, the worst case 
being Ne where the results differ by 0.2 a0. Scattering 
lengths obtained from an analysis of some later and 
presumably more precise drift velocity experiments 
were found to be in good agreement with the two sets 
of earlier results, so that the scattering lengths may well 
be determined to within a few percent. In addition to a 
study of the scattering lengths, a direct comparison 
was possible between momentum transfer curves 
derived from the RK results and those inferred from 
microwave and drift velocity experiments, resulting in 
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a more coherent picture of these low-energy cross 
sections. 

With the electron-rare gas atom scattering lengths 
apparently well known, it is tempting to offer a simple 
model from which they would follow. In a model 
previously suggested by Kivel,45 the effect of the closed 
electron shells on the scattering was taken to vanish 
exactly, with the scattering length being determined 
entirely by the polarization potential. This potential 
was further assumed to start at a very large distance 
from the atom. This picture is clearly too simple since 
it predicts a negative scattering length for all the rare 
gases, in contradiction to the He and Ne results. (At 
finite energies it is also inconsistent with the Ramsauer-
Townsend effect.) However, if the model is modified so 
that there is a small positive scattering length of 
magnitude 1 to f a0 contributed by the closed shells in 

45 B. Kivel, Phys. Rev. 116, 1484 (1959). 

1. INTRODUCTION 

THE ground-state solution of the nonrelativistic 
Schrodinger equation for two-electron atoms has 

recently received considerable attention. Two problems 
are of immediate interest: the determination of the 
energy eigenvalue (of the nonrelativistic Hamiltonian 
for helium) with an accuracy of better than one part 
per million (ppm), and the determination of the analytic 
behavior of the corresponding eigenfunction near the 
singularities of the wave equation. 

The significance of having a solution of the first 
problem, in view of the recent very careful relevant 
measurements of Herzberg,1 is well known.2 In all likeli-

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958). 
2 For its bearing on the important question of a confirmation of 

the computed first-order radiative corrections in this two-body 
problem, see, e.g., reference 1. 

each case, while the polarization potential begins at a 
distance of 3 to 4 a0 (as it does effectively for hydrogen), 
then all the scattering lengths are predicted accurately. 
The contribution from the closed shells might then be 
interpreted as an effectively repulsive core, whose small 
radius may be thought of as an effective atomic radius. 

Finally, there are a number of things which have 
been left undone, such as a more serious analysis of the 
drift velocity data, and a detailed study of the differ­
ential cross sections. 
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hood, the recent very extensive calculational results3 

already provide the requisite solution. There still re­
mains a shadow of doubt because the rigorously calcu­
lated lower bound of the energy falls short of providing 
together with the more precise upper bounds, limits of 
the desired accuracy.4 

The second problem is of interest both in connection 
with the first problem (quite obviously so), and also in 
connection with the search for practically tractable and 
reliable approximations to the ground-state eigen-
functions of two-electron atoms that can serve as 
standards of comparison in the current attempts to 

3 T . Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 366 (1959); 
C. L. Pekeris, ibid. 112,1649 (1958); 115,1216 (1959); W. Kolos, 
C. C. J. Rothaan, and R. A. Sack, Rev. Mod. Phys. 32, 178 
(1960); G. Munschy and P. Pluvinage, J. Phys. Radium 23, 184 
(1962); C. Schwartz, Phys. Rev. 128, 1146 (1962). 

4 I t is possible, though, to arrive at an adequate lower bound on 
the basis of reasoning, which, while falling short of absolute rigor, 
can be taken to possess a high degree of credibility ("Bull. Am. 
Phys. Soc. 5, 65 (I960)]. 
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Previous calculations concerning the ground state of two-electron atoms, involving Ritz-Hylleraas expan­
sions with half-integral powers, are continued through expansions involving 31 parameters. As far as can be 
judged from a comparison of the energies with those obtained with other expansions, the results continue 
to be favorable. Thus, already with 18 parameters, the computed energies for He and O vn differ from the 
best published values by 2 and 0.3 parts per million, respectively. Even better results are obtained for He 
with expansions involving both half-integral and negative powers. A few initial results of calculations for 
the excited state 2 XS are also presented. 


