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a more coherent picture of these low-energy cross 
sections. 

With the electron-rare gas atom scattering lengths 
apparently well known, it is tempting to offer a simple 
model from which they would follow. In a model 
previously suggested by Kivel,45 the effect of the closed 
electron shells on the scattering was taken to vanish 
exactly, with the scattering length being determined 
entirely by the polarization potential. This potential 
was further assumed to start at a very large distance 
from the atom. This picture is clearly too simple since 
it predicts a negative scattering length for all the rare 
gases, in contradiction to the He and Ne results. (At 
finite energies it is also inconsistent with the Ramsauer-
Townsend effect.) However, if the model is modified so 
that there is a small positive scattering length of 
magnitude 1 to f a0 contributed by the closed shells in 

45 B. Kivel, Phys. Rev. 116, 1484 (1959). 

1. INTRODUCTION 

THE ground-state solution of the nonrelativistic 
Schrodinger equation for two-electron atoms has 

recently received considerable attention. Two problems 
are of immediate interest: the determination of the 
energy eigenvalue (of the nonrelativistic Hamiltonian 
for helium) with an accuracy of better than one part 
per million (ppm), and the determination of the analytic 
behavior of the corresponding eigenfunction near the 
singularities of the wave equation. 

The significance of having a solution of the first 
problem, in view of the recent very careful relevant 
measurements of Herzberg,1 is well known.2 In all likeli-

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958). 
2 For its bearing on the important question of a confirmation of 

the computed first-order radiative corrections in this two-body 
problem, see, e.g., reference 1. 

each case, while the polarization potential begins at a 
distance of 3 to 4 a0 (as it does effectively for hydrogen), 
then all the scattering lengths are predicted accurately. 
The contribution from the closed shells might then be 
interpreted as an effectively repulsive core, whose small 
radius may be thought of as an effective atomic radius. 

Finally, there are a number of things which have 
been left undone, such as a more serious analysis of the 
drift velocity data, and a detailed study of the differ­
ential cross sections. 
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hood, the recent very extensive calculational results3 

already provide the requisite solution. There still re­
mains a shadow of doubt because the rigorously calcu­
lated lower bound of the energy falls short of providing 
together with the more precise upper bounds, limits of 
the desired accuracy.4 

The second problem is of interest both in connection 
with the first problem (quite obviously so), and also in 
connection with the search for practically tractable and 
reliable approximations to the ground-state eigen-
functions of two-electron atoms that can serve as 
standards of comparison in the current attempts to 

3 T . Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 366 (1959); 
C. L. Pekeris, ibid. 112,1649 (1958); 115,1216 (1959); W. Kolos, 
C. C. J. Rothaan, and R. A. Sack, Rev. Mod. Phys. 32, 178 
(1960); G. Munschy and P. Pluvinage, J. Phys. Radium 23, 184 
(1962); C. Schwartz, Phys. Rev. 128, 1146 (1962). 

4 I t is possible, though, to arrive at an adequate lower bound on 
the basis of reasoning, which, while falling short of absolute rigor, 
can be taken to possess a high degree of credibility ("Bull. Am. 
Phys. Soc. 5, 65 (I960)]. 
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Previous calculations concerning the ground state of two-electron atoms, involving Ritz-Hylleraas expan­
sions with half-integral powers, are continued through expansions involving 31 parameters. As far as can be 
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find methods of atomic wave function approximation for 
the two-electron case admitting of extension to atoms 
with many electrons.5 Rigorous analytic results on this 
problem have been slow in forthcoming. Interesting 
attempts have been made long ago by Bartlett6 and 
more recently by Pluvinage7 and by Fock.8 The analysis 
in these publications is however only of a formal char­
acter. An important beginning, though, in a rigorous 
analytic approach has been made recently by Kato.9 

His results are, however, as yet of limited scope. 
It is owing to the present status of the two problems 

in question that further exploration of a purely compu­
tational character in this field appears to be still justified. 
It is this consideration which prompted a resumption 
of the computational work involving Hylleraas expan­
sions with half-integral exponents.10 If such expansions 
continue to be relatively successful as the number of 
terms is increased, they may possibly lead to improved 
convergence in the high-precision approximations.11 At 
the same time, these investigations could be of some sug­
gestive value in the purely theoretical analysis of our 
problem. A possible illustration of this point is provided 
by our results with expansions involving mixed negative 
and half-integral exponents (Sec. 3). It appeared of some 
interest to examine also the effectiveness of the sug­
gested expansions in determining the energies for the 
excited state 2 1S. Initial results for He and Li n are 
discussed in Sec. 5. 

2. EXPANSIONS INVOLVING POSITIVE 
HALF-INTEGRAL POWERS. Z = 2 

The new results involving half-integral exponents 
are presented in Table I. These were obtained with the 
aid of a double-precision program for computing deter­
minants on the IBM 650. Since the eigenvalues are 
already closely known, a small number of linear inter­
polations is sufficient to insure the desired accuracy in 
the solution. The computational cost in determining 
the energies is thus relatively small. Finding the as­
sociated eigenfunctions, however, entails an added com­
puter program and increased cost, and the work was 
therefore not undertaken at this time. 

6 See, e.g., L. C. Green, S. Matsushima, C. Stephens, et al., 
Phys. Rev. 112, 1187 (1958); C. C. J. Roothaan and A. W. 
Weiss, Rev. Mod. Phys. 32, 194 (I960); A. W. Weiss, Phys. Rev. 
122, 1826 (1961); and the references given in these papers. 

6 J. H. Bartlett, Phys. Rev. 51, 661 (1937). This work is based 
on earlier investigations of T. H. Gronwall, Ann. Math. 33, 279 
(1932); Phys. Rev. 51, 655 (1937). 

7 P. Pluvinage, J. Phys. Radium 16, 675 (1955). Much of this 
work has been done in collaboration with G. Munschy. See, e.g., 
Munschy, thesis, University of Strasbourg, 1958 (unpublished) 
and the references contained in it. For a detailed discussion of the 
correlation between the theoretical ideas (including the rigorous 
results of Kato, reference 9) and calculational results, see Munschy 
and Pluvinage, reference 3. 

8 V. Fock, Izv. Akad. Nauk S.S.S.R., Ser. Fiz. 18, 161 (1954). 
9 T. Kato, Comm. Pure Appl. Math. 10, 151 (1957). 
10 H. M. Schwartz, Phys. Rev. 120, 483 (1960). This paper will 

be referred to as A. 
11 Such expectation appears to be now confirmed, at least in 

part, by the published results of C. Schwartz (reference 3). 

TABLE I. Energies corresponding to approximate solutions of 
the nonrelativistic Schrodinger equation for He, of the form 
e-Hri+r2)l2XCimn(ri+r2)

ll2(ri-~r2)2mr12
nl2 with non-negative in­

tegral /, m, n. 

Number of (£,w,w) 
tern 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

parameters 

18 
18 
18 
18 
18 
24 
24 
24 
31 
31 
31 

seta 

1 
1 
1 
1 
2 
3 
3 
4 
5 
6 
6 

k 

3.5 
3.7 
3.75 
3.8 
3.75 
3.5 
3.75 
3.75 
3.75 
3.75 
3.7 

-E (a.u.) 

2.9037148 
2.9037187 
2.9037190 
2.9037189 
2.9037194 
2.9037192 
2.9037204 
2.9037206 
2.90372159 
2.90372158 
2.90372144 

CI =0 0 0 1 0 1 0 0 0 0 0 2 3 4 1 2 2 4 
* Set \-.-lm =0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 . 

l[n =0 2 0 0 1 0 3 4 2 3 6 0 0 0 2 2 0 2 

Set 2 =set 1 with the exponent triplet (/,«,«) =(1,0,0) replaced by (6,0,0), 
Set 3=set 1 together with the triplets (0,0,5), (2,0,3), (0,1,4), (1,0,4), 
(0,0,8), (2,1,4). Set 4 =set 2 together with the triplets (3,1,0), (0,1,4), 
(0,0,8), (2,0,6), (4,0,4), (2,0,8). Set 5 =set 3 together with the triplets 
(3,1,0), (3,0,2), (4,1,2), (6,0,0), (4,0,4), (2,0,6), (2,0,8). Set 6 =set 5 with 
(1,0,0) replaced by (0,1,6). 

All the expansions included in Tables I, II, and III 
correspond to functions which yield a finite value of 
(H2), the expectation value of the square of our Hamil-
tonian. Comparison of the items 1-4 of Table I with 
the energy results discussed in Sec. 2 of A, confirms the 
expectation that the initial advantage shown by expan­
sions associated with finite (H2) over corresponding 
expansions for which (H2) diverges, does not persist 
as the number of terms increases. All the functions 
considered in A and some of the expansions referred to 
here, contain a term with the factor {ri+r^)112 which 
would lead therefore to a singularity in derivatives at 
fi=r2=0. This singularity does not prevent of course 
the expansions from serving as proper Ritz functions 
for the approximate determination of the energy eigen­
value. But, as in the case of the nonconvergence of the 
integral (H2), the question arises if the possession of 
this singularity has an effect on the rapidity of conver­
gence of the Ritz sequence as judged by the associated 
energy eigenvalues. Comparison of the results in entries 
3 and 5 as well as 9 and 10 of Table I does not disclose 
any such effect. 

It had been conjectured in A that small variation in 
the scaling factor k would have negligible effect on the 
energy eigenvalues as the number of terms in the 
expansions becomes relatively large. But a test of this 
conjecture proved it not wholly tenable, as is shown by 
the results in entries 1-4, 6-7, and 10-11 of Table I. 
The value £=3.75 appears to be definitely better, even 
if only to a small extent, than the value &=3.5 adopted 
in A. 

Because of the absence of any unambiguous strictly 
analytic criteria for the choice of the exponents in the 
expansions, it is not possible to be sure if the one made 
is to any degree an optimum one. In order to have some 
indication on this question, two different sets of expo-

file:///-.-lm
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nents were used for a 24-term expansion, with results 
shown in entries 7 and 8 of Table I. 

3. EXPANSIONS INCLUDING NEGATIVE POWERS 

In order to be able to judge if the fractional-power 
expansions still retain any superiority as the number of 
parameters increases through 31, it is necessary to have 
suitable comparison functions. No published results ap­
pear to be available for 31 parameters. However, there 
exists one function involving nonnegative integral ex­
ponents and 29 parameters,12 and the associated energy 
value, —2.9037201 a.u. (atomic units), compares with 
the 24-parameter value listed in item 7 of Table I. It 
appeared, therefore, of interest to find the energies 
yielded by optimum 31-parameter expansions of the 
Kinoshita type,3 using the ratios of the coefficients of 
the expansions as computed by Kinoshita as a partial 
criterion in the selection of the exponents. The results 
are given in entries 1 and 2 of Table II. When these are 

TABLE II . Energies corresponding to approximate solutions of 
the nonrelativistic Schrodinger equation for He, of the form 
e-k^+^'2^Cimn(ri+r2y

l2(ri-r2)2mr12
nl2 with integral /, m, n 

(positive and negative). 

Number of (l,m,n) 
meters 

31 
31 
28 
31 
31 
31 
31 
31 

seta 

1 
2 
3 
4 
5 
5 
6 
6 

k 

3.71 
3.71 
3.75 
3.75 
3.75 
3.7 
3.7 
3.6 

-E (a.u.) 

2.90372128 
2.90372127 
2.9037214 
2.9037220 
2.90372214 
2.90372216 
2.90372217 
2.90372216 

r l =0 2 0 4 2 0 0 6 4 2 0 2 0 0 0 4 4 0 8 0 
a Set 1:1m =0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 2 0 0 

In =0 0 2 0 2 4 0 0 2 4 6 0 2 8 4 4 0 0 0 10 

f / = 0 2 - 2 - 2 - 2 - 4 - 2 -4 -2 -2 -2 
Set 1: -l m = 1 1 0 1 0 0 1 1 0 1 0. 

L« = - 2 - 2 4 0 6 8 2 4 8 4 10 

Set 2 =set 1 with the exponential triplets (l,m,n) =(0, 1, —2), (2, 1, —2) 
replaced by (0,1,6), ( - 2 , 0, 12"). Set 3 =set 3 of Table I together with 
( - 2 , 0, 4), ( - 2 , 1, 2), ( - 2 , 1, 0), ( - 2 , 0, 6). Set 4 =set 3 together with 
(3,1,0), (6,0,0), (0,1,6). Set 5 =set 4 with (0,0,5), (2,1,4) replaced by 
( - 4 , 0, 8), ( - 4 , 1, 4). Set 6 =set 4 with the triplets (1,0,0), (2,0,3), (2,1,4), 
(0,1,6) replaced by ( - 4 , 0, 8), ( - 4 , 1, 4), (0,0,7), (4,1,0). 

compared with the energies in entries 9 or 10 of Table I, 
it is seen that although the latter energies are indeed 
smaller than the former, the difference is relatively 
small, and no definite conclusion can be drawn from 
this comparison.13 

Taking into consideration the formal theoretical re­
sults of Bartlett6 and of Fock,7 as well as the computa­
tional results of Hylleraas and Midtdal,14 it suggested 
itself to explore the inclusion of negative exponents in 
our expansions. The results of a few trial computations 
are given in items 3-8 of Table II. The effectiveness of 

12 U. N. Demkov, M. G. Neigauz, and R. V. Seniukov, Opt. i 
Spectroscopiya 4, 709 (1958). 

13 However, cf. footnote 11. 
14 E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958). 

such expansions appears to be clearly demonstrated by 
these results. 

4 RESULTS FOR ATOMIC NUMBER Z>2 

Initial results of calculations for Z>2, as discussed 
in Sec. 4 of A, appeared to indicate that with increasing 
Z there is also some enhancement in the relative superi­
ority, as far as the associated energy eigenvalues are 
concerned, of expansions involving fractional powers as 
compared with other expansions with the same number 
of terms. The interest in this question lies partly in 
the possibility that a clear indication on the above be­
havior relative to Z might have some suggestive value 
for the purely analytical theory of the behavior of the 
ground-state eigenfunctions of our Hamiltonian. But, 
of course, these results have also independent interest. 

The entries in Table III represent only a small num­
ber of results on this topic, so that only limited conclu­
sions can be drawn at this time. Nevertheless, they do 
appear to uphold the indication noted in Sec. 4 of A. 
Thus, the energy value in the third entry of Table III 
for Z=3, associated with a Ritz-Hylleraas expansion 
involving only 24 parameters, differs from the corre­
sponding 203-parameter value of Pekeris,3 —7.2799133 
a.u., by less than 2 ppm; and for Z=8, already the 18-
parameter value given in entry 7 differs from the corre­
sponding best value of Pekeris, —59.156595 a.u., by 
only about 0.3 ppm. 

Comparing the results given in entries 11 and 12 of 
Table III, we see that in this case there is little indica­
tion of any sensible effect in the inclusion of negative 
exponents in the expansion. Further calculational experi­
mentation on this point for Z> 2 would, therefore, be 
worth doing only when there is a need for approxima­
tions to the wave functions in question which are of 
sufficiently high precision (as judged by the associated 
energies) while involving a relatively moderate number 
of parameters. On the other hand, the results of Table 

TABLE III . Energies corresponding to approximate solutions of 
the nonrelativistic Schrodinger equation for Li n and O vn, of the 
form e-*(n+r2)/2 £ Cimniri+r^1'2^-^2^^2. 

Number of (l,m,n) 
Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Z 

3 
3 
3 
3 
3 
8 
8 
8 
8 
8 
8 
8 

parameters 

18 
24 
24 
31 
31 
18 
18 
18 
24 
31 
31 
31 

seta 

1 
2 
2 
3 
3 
4 
4 
4 
5 
6 
6 
7 

k 

5 
4.7 
5 
4.7 
5 

15.5 
16 
16.5 
16 
15.5 
16 
15.5 

-E (a.u.) 

7.2798874 
7.2798963 
7.2799020 
7.2799020 
7.2799055 

59.1655772 
59.1565789 
59.1565780 
59.1565794 
59.1565798 
59.1565803 
59.1565809 

a Set 1 =set 1 of Table I. Set 2 =set 3 of Table I. Set 3 =set 5 of Table 
I. Set 4=set 1 of Table I with (1,0,0) replaced by (0,1,6). Set 5 =set 3 of 
Table I with (1,0,0) replaced by (0,1,6). Set 6 =set 6 of Table I. Set 7 =set 
5 of Table II. 
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I I I do point to a small but sensible effect resulting from 
the choice of k. But in this case, too, attempts to arrive 
at an optimum choice, cannot be considered to be suf­
ficiently warranted at present. 

5 SOME RESULTS FOR THE EXCITED STATE 2 lS 

In principle, it is a very simple matter to find approxi­
mations to the nonrelativistic energies for the first 
excited singlet 5 states of two-electron atomic systems 
with the aid of the same computer program and by the 
same method as employed for finding their ground-state 
energies. In practice, as is well known, such a method 
can be expected to be relatively inefficient on both 
physical and mathematical grounds. I t may nevertheless 
be of possible interest to have at least some initial indi­
cation as to how the fractional-power expansions com­
pare with the integral-power expansions, also with 
respect to the evaluation of the first excited singlet S 
state. The following few results were obtained with this 
possibility in mind. 

The computations were made only through expan­
sions with 18 parameters and only for Z = 2 a n d Z = 3 , 
where comparison could be made with available calcula­
tions of high precision.15 For Z = 2 , the expansion 2 of 
Table I was employed with the following results. 

k= 3.5 3 2.75 

-E (in atomic units) = 2.078 2.092 2.075 

By comparison, an 18-parameter expansion involving 
positive integral powers gave for k = 3 the value 
E = — 2.066 a.u. For Z=S, and 18 parameters, the 
eigenvalues obtained for a set of k ranging from 4 to 5 
showed little variation. The lowest value, —4.95 a.u., 
was obtained for & = 4.7. This differs by about 2% from 
the best available calculational result,15 compared to 
the corresponding difference for Z = 2 of about 3 % . 

In order to obtain some indication of the rate of con­
vergence at this stage of our process, the energy for 
Z=3 was computed also with 11 parameters, employing 
the expansion given in Table I I of A and taking & = 4.7. 
The result, —4.88 a.u., is about 1% larger than the 
corresponding 18-parameter energy, so that at least in 
this case and at this stage the rate of convergence ap­
pears to be better than would be expected. However, 
preliminary work involving expansions with larger 
parameter numbers does seem to point to the expected 
eventual drastic slowing down in the rate of the con­
vergence. This expectation is also confirmed by the 
relevant results in the recent paper of Munschy and 
Pluvinage.3 

15 C. L. Pekeris, Phys. Rev. 126, 143, 1470 (1962). 

The above 11-parameter value can also serve as 
additional partial evidence that in the case of the 
excited 2 *S state as well, the use of the fractional-power 
expansions appears to be advantageous. This value dif­
fers by about 3 % from the best available value,15 com­
pared with a corresponding difference of about 6% for 
the result in the case Z—2 obtained by Munschy and 
Pluvinage3 with 13 parameters. 

6. DISCUSSION 

As stated in the introduction, a principal objective 
of the present results is to add to the computational 
data that could be useful in the study of the analytical 
problem relating to the structure of the exact wave 
functions in question. Presumably when that solution 
becomes available the means will be at hand for con­
structing good approximations with a minimum number 
of parameters and with minimum effort. But in the 
meantime the present cumbersome and costly approach 
seems unavoidable. 

In this connection it is worth calling attention to the 
following instances in the presently available computa­
tional data which appear rather unexpected. The value, 
— 2.9037223 a.u., which Kinoshita3 obtains with his 34-
parameter function is considerably larger, relatively 
speaking, than the '31-parameter values' given in items 
1 and 2 of Table I I . Such a relative increase, obtained 
with the addition of only three parameters at this stage 
of the approximation, appears surprising. For this rea­
son, these calculations have been especially carefully 
checked and rechecked.16 Even more surprising are the 
results of Munschy and Pluvinage3 concerning their two 
42-parameter functions with the remarkably separated 
associated energies, -2.90372311 and -2.90372421 a.u. 
In any possible further numerical study of the kind 
reported here it may be worth examining the question 
raised by these instances. 
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