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A Slater modified Hartree-Fock calculation is applied to several actinide ions. The coefficient of the 
Slater free electron exchange potential is treated as a parameter which is evaluated by matching a calculated 
4 / orbital of Pr+3 to a Hartree-Fock 4 / orbital. The parameter is then used in the calculation of orbitals for 
Th"^, U+4, Np+4, and the trivalent ions from Pa"1"3 to Cf+3. The valence orbitals are used to calculate the 
matrix elements (r2), (r4), (r6), (?-3), f, F2, F4, and F6 which are presented in tabular form. 

INTRODUCTION 

THE calculation of atomic radial wave functions, 
even with the development of modern high-speed 

digital computers, has been quite limited in the region 
of higher atomic number until the recent Hartree-Fock 
(HF) calculations on the trivalent rare earths by Free­
man and Watson,1 the conventional Slater modified 
Hartree-Fock (SHF) calculations on the un-ionized 
atoms of the entire periodic table reported by Herman 
and Skillman,2 and the Hartree (H) calculations on the 
un-ionized atoms of the actinide series by Boyd, Larson, 
and Waber.3 

The calculation of any actinide series atomic system 
according to the more accurate HF scheme, even with 
the fastest digital computer, would be a tremendous 
task.4 The need for a slightly less accurate, but greatly 
more economic method of calculation is quite evident. 
Such a method is the SHF plane wave approximation 
to the exchange terms of the HF equations. The best 
known SHF calculation is Pratt's6 on Cu+. This calcu­
lation demonstrated that good approximations to the 
HF solutions could be obtained with an effort com­
mensurate with an H calculation. An additional ad­
vantage of the SHF method is that inherent in the 
common central potential is the orthogonality of solu­
tions, which is important in calculating matrix elements. 

For the actinides, the question arises as to how 
accurate a HF solution would be if it were achieved. 
Freeman and Watson's1 results tend to indicate that 
they would be, at best, reasonable approximations. This 
consideration and those mentioned above led to the 
adoption of the following scheme. 

PARAMETRIZED SLATER EXCHANGE AMPLITUDE 

First, a conventional SHF calculation on Pr3+ and a 
comparison of the valence orbitals with the HF solution1 

was made. The relative shape of the orbitals as seen in 
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Pratt's SHF solution6 and the HF solution7 was pre­
served in the rare earths. This difference in shape is 
attributed to the overemphasis of the exchange potential 
by the SHF method.8 It was suggested by Hartree8 that 
a decrease of the amplitude of the SHF exchange po­
tential by some empirical factor might improve the 
accuracy of the method. This suggestion was applied to 
the case of Pr3+ where the valence orbitals were fit 
consistent with a characteristic difference in numerical 
and analytical solutions observed by Watson.9 The re­
quired multiplicative factor was f, which produced 
solutions whose matrix elements agreed with Freeman 
and Watson's1 as shown in Table I. This agreement is 
precisely what is expected consistent with the charac­
teristic difference pointed out in reference 9.9a 

Strictly speaking, the SHF method is applicable only 
to systems that can be described by a single deter-
minantal wavefunction and should have a different ex­
change potential for the electrons of different spins. 
However, it is felt that good results for an "average of 
configuration'' can be obtained, because of the large 
atomic numbers involved, by the use of one exchange 
potential for all orbitals. 

NUMERICAL PROCEDURES 

The set of integrodifferential equations to be solved is 

d2Pi(r) f 2 Wi+1)} 
• |E<+-[Zp(r)+XZx(f)] P<« = 0, 

r r2 J dr2 

i=ls, 2s, ••• (1) 
where 

Zp(r) = Z-Etfl" f PiKq)dq+rf P,*fo)-1 (2) 
* LJo Jr qJ 

and 
Z.(r) = 3[(3r/32ir*)i;, i \ W M ] 1 / 3 . (3) 

7 D . R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A157, 490 (1936). 

8 D . R. Hartree, The Calculation of Atomic Structures (John 
Wiley & Sons, Inc., New York, 1957), p. 60. 

9 R. E. Watson, MIT Solid State and Molecular Theory Group, 
Tech. Report No. 12, p. 28. 

9a Note added in proof. It has been suggested to the author that 
comparison with a light element should be reported to establish 
the constancy of X. For Cu+, F2 and F4 values agree with Watson's 
(reference 9) values to within 0.85 and 1.12%, respectively. 
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TABLE I. Comparison of matrix elements (in atomic units) 
with those of Freeman and Watson. 

(r2) <f4> <r6> F2 F4 F* 
(a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) 

X = f 1.096 2.802 14.033 0.471 0.296 0.213 
Freeman and 

Watson* 1.086 2.822 15.726 0.477 0.300 0.216 

a See reference 1. 

Z is the nuclear charge, Ni is the number of elec­
trons with orbital P»(r), and X is the factor f. The 
normalization, 

<P,|P.>=1, (4) 
is required. 

The integration technique was the Numerov10 method. 
For a given potential, the solutions were integrated 
following the method described by Cooley11 for match­
ing inward and outward solutions. This match was re­
quired to less than 0.01% variation in the eigenvalue. 
And all quadratures were affected by the trapezoidal 
method. 

Four ranges of radial increment were used: 0.001, 
£=0.001 to 0.100; 0.005, £=0.105 to 1.100; 0.01, 
£=1.110 to 7.000; and 0.03, £=7.030 to 10.300. The 
total number of points used was 1000. 

Latter's approximate Thomas-Fermi function for free 
atoms12 was used as a starting potential for U4+. In 
calculating succeeding systems, the next nearest solu­
tion's orbitals were used to calculate the starting po­
tential. Also, Latter's ionization potentials12 for free 
atoms were used to establish ranges for the eigenvalue 
estimates. 

CONVERGENCE OF THE EQUATIONS 

The convergence problem for the entire system of 
equations encountered by Pratt6 was avoided by use of a 
different iteration technique. 

For a given potential, the solutions to the eigenvalue 
problem will correspond to a minimum energy.13 The 
self-consistent orbitals are the set of solutions whose 
self-consistent property in the system of equations is 
simultaneous with the minimum energy; however, for a 
particular potential, calculated from a given set of 
orbitals, the set of orbitals produced as solutions will 
correspond to a minimum energy for that potential, but 
need not be the self-consistent solutions. This variation 
of self-consistency with energy is important to predict 
the convergence of the system of equations. 

10 B. Numerov, Publ. Observ. Astrophys. Cent. Rusie 11 
(Moscu, 1923); or reference 8, p. 71. 

11 J. W. Cooley, Math. Computation 15, 363 (1961). 
12 R. W. Latter, Phys. Rev. 99, 510 (1955). 
13 This is just a property of the Sturm-Liouville problem. See 

H. Margenau and G. Murphy, The Mathematics of Physics and 
Chemistry (D. Van Nostrand, New York, 1956), p. 270. 

Consider the potential produced when all of the 
orbitals are converged but the &th. Let (Pk,Ek) be the 
self-consistent solution in the potential Vo of the self-
consistent field. If V{ is the potential produced by the 
(i— l)th approximation, then 

ZBo+Vo+(Vi-Vo)2Pti=Ek
iPh

i=(Ek+BEk
t)Pk

i. (5) 

From perturbation theory, we have 

dEk*c^(Pk\Vi-Vo\Pk). (6) 

The Coulomb potential is by far the dominant term 
of V, so let 

1 
I (pi^1-po)dq+r (pi-x-po)— , (7) 

L J o J r q J 

where the p's correspond to the sums in Eq. (2). Then, 
from (6) and (7) one obtains 

bE^l/pA- [ (p<-i-po>*? P A ) . 
\ \rJo I / 

(8) 

An inward shift of the &th orbital in the (i—l)th ap­
proximation with respect to the self-consistent orbital 
causes 

/ pi-idq< J 
Jo Jo 

podq (9) 

and vice versa. Thus, an inward shift corresponds to 
8Ek{<0 and an outward shift corresponds to 8Ek

{>0. If 
a Slater-type orbital14 is used for an indicator, it is 
readily seen that the higher the "energy", the further 
out the principal maximum is and vice versa. Then 
IE/"1! < \Ek\ will lead to <5£**<0, and \Ek^

l\ >\Ek\ 
will lead to &E^>0. 

For the more general case when more than one orbital 
is not converged, the bEk

l of Eq. (8) will be a sum of 
terms like Slater integrals between different orbitals. 
However, the diagonal terms will be dominant. 

The usual iteration schemes form some weighted 
combination of the ith and (i— l)th solution to produce 
the potential for the ( i+l)th solution. A choice that 
utilizes the energy shift relations above and emphasizes 
the minimum energy function while promoting con­
vergence is 

E^P^+E^P^1 

. (10) 
E^+E^1 

In the neighborhood of the self-consistent solution, 
we may write Pk'^Pk+dP^ and Ek

l=Ek+bEk\ where 
(Pk,Ek) is the &th self-consistent solution. Let 
x^dP^+SPk^1 and y^dE^+BEk^-1; then 

14 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1961), Vol. I, p . 368. 
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EJPJ+E^Pt*-1 TABLE II. Matrix elements and spin-orbit parameter. 

,y,_LWi/I_L) 
\ 2£*/ 2E„\ 2EkJ 

+• 

= P/t+|^+0(52). 
T1--) +0(52) 

(ID 

Near a solution, considering the behavior shown 
earlier for 8Ek\ we will have 8Ek

i^.— 8Ek
i-1 and 

SiV~—fr/V-1, so that P***1 will be a near solution. 
The convergence for the entire system of equations is 

aided by the fact that the inner orbitals are not severely 
affected by small changes in charge distribution due to 
the proximity of the large nuclear charge; also, the con­
vergence is accelerated by the 1/E behavior in the 
higher order correction in Eq. (11). 

THE CALCULATIONS 

Self-consistency was measured by the stability of the 
individual eigenvalues: 

% variations 200 
EJ+Ek™ 

(12) 

The lower the percent variation, the more self-consistent 
the system is. The iterations were continued according 
to (10) until all the orbitals were stable within a pre­
scribed percent. Pr3+, U4+, and Np4+ were carried to 
0.1%, and the remainder of the calculations were held 
to 1.0%. The higher self-consistency was not sought, 
because the matrix elements did not vary sufficiently 
between the 0.1 and 1.0% solutions to warrant the 
additional accuracy. 

From the initiation of these calculations, it was felt 
that one principal result would be a representative indi­
cation of the variation with atomic system of any radial 
matrix elements that would be calculated. To test this, 
the ratios of the spin-orbit parameters for U3+ and U4+ 

were compared with values measured in the UCLA 
laboratory. These values agreed within 4%. 

Element 

Th2+ (/*) 
Pa3+ (5/2) 
U3+ (5/3) 
U4+ (5/2) 
U 4 + (6d2) 
Np3+ (5/9) 
Np4+ (5/3) 
Pu3 + (5/6) 
Am3+ (5/6) 
Cm3+ (5/*) 
Bk3+ (5/8) 
Cf3+ (5/9) 

(r*) 
(a.u.) 

2.61 
2.03 
1.86 
1.68 
5.05 
1.74 
1.57 
1.56 
1.46 
1.40 
1.32 
1.24 

<r*) 
(a.u.) 

14.3 
7.75 
6.47 
5.00 

37.1 
5.72 
4.36 
9.50 
3.97 
3.66 
3.28 
2.86 

(r«) 
(a.u.) 

148 
51.2 
39.1 
24.4 

32.7 
20.0 
22.5 
18.7 
16.7 
14.2 
11.6 

(r-t> 
(a.u.) 

5.15 
6.47 
7.24 
7.82 
9.05 
7.89 
8.57 
9.00 
9.78 

10.4 
11.2 
12.2 

f 
(cm-i) 

1816 
2329 
2652 
2874 
4266 
2940 
3202 
3411 
3767 
4079 
4466 
4928 

F2 
(a.u.) 

0.307 
0.349 
0.365 
0.384 
0.232 
0.876 
0.3973 
0.399 
0.411 
0.420 
0.432 
0.407 

F* 
(a.u.) 

0.198 
0.228 
0.238 
0.253 
0.158 
0.246 
0.262 
0.262 
0.270 
0.276 
0.284 
0.294 

i?e 
(a.u.) 

0.145 
0.167 
0.175 
0.186 

0.181 
0.193 
0.193 
0.199 
0.202 
0.209 
0.217 

In all, the matrix elements calculated were 

<r*>=<5/|r*|5A (13) 

^=<5/,5/k<*A>*+1 |5/,5/>, (14) 

<r-»)=<5/lr-*|5/>, (15) 

and the spin-orbit parameter 

r=(5/ lZKr)A 8 |5 / ) , (16) 
where 

ZF(f) = Z - E NJ Pi\q)dq 

r 
+ (Nt/-l) Pi/' 

Jo 

i^bf 

(q)dq. (17) 

These values are presented in Table II. 
The wave functions themselves will not be presented 

in this paper due to their lengthiness. A complete tabu­
lation of these functions is being prepared as a UCLA 
Technical Report15 and the set of computer programs 
used in the calculations will be presented in manual 
form for a contribution to the UCLA series in numerical 
analysis .9a 
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