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Calculation of the Binding Energy of Nuclear Matter by the Method of 
Reference Spectrum* 
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The binding energy of nuclear matter has been calculated with the Hamada-Johnson potential by the 
method of the reference spectrum of Bethe et at. Corrections due to the exclusion principle, difference 
of spectrums, and the motion of the center of mass have not been included, these are believed to be small. 
It is found that the binding energy is only — 7.8 MeV per particle at a density corresponding to the Fermi 
momentum kF — 1.12F"1. This result is similar to the result of the calculations by Brueckner and Masterson 
with the Breit potential. A discussion of the self-consistency of the method is given. 

I. INTRODUCTION 

TH E recent work of Bethe et al} provides a simple 
and accurate method, "the reference spectrum/' 

to investigate properties of nuclear matter. Details of 
theory and its application to a simple potential are 
given in their paper. The three-body clusters have been 
studied within the framework of this method by Rajara-
man. These two papers together form a complete basis 
for an accurate numerical work with a realistic two-body 
potential. During the past year two sets of such poten
tials have been proposed by Hamada and Johnson2 and 
by Breit et al.z In this paper we apply the method of the 
reference spectrum to calculate the binding energy of 
nuclear matter using the Hamada-Johnson potential 
for the nucleon-nucleon interaction. While this is an 
extensive numerical work, it is by no means complete. 
We have neglected the exclusion principle and spectral 
corrections to the reference spectrum which according 
to the estimates by BBP4 is about 6% of the potential 
energy. We have not accounted for the motion of the 
center of mass. Altogether this may change our result 
by one or two MeV from an exact calculation, but 
this hardly affects the main features of our result, viz., 
that the binding energy is only about one-half of the 
accepted value and the equilibrium spacing is large 
compared to the experimentally observed one. These cal
culations were first done for kF— 1.5 F _ 1 with reference 
spectrum parameters m*=0.8 and A=0.75 (Sec. IV). 
However, the self-consistency requirement on the result 
of the first calculation suggested the use of a larger m* 
and a smaller A, so we repeated the computation using 
m*(kF) = 1-0.1 (kF/l.Sy and A=0.6, for ifeF=l.l, 1.3, 
and 1.5 F"1 . 

In Sec. I I we present a method to find the modified 

* Supported in part by the joint program of the office of Naval 
Research and the U. S. Atomic Energy Commission. 

f Present address: Theoretical Physics Institute, University of 
Alberta, Edmonton, Canada. 

1 (a) H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. 
Rev. 129, 225 (1963); and (b) R. Rajaraman, ibid. 129, 265 
(1963). The first of these references will be designated BBP in 
the text. 

2 T . Hamada and I. D. Johnson, Nucl. Phys. 34, 383 (1962). 
3 K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. Mc

Donald, and G. Breit, Phys. Rev. 126, 881 (1962). 
4 Reference 1 (a) Sec. 9.—This estimate is for the Gammel-Thaler 

potential. 

Moszkowski-Scott separation distance and to calculate 
the short and long range parts of the reaction matrix. 
We use this method to separate XS and SS waves only, 
where the separation seems to be an important improve
ment over the integration of the complete reaction 
matrix in reducing the corrections due to the exclusion 
principle. In Sec. I l l , we calculate the diagonal elements 
of the reaction matrix for the reference spectrum for 
S, P, and D waves. The effect of higher partial waves 
have been accounted for by using the Born approxima
tion which is valid for these waves. In Sec. IV, we find 
the single-particle energies and the binding energy per 
particle, and we also investigate the problem of self-
consistency. In the last section, Sec. V, we compare the 
results of this calculation with the work of Brueckner 
and Masterson8 and discuss the lack of agreement with 
experimental observations. 

II. THE SEPARATION METHOD 

The fundamental equation of the reference spectrum 
method for the 7th partial wave is6 

Ldr2 r2 
n,*v X , = -y2—<m*v \Xi=—m,*v<pi, (2.1) 

where xi= <Pi~ripi is the difference between the free 
particle wave function (pi=rji(k<f) and the perturbed 
wave function r^i(kor). y2 is a constant related to A by7 

7 2 = 2 A V - * o 2 if k0<kF, 

y2=3(AkF
2+k0

2)-0.6kF
2 if k0>kF, 

?n* and A being the parameters of the reference spec
trum. The matrix element of GE, the reaction matrix for 
the reference spectrum is given by8 

(ko \GR\ko) = 4t7r <pi (k0r)vr^i (k0r)dr 

= 4TT-

(y2+k0
2)fi2 

m*M 
<pi(k<r)*i(k<r)dr. (2.2) 

6 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128, 
2267 (1962). 

6 See reference 1(a), Eq. (5.11). 
7 See reference 1(a), Eqs. (7.7) and (7.14). 
8 See reference 1(a), Eqs. (5.1) and (5.2). 
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The last integral can be divided into two parts 

/.00 „C /.00 

J0 JO Jc 

For r<c, Xi(kor)= <pi(kor), the true wave function being 
zero inside the core. The first part is a simple integral 
of spherical Bessel functions: 

Jo 2WL 

sin2&0cl 
if / = 0 , 

At f = c , 

2&0 J 

hcsZji2(koc) — ji-i(koc)ji+i(k0c)'] 

otherwise. 

X-i(koc)= <pi(koc) (2.3) 

is the boundary condition for the differential Eq. (2.1). 
The other boundary condition is at infinity 

For S waves (2.1) reduces to 

[ (d2/dr2)—y2—m*v}x. — ' *v<p. 

(2.4) 

(2.5) 

Now, we follow the method of Moszkowski and Scott 
and separate the potential into a short- and a long-
range part. The separation distance d is a point where 
the wave function in the reference spectrum joins 
smoothly to the unperturbed wave function. Since % 
and %' are continuous functions of r, it follows that9 

and 
x(<*)=o 

x'W=o. (2.6b) 

We have three boundary conditions (2.3), (2.6a), and 
(2.6b) to satisfy; this is possible since d is an arbitrary 
parameter. To find out the necessary conditions on the 
other parameters of (2.5) for the existence of a non-
trivial d (since v—» 0 as r —>co?d=oo is always a solu
tion), and to solve for x> we factorize (2.5) into three 
first-order differential equations10: 

dY^dr^-11+f(r)Yn (2.7) 

dY2/dr= - Fi [ / ( r )F 2 +w*wrf , (2.8) 

rfF8/<fr=/(r)[F8Fi+Fa]+ro*i^, (2.9) 

where f(r) = — (y2+?n*v). The first two equations are 
subject to the following boundary conditions: 

and 
Fi(c) = 0 (2.10a) 

(2.10b) 

The two equations (2.7) and (2.8) must be integrated 
outwards, which can be done without difficulty since 

9 See reference 1(a), Sec. 10; also S. A. Moszkowski and B. L. 
Scott, Ann. Phys. (N.Y.) 11, 65 (1960). 

10 E. C. Ridley, Proc. Cambridge Phil. Soc. 53, 442 (1957). 

Fi is negative and the second equation has an asymp
totic behavior like a negative exponential. The point 
where F2(r) is zero is the desired point d 

At this point we put 
F2(J) = 0. 

Fg(d) = 0 

(2.H) 

(2.12) 

and integrate (2.9) inwards to c. This is also easy since 
F 3 behaves as an increasing exponential. x W a n d x ' W 
are then given by 

x W = F 3 ( r ) F 1 ( r ) + F 2 ( r ) , (2.13) 

x ' t o = - F 8 ( r ) , (2.14) 

as can be verified by direct substitution in Eqs. (2.7)-
(2.9). From (2.11) and (2.12) it follows that, at r=d, 
x M = x ' W = 0, and at r=c,x(c)= F2(c) = <p(c). 

The condition for the existence of the point d can 
be seen by solving Eq. (2.8) subject to the boundary 
condition (2.10b): 

F2(r) = = e s p[-/ , Yif(r)dr 

X ] <p(c)~- / m*v<pYi exp Yif(r)dr dr\. (2.15) 

Since Y${c)—<p(c)>0, if we show that for large values 
of r 

(2.6a) <p(fi)- I m*v<pYiexp\ / Yxfdr \dr<0, (2.16) 

then F2(r) has a root for r=d. The following approxima
tion makes it simpler to see the behavior of the left side 
of (2.16) as r increases. In the range c<r<<x> the 
average value of v (denoted by v) is much smaller than 
72, so that in (2.7) we can neglect v compared to y2 

which makes it possible to integrate it 

F i ( r ) = - ( 1 / T ) t a n h 7 ( f - c ) . (2.17) 

Substituting in (2.16) for Y\ and / , we obtain 

rr rn* 

Jc 7 
sinhy(r-c)dr<0. (2.18) 

For practical values of 7, sinhy (r—c) increases much 
faster than v decreases, and the integrand is negative 
(v<0); therefore, the integral increases without limit as 
r increases, so for some value of r the inequality (2.18) 
holds. Moreover, if the sign of <p remains the same over 
a sufficiently wide range of r, then the point d where 
F2(r) changes sign can be within this range. Thus a 
finite separation distance exists if the potential on the 
average is attractive, if 72^>>|w*ij| and if the relative 
momentum ko is small enough so that <p is not oscillating 
over the range of interest, c<r<d. 
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TABLE I. The separation distance, the short- and long-range 
parts, and the complete reaction matrix for *S state are given as 
functions of relative momentum ko\ & F = 1 . 5 F""1. 

ko/kr 

d(ko) (F) 
W (MeV) 
W* (MeV) 
W +Wi (MeV) 
WR (MeV) 

0 

1.076 
16.5 

- 7 1 . 2 
- 5 4 . 7 
- 5 9 . 2 

(0.1)i/2 

1.088 
16.5 

- 4 8 . 
- 3 1 . 5 
- 3 4 . 2 

(0.2)V2 

1.107 
16.4 

- 3 6 . 5 
- 2 0 . 1 
- 2 1 . 2 

(0.3)i/2 

1.127 
16.4 

- 2 9 . 
- 1 2 . 6 
- 1 2 . 2 

(0.6)i/2 

1.198 
16.3 

- 8 . 4 
7.9 
7.9 

The results of the integration of the differential 
equations (2.7), (2.8), and (2.9) together with Eq. (2.13) 
enables us to find the matrix elements of G8 and vl; 

(y2+h2)fi2 rdsmhr 
(h\G*\h) = 4n / x(hr)dr} (2.19) 

?n*M Jo h 

r00 sirffor 
<*o|»,|*o> = 4jr/ v(r)dr. (2.20) 

Jd h2 

I t is more convenient to multiply G8 and vl by the 
average density p(^i?) = 2^F3/37r2, by the statistical 
weight Cjj and by a factor 2 for the exchange term, and to 
express the final result in MeV. Let W8 = (UF

z/3Tr2)CjG8 

and Wl= (4&F 3 /37T 2)CJ^ where CV=f for even / and 
5/4 for odd I if ko<kF] otherwise Cj—\ for even l. In 
Table I, W8, Wl, and d are given as functions of relative 
momentum ko. The result shows that the difference 
between WB (the reaction matrix without separation) 
and W8+Wl decreases as the relative momentum in
creases, and they are nearly the same above the average 
relative momentum k0= (0.3)1 / 2&F. 

This same method can be applied in the following 
way for separating the tensor force. Consider the 
coupled differential equations 

d2x(r)/dr*+f(r)X=fn*(-vc<p+VtO, (2.21) 

d?i (r)/dr*+g (r)£= - m * F ^ - x ) , (2.22) 
with 

/W = — (YH-W*^) 
and 

g (r) = - [72+6/V2+m* (Vc- Vt/^/2- 3vLS- 3vLL)l, 

With this value of Z3 we can integrate (2.29) from d to 
c and find £ from (2.31). Usually two or three itera
tions are enough to give an accurate value of d, x> a n d 
£. In Table II , the separation distance, the contribu
tion of the short- and the long-range parts, and the 
complete reaction matrix WR are given for the *S state. 
Unlike the *S state, here the difference between the sum 
of the leading terms in the separation method and WR 

is large. This is due to the fact that the tensor force is 

where x = cp—u0 and £=- -^2 , UQ and u% are perturbed 
wave functions, and F*= (8)1/2fl*. At r=c, vanishing of 
the wave functions implies that 

X(C)=<P(C), (2.23a) 
and 

£(<0 = O. (2.23b) 

We factorize (2.21) and (2.22) into the following six 
first-order differential equations: 

dY!/dr= 

dY2/dr= 

dYz/dr= 

dZi/dr= 

dZ%/dr= 

dZs/dr= 

*-[!+/( W ] , 
= -F1C/(r)Fs+«*(T.eV-F«{)]> 

= / ( r ) [ F 3 F H - F 2 ] + m * ( ^ - F t £ ) 

—[ l+fWZi*] , 

°-Z£m*Vt(<p-x)+g(r)Z{\, 

-g(r)LZ3Z1+Zi\+m*Vt(<p-x). 

X=Y1Y3+Yil 

H=z1zs+z2. 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

If d is the separation distance, x (d)=x! (4) = 0 as before, 
and for r>dwe put vc= Vt=0. We can then solve (2.22), 
with the result that £=OA2

( 1 ) (iyr), r>d, where &2(1) is 
the spherical Hankel function of the first kind. Assuming 
the continuity of £ at r~ d, we have 

— = ——-/{rh^)\ . (2.32) 
£(d) L dr I X=d 

Now there are five boundary conditions (2.23a,b), 
(2.6a,b), and (2.32), four of them for the system 
(2.24)-(2.29) and one for determination of d. To start 
integration we need to know £ and for this we use 
^=A£e-a(r~c) — e~^ir~c)2 with parameters A, a, and (3 
adjusted so that (— £) represents the D wave of the 
deuteron, we integrate (2.24), (2.25), and (2.26) in 
exactly the same way as we did for Eqs. (2.7), (2.8), 
and (2.9); then from (2.30) we calculate x- Knowing x 
we are able to integrate the equations for Z\ and Z2 

from c to d. From Eqs. (2.27), (2.28), (2.29), (2.31), 
and (2.32) it follows that 

strong and has a long tail, so that higher order terms are 
not small, and although the separation distance is 
reasonable yet this scheme is not very useful, at least 
for the potentials with a strong tensor force. I t is 
interesting to note that the magnitude of the separation 
distance d is reasonable both for lS and ZS (although 
somewhat larger than that obtained by Moszkowski 
and Scott,9) and that it does not depend strongly on ko. 
In Fig. 1 we have shown d(ko) vs kq for *S and ZS states. 

r /d(rh*<»)\ I / r (d{rh^)\i 
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1.5 

1.2 

0.9 

0.6 

0.3 

_ d ( k 0 ) F 

1 

TRIPLET 

^^^^-~^*^$MGLZT 

\ 
0.5 1.0 

UF-') 
FIG. 1. Separation distance d as a function of relative momentum 

h in lS and *S states with ra* = 0.8 and A = 0.75. 

III. CALCULATION OF GR 

We modify our method of solving (2.5) for the short-
range part of the reaction matrix in order to apply it 
to the differential equation (2.1) with boundary condi
tions (2.3) and (2.4). If we choose d large enough so 
that v(r>d) becomes negligible, then for a fixed r=d, 
the boundary condition (2.6) can be replaced by 

x'(d) rd[rhi^(iyr)ydr-\ 

x(d) L rhia)(iyr) 

which determines F 3 (d): 

r,(<9=-
{d\rht<»(iyr)ydr)Yt 

.{<C*ia ) (iyr)~]/dr} YiJrrhim (iyr) iyr)X-

(3.1) 

(3.2) 

Similarly for coupled states we have four boundary 
conditions (2.23a,b), (2.33), and (3.2). In the numerical 
calculation d=10F has been used. For l>2, nearly 
all of the contribution to GR comes from the one-pion 
exchange potential (OPEP) part of the potential. We 

16 2w 
S,M,T,T3 

(<PS,T* \GR\<PS,TM) 

ko«l.5F~' 

_ F k=0.82F" ' 

A 
/ 0.5 \ S % 1.0 1.5 2.0 ¥ 

r(F) 

FIG. 2. The difference wave function %= <p—r\p for the lS state for 
kQ~ (0.3)u*kF and kFi fo = 1.5 F"1. 

\X(k0r) 

0.5 

-v-
d = l.28F 

2.5 

- _ +' c(Kn 

r (F) 

FIG. 3. x and £, the solutions of Eqs. (2.21) and (2.22), are 
plotted as functions of r for ka=0.821 F"1. d is the separation 
distance. 

TABLE II. The leading terms of the reaction matrix in the 3S 
state for different relative momenta. WB is the reaction matrix 
for the complete potential. &j?= 1.5 F~ l. 

ko/kF 

d(ko) (F) 
W* (MeV) 
Wc

l (MeV) 

• / 1 * 1 \ 
\ eR \ / 

Sum (MeV) 
WR (MeV) 

0 

1.22 
19.7 

-37.4 

-15 .1 

-32 .8 
-50.4 

(0.1)1'2 

1.24 
19.6 

-23.4 

-11.3 

-15 .1 
-26.5 

(0.2)1'2 

1.26 
19.4 

-15.9 

-8 .7 

- 5 . 2 
-13.2 

(0.3)1'2 

1.28 
19.4 

-11.4 

- 6 . 6 

1.4 
-6 .2 

extend this part of the potential all the way to the 
origin. This will not change the results appreciably since 
rji>2(kor) is very small in the range Q<r<c. The VLL 
part of the potential has a long range, but since its 
existence for the high-energy regions {k^lkp) in which 
we are interested is doubtful, we neglect it completely. 
The statistical average for the diagonal elements of GR 

for all values of I is11 

= 8TT A K W ) rj>(5=0, r = 0 ) « ^ r + A E (2H-1)/ rMS=0, T=\)Uldr 
oddZ JQ even I JQ 

+& E E(2/+l) /" rjto,,vW(S= 
even I, V J J Q 

:l,r=0)«r./o*'+A E E(27+D 
oddl.l' J 

1 See reference 1(a), Eq. (6.14a). 

'f rji 
Jo 

X / fiiri . i '< j r )(5=l, T=l)uP,jWdr (3.3) 
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It is well known that because of the centripetal barrier the presence of the potential will not deform the wave 
function from the unperturbed one by an appreciable amount, i.e., Ui^ih^^rji^ihr). In other words, the Born 
approximation, which for these partial waves is the same as the phase-shift approximation, is valid. Taking 
ui=rji~Ui>,j(l) we can carry out the summation over / in z>u/(/\ and this will eliminate VLS and vt leaving just 
the central potential (we have already neglected VLL). NOW the only summation left is over /. From this we sub
tract corresponding values of /=0, 1, and 2 to get: 

lV L (<PS,TM\GR\<pS,T
M) 

S,M,T,T>i 

r— ~<X) /.00 

= 8x Ts- Z (21+1) J ? ( V > O P B P C ( S = 0 , T=oydr+& £ (21+1) J ? ( ^ > O P E P ' ! ( 5 = 0 , T=1) 
L odd l>2 J 0 even l>2 J Q 

XrHr+& Z (21+1) f #(Aor>opBp'(S=l, T=0ydr+& £ (21+1) 
even l>2 J 0 odd l>2 

X f j?(kor)v0PBi>°(S= 1, T= iydr~\ = 3r7o[a0«,*o)-/S0i,*o)], (3.4) 

where a gives the contribution of the even and /3 of the odd/ states: 

1 1 1 [[-15/ 
a(ji,ko) = 1 —I 

2M
3 2 M ( M

2 + W ) 4*oV*lL.2\ 
1+—)-jllnfl+—Vl5(l+—)), 

2k<?) J V y? J \ 4&0V J 

/30«,*o)= 
2M

3 2^O2+4^0
2) 4£0

; 

1 r / M2 \ / W \ 
( 1 + l n l + 1-2 

W / I V 2fc0
2/ V M2 / 

(3.5) 

(3.6) 

FOPEP= Voe~"r/ixr, V0 is the strength, and n is the range given. These results are obtained with the reference 
of OPEP. W for ko<kF is given by spectrum parameters m*= 1—0.1 (&?/!.5)8 (&F in units 

i>2 

2&* 
-Fo(a-/3). (3.7) 

If ko>kF, we sum over the even angular momenta 
only,12 and the statistical factor Cj will be 1 instead of 
~ Hence 

E JPi(*o)=(8V/3T)7oa. (3-8) 
Z>2 

In Table III, values of W(ko) for average relative 
momentum fc0= (0.3)1/2&i?, and for different states are 

ioh-

-loh-

TABLE III . Contribution of different waves to WB for the 
average relative momentum k0= (0.3)1/2&j?\ Only the XS contribu
tion has been calculated by the separation method. All unmarked 
units are in MeV. -30] 

kF (F-i) 
ko (F-1) 
^ 0 
35x 
'Pi 
3Po 
3P1 
3P2 XA 
3Z)3 
3£>i 

% 
S FT* 

Z>2 

1.1 
0.602 

-13 .1 
-28.7 

3.4 
- 4 . 4 

9.9 
- 5 . 5 
- 2 . 3 
- 0 . 1 

1.4 
- 3 . 7 

1.1 

1.3 
0.712 

-15.7 
-30.7 

6. 
- 7 
18.1 

-11.2 
- 4 . 9 
- 0 . 3 

3. 
- 7 . 7 

2.2 

1.5 
0.821 

- 1 5 
-25.7 

10.2 
- 9 . 6 
30.2 

- 2 0 
- 9 . 2 
- 0 . 6 
. 5.5 

-13 .8 
4.1 

-50r~ 

-70 

MeV 

u 

h-

rw
s+w^' 

0.5 
1 

1.0 / 

/ / w ' 

IS -STATE 

Ws 

' " w * 

1 See reference 1(b), Sec. 5. 

k0(F-r) 
FIG. 4. Diagonal elements of GR for lS as a function of ko. W* 

and Wl are proportional to the short- and the long-range parts of 
the reaction matrix. 
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of F_1) and A=0.6. Figures 4, 5, 6, and 7 show W(k0) as 
function of ko for different waves. For comparison the 
results of using the separation method for XS and 35 
are shown in Figs. 4 and 5. Note that for the computa
tion of these numbers we have used w* = 0.8, A=0.75, 
and & F = 1 . 5 F - 1 . 

I t is interesting to compare the relative magnitude 
of the various contributions to the reaction matrix 
(Table I I I ) . The ZS state gives a much larger contribu
tion than XS9 in spite of the fact that the tensor force 
tends to decrease dS. Each of the 3 P states gives sub
stantial contribution, but the sum of the contribution 
is always zero for all values of kp* On the other hand, 
the D states give a strong negative contribution, while 
the sum of the contributions of all other states (l>2) 
is small and positive. 

The variation of (Ws and Wi) for the x5 and WR for 
the ZS as functions of kp show that both of these states 
saturate, but because of the tensor force effect the ZS 
saturates at a lower density than 1S. On the contrary 
WR for P and D waves tend to increase with kp (Figs. 
4 and 5). 

IV. THE PARTICLE ENERGIES 

Our detailed calculation with A=0.75, m*=0.8, and 
£ J F = 1 . 5 F""1 shows that Ww(^o) = E^o°° Wi(k0) can be 
well fitted with 

Wm(ko) = B+C/(D*+k0
2), (4.1) 

- 6 0 

MeV 

^Wc+W8+yowt^vt<i 

3 S - STATE 

MF") 

FIG. 5. The leading terms of the reaction matrix for the separa
tion method in the 3S state. Since £(r>d)?±0 the additional term 
CjPvt

l(l/eR)vtl should be added to Wc* and Wt
a. WR for this state 

is also shown. 

3 8 

30 

24 

16 

8 

0 

- 8 

-16 

-24 

- • *n 

MeV 

-

- . 

~" / 
0.5 

1 
f.O 
1 

^ o 

3P| 

IP 

^ 1 P 2 _ 

FIG. 6. Diagonal elements of WR for P waves. 

where B, C, and D are constants. (We use subscript m 
for particles in the Fermi sea and b for particles in the 
intermediate states.) We assume that the same function 
with different constants can also fit £^=1.1 , 1.3, and 
1.5 F - 1 with different A and w* values. To find B, C, 
and D we need to know Wm(ko) for three values of ko, 
for which we choose ko/kF=0, (0.3)1/2, 1. For relative 
momenta ko>kF, Wb is a quadratic function of ko. 

^ W = Z i ^ W = i ' + A 2 , h>kF. (4.2) 

This is strictly true only for large values of ko, so that 
Wb may have a different dependence on ko for ko^kF. 
Since we have calculated ^^(^o) for only two points, 
{ko/kF—1.5, 2), we will still use (4.2), but more accurate 

TABLE IV. Various constants denned by Eqs. (4.1) and (4.2). 

kF (F-1) 
A' (MeV) 
B' (MeV F2) 
B (MeV) 
C (MeV F-2) 
D (F"1) 

1.1 
-20 .1 

10.4 
- 6 . 5 

-30 .3 
0.7 

1.3 
6.7 
9.7 

11 
-65 .9 

0.78 

1.5 
45.3 
11 
45.3 

-124.2 
0.85 

calculation is needed for the determination of the exact 
shape of Wb(ko). Numerical values of B, C, D, A', and 
B1 are given in Table IV. The single-particle potential 
energy U(km) can be obtained from Wm(ko) by first 
substituting ko=%(1km—kn) in (4.1), then integrating 
over the coordinates of kn, and finally to preserve the 
normalization of Wm(ko), dividing the result by J*dkn. 



C A L C U L A T I O N O F B I N D I N G E N E R G Y O F N U C L E A R M A T T E R 1097 

U(km) =/[, 4C 

4 ^ + ( k m - k r e ) 2 j 
-\dkn 

I f 3 C f / W 2D\ 
/ dkn=B+ J + ) 
/ J kmkn[\ 2W WJ 

kj 2D\ 4D*+(km+kFy 
ln-

4D*+(km-kFy 
2km MJD 4kFD 

^ arctan 
kF kF

2 iLP+kJ-W 
(4.3) 

The average potential energy per particle Um is defined as t)m= JTJ(km)dkm/\fdkm, however, it is easier to 
calculate it directly from Wm(ko). Thus, the potential energy per particle is given by multiplying W(ko) by the 
probability of finding a pair of particles with relative momentum between ko and k0+dko and integrating over 
the range of ko. Denoting the unnormalized probability distribution of relative momentum by 

then 

Un 

PW=W(1-3V2^+W/2M, 

Wm(k0)P(ko)dko 

kF 24C| 
P(ko)dk0=B+— 

0 kF' 

D 

kF 

| arctan 
D2 D2 / D2\ D2+kF

2 

h+— )ln 
D 4kF

2 UF
2\ kFy D2 

} , . 4) 

The binding energy per particle E is the sum of the The single-particle energies in the Fermi sea, E(km), 
average kinetic energy and one-half of the average and above the Fermi sea, E(kb), are given by 
potential energy 

3 fi2 

E=T+Wm= kF
2+Wm. 

10 M 

(4.5) 

U(kb) can be calculated in the same way as U(km), and 
since Wb(ko) is assumed to be a quadratic function of ko, 

jkQ
2dkn/ jdkn^ \ \(kh-kn)2dkn / Jdkn 

= i [W+0 .6Jk» ] . 

/ 0.6kF
2B\ W 

U(kb) = \A'+ )+-h2. 

and 

E(kb)--

2M 

-U(kh) 
2M 

respectively, where 

Q.6kF
2B\ ¥kh

2 

f 
/ 0.6kF

2J3'\ 

1+B'M/2W 

2m*M 

(4.7) 

(4.8) 

(4.9) 

Hence, 

12 

8 

4 

- 4 

- 8 

-12 

-16 

MeV 

— 

-

i m==^-
0.5 • 

-*̂ ~T" 
"——-U£. 

3-
-<°J 

\ ' D « 

j£N 

is the effective mass parameter of the reference spec-
(4.6) trum. Similarly, we can find the energy gap A which is 

proportional to the difference of the particle energies 
in the intermediate state and in the Fermi sea for the 
average momentum kb=zkm= (0.6)1 / 2&F, i.e., 

ni*M 
A= LE(1ib)-E(Jim)l 

mF rn*M 
-lU(kb)-U(km)J (4.10) 

The self-consistency may be checked by evaluating A 
and w* from (4.9) and (4.10) and comparing it to the 
values which were assumed at the beginning. Numerical 
results for Um, E, and U(km) are given in Table V and 
for A and m* in Table VI. 

TABLE V. Single-particle potential energies and the binding 
energy E. All unmarked units are in MeV. 

FIG. 7. Diagonal elements of WB for D waves, 

kF (F"1) 
Um 
E 
U(km~0) 
U(km) 
U(km = k?) 
E(km~kF) 

1.1 
-44 .8 

- 7 . 4 
-52.6 
-44.7 
-40.9 
-15.9 

1.3 
-54 .5 
- 6 . 2 

-66 .8 
-52 .8 
-45 .8 
-10 .8 

1.5 
-55 .4 

0.31 
-74.7 
-51 .5 
-40 .6 

5.9 
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FIG. 8. The average single particle potential energy U(km),t]ie 
single particle potential energy for average momentum U(km)f 
and binding energy per particle Et is shown as a function of kp. 
For comparison we have also plotted Brueckner's results for the 
Breit potential. 

V. DISCUSSION 

Our separation method in XS is satisfactory, while in 
ZS, because of the cancellation between rather large 
Ws and Wl, we have a small first-order term. The tensor 
contribution comes mainly in the form9 vt

l(Q/eN)vt
l and 

this is much larger than vc
l(Q/eN)vc

l;foi this reason the 
convergence of the series is not fast. We have considered 
an alternative method of separating the potential in 

TABLE VI. Reference spectrum parameters. Subscript i refers 
to the initial and / to the final values. The final values of A indicate 
a strong dependence on kpj and the difference between A/ and A* 
is large for & F = 1.5 F"1. 

kF (F"1) 
m%* 
Ai 
m/* 
A/ 

1.1 
0.96 
0.6 
0.89 
0.46 

1.3 
0.935 
0.6 
0.90 
0.71 

1.5 
0.9 
0.6 
0.88 
0.95 

the 5 wave only, leaving the whole potential to act 
in the D wave, in this way increasing the first-order 
terms. However, higher order terms are difficult to 
calculate for the reason that the operators are no longer 
Hermitian. Besides devising a better method of separa
tion for the tensor force, one can think of other im
portant improvements on the present calculation, The 

following are some of the important changes that 
should be made in a more accurate computation. (1) 
To make the second-order terms as small as possible, 
it seems that instead of using a A independent of kF, 
one should allow for its dependence on kF as our results 
suggest. These indicate that A increases with kF, but 
they do not clearly show the variation of m* with kF. 
This is due to the form of Wb(ko), and it is doubtful 
that the quadratic form of (4.2) is a good approxima
tion, especially for ko^kF. I t should be pointed out 
that w* is nearly 1, and its exact value is not very 
important. Therefore, it is also unimportant how m* 
varies with kF. However, to obtain the spectral correc
tion it would be necessary to get accurate values of 
Ub for smaller kF. (2) The work of Rajaraman shows 
that for the states outside the Fermi sea, to calculate 
Ub one should consider even states only with the 
statistical factor equal to one (as we have calculated 
Ub here). This has been proved for spin-independent, 
isotropic interactions, however tensor forces may give 
a somewhat different result. In this calculation tensor 
forces have been treated in the same way as the central 
forces. (3) Another factor which should be treated more 
consistently is the vLL part of the potential. While we 
have included it in evaluating GR for S, P, and D 
waves we have neglected it for higher partial waves. 
Although this force is not very important for small ko, 
it plays an important role in the states above the Fermi 
sea. Thus, it is an important factor in the determination 
of A and m*. 

The first-order terms (i.e., the reaction matrix for the 
reference spectrum without Pauli and the spectral 
corrections) as we have calculated here show saturation 
with an energy minimum E— — 7.8 MeV at a Fermi 
momentum ^ = 1 . 1 2 F"1, which corresponds to an 
equilibrium spacing ro=1.35 F. For ^ = 1 . 5 F - 1 we do 
not get a bound system, rather E—0.3 MeV, if we in
clude all partial waves; however, if we take just the 
even states, i.e., S and D waves, then E=—6.3 MeV. 
I t should be pointed out that the difference between 
Ai and A/ (subscript i for initial and / for final values) 
is largest for kF= 1.5 F _ 1 (Table VI). Therefore, correc
tion terms here are more important than for fop =1 .1 
and 1.3 F"1. The second-order terms would change the 
above results by 2 or 3 MeV. 

Rather similar results are reported by Brueckner 
and Masterson. They found that for the Breit potential 
the minimum energy is E- — 8.3 MeV at f 0 =1.28F, 
while at kF—1.52 F _ 1 they obtained a very small binding 
of —0.3 MeV for all partial waves, and —9.2 MeV for 
S and D waves alone. Although Brueckner's formalism 
is different from ours, and the potentials used are not 
exactly the same, yet it would be difficult to believe 
that the similarity between these calculations is purely 
accidental. Moreover, Blatt et al.}* have calculated the 

13 J. M. Blatt, G. H. Derrick and J. N. Lyness, Phys. Rev, 
Letters 8, 323 (1962). 
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TABLE VII. Parameters of Hamada-Johnson potential as denned in the Appendix. 

State 

Singlet even 
Triplet odd 
Triplet even 
Singlet odd 

ac 

+8.7 
-9 .07 
+6.0 
- 8 . 0 

be 

10.6 
+3.48 
- 1 . 0 

+ 12.0 

at 

-1 .29 
- 0 . 5 

bt 

+0.55 
+0.2 

GLS 

+0.1961 
+0.0743 

bLS 

-7 .12 
- 0 . 1 

GLL 

-0.000891 
-0.000891 
+0.00267 
-0.00267 

(III 

+0.2 
-7 .26 
+ 1.8 
+2.0 

bLL 

- 0 . 2 
+6.92 
- 0 . 4 
+6.0 

binding energy of the triton, using both the Hamada-
Johnson and Breit potentials. They have found similar 
results for both potentials, namely, — 2.6 MeV for the 
first and —2.5 MeV for the second. These values are, 
of course, much higher than the experimental value 
of - 8 . 4 9 MeV. 

In the Hamada-Johnson potential we have the 
following features which, according to Brueckner, are 
responsible for the low equilibrium density and the 
small binding energy: (a) larger core radius, (b) strong 
odd-state repulsion, (c) quadratic spin-orbit terms, and 
(d) weaker even-triplet central force. As Brueckner has 
pointed out, the results of all these calculations indicate 
the need for further studies on the nature of nucleon-
nucleon interactions. 
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APPENDIX 

The Hamada-Johnson potential is of the form 

v = Vc+VtSn+VLs (L • S ) + v L L L u , 

where c, t, L5 , and LL, refer to central, tensor, linear 
L-S and quadratic L-S potentials, respectively. Ln is 
the operator defined by 

Ll2=8LJ+(<,v«2)V-(L-$)\ 

vc, i>t, VLS, and VLL are given by 

^ -0 .08 ( M / 3 ) (T rT 2 ) ( ( r r c r 2 )Z (x ) [ l+^F(x )+^F 2 (x ) ] , 

VLS~»GLSY*(x)Zl+bLSY(xn 

and 

VLL=^GLL0c~2Z(x)ll+aLLY(x)+bLLY2(x)2> 

Here \x is the pion mass (ju= 139.4 MeV), x is measured 
in M"1, Y(x) = e-x/x, and Z(x)= (l+3/x+3/x2)Y(x). 
For numerical values of the parameters used in these 
potentials see Table VII. The hard-core radius is 
c\x—0.343 in all states. 


