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integration^ For the ir° and 7 reactions with the magnets 
set for an a momentum of 1060 MeV/c, the acceptances 
were evaluated as 0.79 sr-cm and 0.47 sr-cm, respec­
tively. The term M(x) does not take into account the 
multiple scattering in the T\ and T2 counters. An 
additional correction was made for this effect which, for 
the 7T° cross section (5), was 3 % . 

To get a feeling for these numbers we could arbitrarily 
assign numerical values of 0.13 sr to A£2c.mo 0.5S to M, 

WE present here some preliminary results on the 
first part of a program of self-consistent calcu­

lation of the nucleon mass and the position of the 
3/2-3/2 resonance of the TTN system using unitarity 
and analyticity. The idea that is being exploited in this 
attempt is that the nucleon in the crossed channel 
provides the main force for the 3/2-3/2 resonance, and 
that the 3/2-3/2 resonance in the crossed channel 
provides the main force for the binding of the nucleon. 
The feasibility of such a "reciprocal bootstrap' ' mecha­
nism has been discussed recently by Chew.1 

The existence of this resonance and its width have 
been well understood on the basis of the Chew-Low 
theory2 which brought out the dominant role played 
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1 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). See also F. Low, 
ibid. 9, 277 (1962). 

2 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 

and 11 cm to L, where L is an effective target thickness 

2> f dx. (8) 
Jo 

The only meaning that should be attached to these three 
numbers is that their product equals the value given 
above (0.79 sr-cm) for the correct numerical evaluation 
of (7) for the ir° reaction (1). 

by the nucleon in the crossed channel. I ts position, 
however, has defied all dispersion theoretical attempts 
so far, for want of a satisfactory method for taking into 
account the short-range effects whose importance was 
emphasized in the work of Frautschi and Walecka.3 A 
new effective-range method has been developed recently 
by Balazs4 for treating the distant part of the left-hand 
cut and successfully applied to the problems of ATF 
scattering4 and the isovector part of the electro­
magnetic structure of the nucleon.5 We show that it also 
leads to some very interesting results for the present 
problem. 

In the present note we confine our discussion to the 
first part of the program, viz., determination of the 
position of the 3/2-3/2 resonance treating the nucleon 
in the crossed channel as a given fixed singularity. We 
use the N/D method, and the amplitude we choose is the 

3 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960). 

4 L. Balazs, Phys. Rev. 128, 1939 (1962); 129, 872 (1963). 
8 Virendra Singh and B. M. Udgaonkar, Phys. Rev. 128, 1820 

(1962). 
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We calculate the position WR and width 733 of the 7 = f , /==§ P-wave irN resonance, using partial-wave 
dispersion relations. In the present calculation we treat as given the nucleon and p-meson masses and coup­
ling constants, which determine the long-range part of the forces. The parameters, which characterize the 
distant part of the left-hand cut, are fixed by using the expressions for the (f, f) P-wave irN state given by 
fixed energy dispersion relations, in a region where they are valid without subtractions, in a way used by 
Balazs for the inr problem. We then impose the self-consistency demand that the position and width of the 
(J, | ) resonance used as input values in the crossed channel in the fixed-energy dispersion relation be the 
same as the calculated values of the position and width. The preliminary results of the calculation are WR — M 
+2.35 and Y 3 3 « 0 . 1 4 . The experimental values are WR-nt-j-2.17 and y33«0.12, (where m is the nucleon 
mass and we use units in which h — c — mir=l). These results constitute the first part of the intended self-
consistent calculation of the nucleon mass and (f, f ) resonance position, exploiting the "reciprocal bootstrap" 
mechanism discussed by Chew. 
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same as that used by Frautschi and Walecka, viz., 
gz3= (W2/<f)e^sz sindzz. Unlike these authors, however, 
we work in the s plane instead of the W plane, thereby 
avoiding a cut along the imaginary axis.6 We then use 
an effective-range approximation to treat the N/D 
equations, wherein the distant part of the left-hand cut 
is replaced by a few (in fact, two) poles whose positions 
are fixed a priori so as to approximate the kernel in the 
equation for the numerator function sufficiently well 
in the region of interest.7 We have a third pole at 
s = m2 to take care of the short cut (m— l/m)2<s<m2+2. 
Its residue bo is, however known2,3 to be (Spms/3)D(m2). 
Thus our numerator function reads8 

N(s)^ZUbi/(s-si)y (1) 

with So=tn2, Si= — m2, s2= — 16m2, and it involves two 
unknown residues bi and b<i. The denominator function 
is then given by 

D(s) = l / dsr-
J ( (m+1)2 ( , ' - * ) [ , ' - ( 0 , - 1 ) 2 ] 

2 bi 
XZ • (2) 

i=0 Sf — Si 

The residues bi are now determined by matching the 
values of the amplitude so written, and its derivative, 
at a suitably chosen point, with values calculated from 
the fixed s dispersion relation 

RJ RJ 1 r00 AJ{u',s)du' 
Al(s,ufi = + + - / 

m2—s m2—u 7r J(m+i)2 u' 

1 r*>AW,s)df 1 r™ At\t 
+- / 

7rJ4 t'- •t 
(3) 

satisfied by the invariant amplitudes A \ The matching 
point has to be chosen so as to satisfy two criteria: (1) 
The known Regge behavior of the amplitudes9 must 
ensure that the partial-wave projection of the fixed s 
dispersion relation gives a convergent expression at that 
point. (2) Since, in practice, we make a partial-wave 
expansion of the absorptive parts Au, At occurring in 
Eq. (3), the respective partial-wave expansions must 
be convergent. The fixed point we choose is s= (m— l)2. 

Our use of the fixed s dispersion relation to evaluate 
bi differs in an important respect from that of previous 
authors.10 The usual procedure is to make a partial-wave 
expansion of A u and A t and retain as many waves as 

6 The kinematic singularities occurring when one works in the 
5 plane present no difficulties in our method which does not involve 
the use of the discontinuities across the cuts. 

7 See references 4 and 5 for details regarding this method. 
8 In fixing the pole positions si — —m2, $2= —16m2, we have 

neglected the part of the^cut 0<s<(m—l)2, since it is known 
(reference 3) to be weak. 

9 Virendra Singh, University of California Radiation Laboratory 
Report, UCRL-10416,1962 (unpublished). 

10 Cf., for example, Louis Balazs, reference 4. 

possible. However, the only important angular mo­
mentum states in the u and t channels about which one 
has reliable information are the 3/2-3/2 state and the 
7 = 1 , T—\ state. There are higher resonances in the 
wN channel, and very probably in the 7T7T channel too; 
but since the information on them is not adequate 
(e.g., one does not even know for sure whether the 
600-MeV bump in TN scattering is a resonance or not), 
we have found it more convenient to use the known 
equivalence between a low-energy resonance in one 
channel and high-energy, high angular momentum 
states in the crossed channels.11 More explicitly, we can 
write (omitting the suffix i and the pole terms for the 
time being) 

1 r Au(u\s)du' 1 rAt(t',s) 
A(s,ufi=- / f— / dt' 

TT J 3/2-3/2 U' — U TT Jp V~t 

1 r Au(u',s)du' 1 r At(t',s)dt' 
1 / , 

TT ./high t t' — t 

1 r Au{u' 

+-/ 7 
where the first integral runs over the 3/2-3/2 resonance, 
the second over the p, and the last two integrals repre­
sent the remaining contributions from high energies. 
In these latter, if one expresses A u and A t in terms of the 
double spectral functions, one readily sees that 

1 r Au{u\s)du' 1 r At(t 

7T J high u U' — U IT J high t t' 

At(t',s)dt' 

-t 

T r y 3, 

As(s',t) 
(4) 

Try 3/2-3/2 S —S 

if one neglects the contributions of distant double 
spectral functions in the spirit of a strip approximation 
(see Fig. 1). One thus gets12 

Al(s,uyt)c 
Rs RJ r 

- 2 — + / 
Au^u'^du' 

3/2-3/2 

1 rAW^dtr 1 r 
+- / +~ / 

W p t' — t 7T J 3 

A Sis'fids' 
(5) 

3/2-3/2 s'—s 

We use Eq. (5) to project out gzz and its derivative at 
s= (m— l)2. We may then write 

£33 = £ 3 3 W + g33(33) + g33 ( ' ) + g 3 3 W . (6) 

Here gzziN\ #33(33), and gzz{p) denote, respectively, the 
contributions of the nucleon pole, the 3/2-3/2 resonance, 
and the p, in the crossed channels. The expressions for 

11 See, for example, G. F. Chew and S. C. Frautschi, Phys. Rev. 
Letters 5, 580 (I960). 

12 Equation (5) is very similar to the one used by J. Bowcock, 
W. N. Cottingham, and D. Lurid [Nuovo Cimento 16, 918 
(I960)]. These authors, however, use it for a different purpose. 
In fact, they use it as a sum rule in the physical region oi the irN 
channel, while we use it only at s= (m— l)2, where it can be used 
with much greater confidence. 
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FIG. 1. The Mandelstam diagram for irN scattering. The shaded 
area shows the regions of the double spectral functions which are 
neglected in the approximation of Eq. 5. 

these have been written down by Frautschi and 
Walecka.13 The expression for g33(p) involves the 
parameters 71 and 72 which are to be evaluated from 
one's knowledge of the nucleon electromagnetic struc­
ture. We use the results of our recent investigation of 
this problem5 which gives 71= —4.91 and 72= —11.7. 
Finally, gz^h) denotes the high-energy contributions 
in the crossed channels, expressed in terms of the 
3/2-3/2 resonance in the direct channel as discussed 
above. I t is given by 

, ( * > = -
JZZWR2 (W+m)2-l 

WB-W (WR+m)2-l 
(7) 

where 733 is the reduced half-width of the 3/2-3/2 
resonance and WR its position. 

The remaining procedure is quite straightforward. 
Equations (5), (6), and (7) (with some assumed values 
of WR and 733) are used to determine hi, and then the 

13 Equations (6.10), (7.13), and (7.35) of reference 3. There is, 
however, a misprint in Eq. (7.13), which should read 

^ X = ^ 2 ( 0 ( £ ) V { [ ( P F + M ) 2 ~ M 2 ] 

T3XX(WR+2M-W) WR-2M+W]/? a±l\ 
SL (WR+M)*-P? ^{WR-MY-^W a-1/ 

-2M-W1 
(WR+MY-H* * XWR-M)*-I*\ 

x 

[(IT MY A**WR+W+W) {W*-2M-W-

x[-+(^ys]}. 
We use this expression after replacing 4/V3 by 733. 

denominator function D is given by Eq. (2). The 
position where D vanishes and its slope (together with 
the value of N) then yield, respectively, the position 
WR and the width 733 of the 3/2-3/2 resonance. One 
sees immediately that there is a self-consistency problem 
here: The input values used for WR and 733 in g33(33) 

and g33(/° in order to determine bi must be the same as 
the output values calculated from the D function. One 
uses successive iterations, and it turns out that the 
results converge quite rapidly. This is due to the fact 
that if, for example, one takes too high an input value 
for WR in g33(33) and g^(h) (with a given 733), then one 
ends up with too low an output value for it, and vice 
versa. In this way, we finally get WRp^.m+2.35 and 
733^0.14. 

The position so obtained is in fairly good agreement 
with the experimental value14 of WR^=m+2A7, though 
the width is somewhat larger15 than the experimental 
value14 of 733^^1/2^10.12. I t need hardly be emphasized 
that we have been able to get this agreement without 
introducing any free parameters (e.g., cutoffs) in the 
theory. The only external information that has been 
fed in is the knowledge of the nucleon form factors16 

which was used in evaluating gssip). 
The result looks very promising for the complete 

self-consistent calculation which is now in progress, and 
which, we hope, will give both the nucleon mass and the 
3/2-3/2 resonance in approximately the correct 
positions. 
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