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A unified treatment of radiative corrections to a class of scattering experiments is presented. The experi
ments considered are those in which either (but not both) the scattered or recoil particle is detected. The 
recoil kinematics are properly treated and the calculation is simplified by retaining only terms of logarithmic 
order. The general results are applied to specific practical examples in which radiative corrections are likely 
to be important. Except possibly for the case of Compton scattering with nearly maximum or nearly mini
mum momentum transfer, the errors are estimated to be less than 2% of the cross section. 

I. INTRODUCTION 

CALCULATIONS in quantum electrodynamics, 
while straightforward in principle, are often labo

rious ; and in many cases the results have not been put 
into a convenient form for application to specific experi
ments. If one does not insist upon a complete calculation 
(to a given order of a), it should be possible to pick out 
the dominant contributions which may then be simpler 
to calculate. That this is true has been made clear in 
recent years by work in which the infrared contributions 
are singled out for special consideration.1"-4 The physical 
reason that these contributions are the most important 
at very high energies is well known. They arise from the 
large-scale distributions of the electromagnetic field, 
which should be classically describable. At very high 
energies these fields are strongly Lorentz contracted in 
the region transverse to the moving particles. They can
not be quickly rearranged when a charged particle is 
deflected in a scattering process; and, as a result, 
radiation must be emitted (bremsstrahlung) and to
gether with that there must be a strong radiative re
action tending to suppress the elastic part of the scatter
ing cross section. This feature of the radiative correc
tions has, of course, been well known for many years, 
but its importance from a practical computational 
standpoint has perhaps not always been so well appre
ciated. These general ideas are discussed in more detail 
in reference 1; it is the purpose of the present paper to 
exploit them for the calculation of radiative corrections 
to a specific class of scattering experiments. 

In this paper the radiative corrections are separated 
into two parts, which are called, respectively, the 
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"external radiative corrections" and the "internal 
radiative corrections." The distinction arises due to the 
fact that in the scattering process the current density of 
the interacting system can be split up in a natural way 
into two parts: The first part is the "external current," 
which is specified entirely by the momenta and spin 
states of the initial and final charged particles; the 
"internal current" is the residue, which depends on the 
specific details of the scattering interaction. To be more 
precise, the external radiative contribution is obtained 
by considering emission and absorption of photons (real 
or virtual) from external lines. By themselves, these 
contributions would not correspond to a conserved 
current because the scattering matrices which they 
multiply would be shifted off the mass shell due to their 
dependence upon k, the momentum of the photon. The 
external radiative correction is by definition the con
tribution which is obtained when this particular k 
dependence is neglected. Since these corrections are 
associated mainly with long-wavelength (infrared) 
photons, this is a good approximation if the scattering 
amplitude does not have a strong dependence on k. The 
residue from this approximation together with the con
tributions in which a photon terminates on an internal 
line is then called the internal radiative correction; it 
clearly depends on the precise details of the scattering 
process. On the other hand, the external radiative 
corrections are independent of details. Furthermore, 
if we are willing to estimate them by considering only 
terms of logarithmic order, they may be approximated 
with very little labor. Since the neglected terms of order 
unity must be multiplied by (ot/w) to obtain the frac
tional error, the error made in this estimate is likely to 
be only of the order of magnitude of 1 or 2% of the cross 
section. The throwing away of terms of order unity is, 
of course, not unique, and we frequently simplify loga
rithmic terms by making changes of order unity. (Some
times, terms of order unity are retained in the results if 
they are well known; for example, those arising from an 
electron vertex are retained.) An important feature of 
this estimate is that the result can be factorized; i.e., 
the correction can be expressed as a factor depending 
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only on the external momenta times the uncorrected 
cross section. I t is, of course, impossible to give a 
general discussion of the internal radiative corrections; 
however, in many practical examples one can give argu
ments that they are not important relative to the 
dominant external radiative corrections. Of course, in a 
high-precision scattering experiment (precision of order 
1%) it would be necessary to give a complete calculation 
of the radiative corrections. Even in such a situation, it 
would probably be of value to split the contributions in 
the suggested way. The main reason for this is that the 
external corrections contain all the infrared divergence, 
which can be evaluated explicitly once and for all. The 
remaining part of the calculation need then have no 
artificial infrared cutoff. 

In the present paper we present a fairly complete 
calculation of the external radiative corrections for 
some typical scattering experiments. The aim is to con
sider a general situation in which either the incident 
particle or the target particle is detected; coincidence 
experiments are not considered. The classic calculation 
of this type refers to an experiment where the particle is 
detected at a precisely defined angle but with a spread in 
possible energies. In current experiments the momentum 
spectrum of the scattered particles is also of interest. If 
the kinematics leads to a rapid variation of elastic 
scattering energy with angle, another type of experiment 
—precisely defined momentum with spread in angles—is 
possible.5 Radiative corrections to these three types of 
experiment are discussed in a unified way here. Al
though the experimental conditions envisaged may be 
somewhat idealized, it is hoped that the principles will 
be sufficiently well illustrated so that the results may be 
extended to more realistic experimental situations. We 
do not wish to specialize to a particular choice of 
projectile and target; however, in order that the correc
tion be meaningful compared to its error, we impose the 
restriction that the incident particle be extremely 
relativistic and suffer a momentum transfer which is 
large compared with its rest mass.6 The principal 
difficulty that makes necessary a new calculation is the 
fact that recoil effects may become important in the 
general situation. Thus, additional terms arise dy
namically from the fact that the recoiling particle may 
possess a charge and kinematically from the fact that 
the phase space is altered. Thus, if the scattered particle 
has an energy loss e relative to elastic scattering, the 
energy carried off by an additional unobserved photon will 
not be e, and it will, in fact, depend upon the direction of 
its emission. This integration over the phase space of 
the unobserved photons is the main source of difficulty 
in making a complete calculation. There is, of course, no 
difficulty in principle, but if we have the aim of doing 
the calculation for a completely general situation and 

6E. B. Dally, Phys. Rev. 123, 1840 (1961). 
6 Without this restriction the radiative corrections will be very 

small unless the energy resolution is extremely good. 

presenting the result in a convenient form for applica
tions, the calculation must be carefully arranged to 
achieve this purpose. We emphasize again that this 
calculation is made feasible by the fact that we are 
interested only in obtaining the dominant logarithmic 
terms associated with the external radiative corrections. 
A complete calculation would be many times more 
difficult. 

The paper is organized in the following way. In Sec. I I 
are presented the principal features of the calculation, 
while some of the finer points are relegated to the 
Appendices. Section I I I contains some discussion of the 
errors made in neglecting the internal radiative correc
tions and considers some special features of particular 
scattering experiments. In Sec. IV the results are 
specialized to various experiments in which the radiative 
corrections are important. Some attempt was made to 
keep Sec. IV self-contained; but an experimentalist may 
find it of value to refer also to Sec. IIA, where the 
"experimental conditions" are defined. Some of the 
necessary notation is also defined in Sec. II. 

II. CALCULATION OF THE EXTERNAL 
RADIATIVE CORRECTIONS 

We want to review and extend some of the considera
tions of reference 1 concerning the external radiative 
corrections. Suppose a real or virtual photon of momen
tum k is emitted from an incoming charged particle of 
momentum p. For definiteness, assume the charged 
particle has spin one-half; the corresponding result for 
zero spin will be obvious by inspection. The matrix 
element associated with this emission will have the 
form7 

1 ( 2 # - f t ) - e - i [ f t , e ] 
eup= Up. (2.1) 

p—k—m k2—2k-p 

The dots indicate a basic factor in the matrix element 
which we need not consider explicitly in computing the 
external radiative corrections. I t is the same factor that 
would occur in the matrix element without photon 
emission, except that the momentum argument p is 
changed to p—k. In fact, the rule for calculating the 
external radiative corrections is to neglect the k de
pendence of this basic factor; by definition, the correc
tion to this approximation is included in the internal 
radiative corrections as it depends on the specific details 
of the interaction. On the right side of (2.1) the factor 
corresponding to the emission of a photon appears as a 
sum of two terms; the first is 

(2p—k)-e 
---Up . (convection term) (2.1a) 

k*-2k-p 

This term, which is a simple factor times the original 
matrix element, is independent of the particle's spin. 

7 The following notation is employed: a• b = a^b^. — aob^—a-b, 
a2 = a'a, a—yd. 
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The infrared divergent contributions, as well as some 
ultraviolet divergences, arise from the convection terms. 
The other term in the emission factor is 

k2-2k-p 
Up. (spin term) (2.1b) 

This depends explicitly on the Dirac matrices and, hence, 
it cannot be written as a simple factor times the original 
matrix element. However, it will be seen later that the 
largest (i.e., logarithmic in E/m) contributions which 
arise from the spin term can also be reduced to a simple 
factor. If the photon is absorbed rather than emitted, 
k must be replaced by —k in these expressions. For 
absorption of a photon on an outgoing charged particle, 
the corresponding terms are 

(2p'-k)-e 
-u 

k2-2k>p' 

Up' 

P'- • -, (convection term) (2.2a) 

. (spin term) (2.2b) 
k2-2k-p' 

For purposes of calculation it will prove convenient to 
catalog the various contributions to the external radia
tive corrections according to whether the photons are 
emitted or absorbed by the convection or spin part of 
the current. The major correction arises from the 
convection contribution, which contains all the infrared 
divergence. For virtual photons the convection con
tribution corresponds to both emission and reabsorption 
by a convection term; for real photons it refers to the 
contribution obtained by squaring the convection part 
of the emission matrix element. An important correction 
also arises from the cross term between convection and 
spin terms (this is called the spin-convection contribu
tion). I t is interesting to note that in the case of electron 
scattering from an external potential treated in Born 
approximation, all of the ultraviolet divergence is 
associated with the convection contribution. This is in 
spite of the extra powers of k in the spin terms; the 
divergent part of the spin contributions actually turns 
out to be zero as a result of the properties of the 
y matrices. 

The external radiative corrections due to virtual 
photons are now obtained by summing the contributions 
from all Feynman diagrams in which a photon is 
emitted from one external line and absorbed by another, 
together with the wave-function renormalizations. For 
the convection terms the derivation is given in reference 
1, and only the notation and result will be quoted here. 
Consider an arbitrary process containing a number of 
charged incoming and outgoing particles. The ith 
external line represents a particle of charge eZi and 
momentum pt; a number 0»- distinguishes incoming 
(0*= — 1) and outgoing (0,-= + l) particles. If the 
original matrix element for the process is M0> the virtual 

photon convection contribution to this matrix element 
is simply 

aBMo, (2.3a) 

where 

pairs 

X 

- iZidiZjdj 

8TT3 

/ * 2 - X ! 

^pidi-k), (2pjej+k) 

.k2-2k'pidi k2+2k-p; 

(2.3b) 

The sum extends over each pair of external lines. The 
infrared divergence is cut off by the introduction of a 
small photon mass X; this makes the real and virtual 
photon contributions separately convergent before the 
final cancellation of the infrared divergence. 

In reference 1 the probability for emitting an un
observed soft photon is calculated under the assumption 
that recoil effects are small. Roughly speaking, this 
means that the requirements of energy-momentum 
conservation are taken into account in computing the 
phase space available to the emitted photon; but 
changes in the cross section due to the dependence of 
the momentum of the recoil particle on that of the 
photon are neglected. This is a valid approximation if 
the experimental conditions are such as to assure that 
only very soft photons are emitted, and it leads to a 
demonstration of the canceling of the infrared diver
gence to all orders of approximation. However, for our 
present considerations such an approximation is not 
justified; and as we shall see, important corrections can 
arise when the kinematics are treated correctly. Never
theless, since it will provide a convenient way for 
handling the canceling of the infrared divergence, we 
give here the probability for emitting an unobserved 
soft photon when recoil is neglected: 

where 

s=z 
£J iUi^Jjvj r 

2aBaoi (2.4a) 

pairs Sw2 
p_«_r* ,_ fcT (2.4b) 
Jo (k2+\2y!2Lk-pi k-pjj 

and Co is the uncorrected cross section proportional to 
| Mo |2. The upper limit Km generally is a function of the 
direction of the photon, depending on the details of the 
experimental arrangement. In determining Km as a 
function of direction, it is, of course, important not to 
ignore k in the over-all conservation laws. If, as is the 
case in the problems under investigation here, Km is 
independent of direction in some Lorentz frame, the 
integral in (2.4b) may be carried out explicitly. When 
the result is combined with (2.3), the net contribution 
to the radiative correction is 

2a(Re£+5)o-0 , (2.5a) 
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where 

ZidiZjdji Km
2 rl Km

2 dx 
ReB+B=Z In— hpvpj In 

pairs 27T I EiEj J_! E2 p2 

1 f1 PS 
- / In i •dx\, (2.5b) 

and 2px=(l+x)pi+(l — x)pj. Some unimportant con
tributions of order unity have been neglected. The 
energies E^ Ej> and Ex appearing here have to be 
evaluated in the Lorentz frame in which Km is isotropic. 
In case particle i is extremely relativistic relative to 
particle j (i.e., pi'pj5>fnjn3), the leading logarithmic 
contributions to the summand of (2.5b) may easily be 
evaluated; the result is 

{ }<£ .((ln^-lY 
l \ mifrtj J 

Ipvpi \ Km
2 mj Ej 

hi—-^-+ln— In— 
EiEj nti Ei 

Ej Ipvpj 
- \ In2— - i In2 6(Mj*-2prPj) 

Ei Mj2 

Ipvpj 2pi-pj 
- i In2 d(nn2-2pi-pj)+± In 

m? ntitrij 

(when pi - pj^>mimj), (2.6) 

where d(a) = 1 or 0 for a > 0 or a < 0 . The only contribu
tions which have been neglected are those of order unity 
(i.e., terms which remain bounded or tend to zero as the 
various energy ratios become large). I t is also of some 
practical significance to note that (2.6) contains no 
Spence functions. In fact, the calculation has been 
arranged in such a manner that all the Spence functions 
which occur have argument less than one; they are 
therefore of order unity and can be ignored. Of course, in 
a complete calculation these terms would have to be 
recovered; this, however, would be one of the least 
difficulties in doing a complete calculation. The terms 
multiplying the 6 function can occur only when m^mi 
or wiis^wij. Some additional remarks should be made 
about this result. The last term in both (2.5b) and (2.6) 
is related to the ultraviolet divergent part of the con
vection contribution. As discussed in the Introduction, 
the approximation of neglecting k inside the residual 
matrix element may, therefore, not be terribly well justi
fied for this term. In particular applications it is then 
necessary to make a detailed study to verify whether it 
is justified to retain this term in comparison with other 
neglected contributions. Another term of similar order 
of magnitude is the vacuum polarization and it should 
be put in explicitly whenever it occurs. The only other 
important logarithmic contributions that are known are 
those associated with the spin-convection contribution; 
they will be discussed below. We now turn to a more 
detailed discussion of the kinematical problem and the 

computation of the external radiative corrections with 
recoil properly treated. 

A. Kinematical Considerations 

We would like to derive the external radiative correc
tions to a scattering process in which either (but not 
both) of the particles is detected. While we do not wish 
to specialize the calculation to any particular physical 
system, rather idealized experimental conditions will 
be assumed. One of these is that the incident beam is 
perfectly defined; in practice our result would have to 
be folded into the energy spectrum of the incident beam. 
I t is also assumed that the detector spans a well-
defined angular range (0max>0>0min) and momentum 
range (pm^>p>pmin) and that the probability for 
detecting a particle is uniform in this range. Three 
special cases will be considered: (a) Angular resolution 
is sharp and the momentum resolution includes elastic 
scattering; the result then depends on Ap, the maximum 
momentum the particle can lose below its elastic scatter
ing value, (b) The energy spectrum of particles scattered 
in a fixed small solid angle, (c) Sharp momentum resolu
tion and the angular resolution includes elastic scatter
ing ; the result depends on A0, the difference between the 
elastic scattering angle (6ei) and the minimum detection 
angle. Case (c) can arise when the elastic-scattering 
momentum has a rapid angular dependence. As will be 
evident later, the results for Cases (a) and (c) can be 
determined by a single calculation. Case (b) is simply 
determined from Case (a) by differentiation. 

We shall try to evaluate all integrals for arbitrary 
values of mass, energy, and momentum transfer; the 
results may then be specialized later to given choices of 
projectile and target. The only restrictions will be that 
the incident particle be extremely relativistic and that 
the momentum transfer be large compared with the 
mass of the incident particle. To avoid an awkward 
nomenclature, we shall often refer to the incident 
particle as an electron and the target particle as a 
proton; in fact, this particular scattering process is one 
of the major applications of our result. However, by 
setting the masses equal, the result will apply equally to 
electron-electron or electron-positron scattering. By 
setting the mass and charge of the projectile equal to 
zero, we shall obtain the radiative corrections to 
Compton scattering. The latter process has not pre
viously been evaluated for actual experimental condi
tions. We do it here at the expense of omitting some 
terms of order unity; those terms could of course be 
recovered by comparing the present calculation with 
that of Brown and Feynman.8 See also the remarks in 
Sec. IIIA. 

For elastic scattering the electron's initial and final 
momenta are, respectively, pi and pz, while those of the 
proton are p2 and p*. The angle of the elastically 

8 L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952), 
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scattered electron is #3 and that of the recoil proton is 
04; both of these are measured from the direction of the 
incident beam. Furthermore, 

Then 

pi2=pz2=nn2, 

p^—pi—m^. 
(2.7) 

For scattering with bremsstrahlung, the final momenta 
are primed. Energy and momentum conservation in the 
two cases are expressed by 

^1+^2=^3+^4, 

Pi+p2=p3+p4+k. 

(2.8a) 

(2.8b) 

Experiments in which the incident or target particle 
is detected will be labeled, respectively, I or II , with a 
subscript a, b, or c to denote the type of detection. For 
example, Experiment I 0 means the electron is detected 
at an angle 03 with a momentum loss smaller than A^3. 
To keep the discussion general, the charge of the electron 
is called Z±e and that of the proton Z2e. Unless specifi
cally indicated, energies and momenta are given in the 
laboratory system. 

Some important kinematical relationships will now be 
derived and listed. The first of these are the energy and 
momenta of the final particles as a function of their 
direction for elastic scattering. We always assume condi
tions such that the incident and scattered particle is 
extremely relativistic (E{^>mi and E£>>nii); then we 
easily find 

E&p&Ei/v with 77=l+(£ i /m 2 ) ( l -cos03) (2.9) 

and 
2Eim2{m2-\-E^) cos04 

j 

~(w 2 +£i ) 2 -£ i 2 cos 2 0 4
? 

( w 2 + £ ! ) 2 + £ i 2 cos204 
im2 . 

(m2+E1)
2-E1

2 cos204 

(2.10a) 

(2.10b) 

For each given momentum loss of the particle being 
detected, there exists a Lorentz frame in which the 
energy of the photon is isotropic. This frame is the 
center-of-momentum frame of the photon and the un
observed particle. Suppose the four-momentum of the 
electron is p%, while the corresponding elastic scattering 
value is p%. Then the energy of the photon in the special 
frame may be determined from 

{p4!+k)2-m2
2=2k-p4!+\2^2Spr{pi+p2), 

where 
^pz—pz—pz-

For Experiments Ia and I&, p3 ' is parallel to p3, hence, 

y1=dpz- (pi+p2) 

= m 2 7 ? ( |p 3 | - !p3 / | ) ? ( I aand lb ) (2.11a) 

and for Experiment I c 

7i=pipz sin03(03-03')- (Ic) (2.11b) 

&-£4' = w(E4 '+w)==7i, (2.11c) 

where co= (I2+X2)1/2 and £ 4 ' = (k2+m2
2)1/2. Solving for 

co, we find 
£ = Y I / ( ^ 2 2 + 2 T I ) 1 / 2 . (2. l i d ) 

Also let Ti be the maximum value of 71 for either 
Experiment Ia or Ic. Then it is interesting to notice 
the behavior for two situations. If m2

2y>Yi (for example, 
if m2>Ei)7 we have simply <h—y\[m2 and the recoil 
proton is never relativistic in the special frame. On the 
other hand, if Fi^>>w2

2, the recoil proton has a non-
relativistic velocity in the special frame for small 71 
and a relativistic velocity for large 71. I t is just this 
dependence of_fi4' on k which was neglected in the 
calculation of B. For experiment II , the corresponding 
expressions are 

k'pz' = a)(Ez'-\-u) = y2, 

pi(Ei+m2)m2 

(2.12a) 

72 = " 
£4(^4 + W2) 

( |P4 | P 4 ' ( ) , 

(IIB and IIb) (2.12b) 

72=pipA sin04(04-04O, (He) (2.12c) 

£ = 72/(w1
2+272)1 /2 , (2.12d) 

where 
^ 3 , = (w1

2+^2)1/2. 

Again, F2 is the maximum value of 72. 
Consider next the integrals over the final phase 

space of the particles. For the elastic scattering part this 
is of the form 

/ • • • / 

dzpz dsp, 

Ez £4 
&(pl + p2-pZ-pd I Mo I2, 

where R denotes the region of phase space permitted by 
the detection arrangement. This expression is invari-
antly defined, and hence, the following analysis can be 
performed equally well in the laboratory or the center-
of-mass coordinate system; however, most present 
experiments of the type under consideration correspond 
to the laboratory system which will be employed here. 
For the various experiments this reduces to 

-dtiz \M0\
2, ( I a a n d l 6 ) (2.13a) 

m2Ei 

pz 

plE; 

pA{E±+m2) 

m2(Ei+m2) 

P* 

P1E4 

dpzdfc |M*0|
2, (Ic) (2.13b) 

•dtti |M"0|2, ( I I „ a n d I I 6 ) (2.13c) 

•dptifyi \M0\
2. (2.13d) 
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The inelastic scattering contribution to the observed 
cross section takes the form 

/ • • • / 

d*pz' dzpA' d*k 

Ez Ei 
•8(pl + p2-p3-p4-k)(---). 

Consider Experiment I. Since the integrand is an in
variant, the integration over k and p{ may be carried out 
in any reference frame. For each fixed value of pz, it is 
convenient to use that frame in which the photon energy 
is isotropic; it is specified by the vanishing of the space 
part of (pi+p2—pz)- With the aid of the 8 function, the 
integral may be reduced to 

d*pz' 

yiEzf 
bkdQ(->), 

where co and J E / are denned in (2.11). The remaining 
factor in the integrand is to be evaluated at the ap
propriate values specified by the 8 function; d& indicates 
an integration over angles in the special frame. 

For experiments I a and I&, we have 

d*p*' dttzpz2dpz' 

Ez' 

dtizpz' 
_/ 

m2Ei 
dyh 

while for Experiment Ic, we find 

d3pz pz2dpzd<t>z 

Ez Ez 

pzdpzd(j>-

~~ piEz 
dyi. 

Note that the kinematical factors are, respectively, the 
same as in (2.13a) and (2.13b); a similar result is true 
for Experiment I I . Since the incident flux factors are 
the same for elastic and inelastic scattering, the frac
tional corrections from inelastic scattering take the 
form 

/ 6okdQ(- • 
rVi dy 

Jo y% 
a>kda('-')/\Mo\2, ( I a , I c , I I a ,o r I I c ) (2.14) 

where i— 1 or 2. 
In summary, the calculation is to be carried out in the 

following manner: for each fixed value of Y»-, the integra
tion over photon angles is to be carried out in the special 
Lorentz frame in which the photon energy is isotropic. 
The result is then to be integrated with respect to ji in 
order to obtain the desired radiative correction. 

B. Details of the Convection Contributions 

I t is convenient to rearrange (2.3) into the sum of 
direct terms for each of the particles and an interference 
contribution 

B=B(1)+B(2)+B(12), (2.15) 

where B(l) is the i=l, j=3 contribution, B(2) is the 
i = 2 , y = 4 contribution, and all other terms are com
bined into the single expression 

5 ( 1 2 ) = -
iZiZt f d*k r(2p1-k)ix (2p,+k)„-

4TT 8 k2-\2Lk2-2k-p1 k2+2k-psJ 

(2p2+k)» (2pi~k) 
X 

.k2+2k-p2 k2-2hpi. 
(2.16) 

If the two particles are identical, B is symmetric under 
the interchange of the two initial or the two final 
momenta, but the separate terms in the decomposition 
do not have this property. 

Now (2.4) must be generalized for the case where 
recoil is important. To make the external radiative 
correction approximation, we neglect all k dependence 
in the integrands of (2.14) except that appearing in the 
convection factors. I t should be remarked that this 
approximation involves neglecting k not only in the 
Dirac operator, but also in the final-state Dirac 
spinors which are held fixed at their elastic scattering 
values. In place of (2.4), we then have for the real 
photon contribution to the observable cross section 

where 
2<XD (7o, 

nTi dji [„ „ „ 
k&dQ, S'. 

flidyi C 
2aB'= / — t 

Jo Yt J 

(2.17a) 

(2.17b) 

We shall always use the index i for the detected particle 
and j for the undetected one. Thus, we set i=3, ^ = 4 
for Experiment I, and the reverse is true for Experiment 
II . S' is defined by 

5 / = 5 / ( l ) + 5 / ( 2 ) + 5 / ( 1 2 ) , 

where 

5 ' ( i ) 
aZ{/Pu fa/\2 

4 T T 2 U - £ I k-p3'/' 

S'(2) = -

S'(12)=-
aZ\Z\ 

2w 

\k-p2 k-pj 

\k-p! k-pt'A 

pi" pi" 

pz'J\k-p2 k'pi 

P<*\ 

(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

The difference between B and B' is that in the expression 
for B all the momenta pi are approximated by their 

file:///k-p2
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elastic scattering values pi; in B' the pi are functions 
of dpi through the conservation laws. 

In order to make use of the infrared cancellation 
which has already been included in (2.5), we rewrite Bf 

in the form 

where 

2aB--

2adB~-

f 
0 

r 
0 

B'=B+5B, 

ldji f „ „ _ 
—• / da [kwS~l, 

— / dQ { [ # £ ' ] -
Ifi J 

-&S1). 

(2.19a) 

(2.19b) 

(2.19c) 

Again, i refers to the detected particle in either experi
ment. In the last of these equations it is safe to set the 
photon mass equal to zero because S'—S vanishes for 
Yi=0. In order to agree with the definition of B given in 
(2.4), it is necessary for the photon energy cb to be 
defined differently when it is associated with S. I t is 
given simply by ji/nij] the square brackets in (2.19c) 
are to emphasize that k is to be calculated differently in 
the two terms. If the experimental situation is such that 
the undetected particle is nonrelativistic in the special 
Lorentz frame for all k (i.e., if w / > I \ ) , 8B may be 
neglected and the convection contribution reduces to 

B+ReB 

^ — Pl In )+Pi'-h m2*, 

Z2
2[ t IV \ / a2\ 

p2 ln )+P2'-im—) 
[ \m2

2aj \m2
2/ 

+-2TT 

Z I Z O ZiZ2 ( / I Y \ 
\ -Inrj In )-lnrj+p(2E1/m2) 

2TT I W 2
2 E i J W / 

~ / 3 ( 2 E 3 M ) , (I0 and Ic) (2.20a) 

B+ReB 

^ — Pl In ) + p i ' - i In2 — 
2ir { \m^ai/ \m^l 

Zfi I T. 
+ — p2 In 

2K \ \m2*E 

ZlZ<i 

2ir 

—)+P*'-hhA, 

\w22£iE3«i2/ 
•lnv+^(2E1/m2) 

-p(2Es/m2) , ( n . and IIC) (2.20b) 

where the following notation has been introduced: 

a± = pyp^EiEz(l-cosd3) 

~ni2(Ei—ni2), 

a2=prp\-=m2E^ 

Pi= 

&i /ai+(ai2—mi4)1/2\ 
In - 1 

mf (fl i2-^4)1 '2 V 

2ai 
=ln 1 for a{^>mi2, 

mi2 

2 (ai—mi2) 
(2.21) 

for ai—Mi2, 
3 mi2 

l/ai+m^2 /ai+W-mt4)1^ 
Pi '=-

2\ai—mi 

V ' /a 

;) ' < - mf 

1 2at 
£ M n 1, 

2 m? 

P(\)=(ln2\)d(l-\). 

The approximate form taken for p{ is actually valid 
only for a{^>mi2. In the nonrelativistic region, p{ tends 
to zero; however, the error made in using the approxi
mation for all ai is only of order unity. The function pi 
is not similarly treated since it multiplies a logarithm 
of Ti. In evaluating (2.5) and (2.6), we have used the 
fact that the energies Ei are the energies of the particles 
as seen in the rest frame of the recoiling particle when 
the scattering is elastic. Thus, for Experiment I : 
Ei — pvp±/m2\ while for Experiment I I : Ei=prp3/mi. 

When the energy of the recoil particle can be rela-
tivistic in the special Lorentz frame, 8B can make an 
important contribution. The details of this calculation 
are relegated to the Appendix; however, some of the 
general features will be discussed here briefly. We recall 
that each value of k corresponds to a definite choice for 
the special Lorentz frame. We see from (2.17) and 
(2.18), that the angular integration in the special 
Lorentz frame involves terms of the form 

fcprpk 

pik-pk 

f -f&Pi-pk' **prpk\ 
/ dtt ( J. (2.22) 

J \k'pi'k-pk' k-pik-pk/ 

I t is necessary to state carefully what this expression 
means because two different Lorentz frames are in
volved. The angular integration in the second term is 
carried out in the rest frame of the unobserved recoil 
particle when the scattering is elastic; the factors of k, 
of course, cancel out for this term. The angular integra
tion in the first term is carried out in the special Lorentz 
frame; for uniformity of notation, we have se t^ i = ^ i ' 
and p2=p2- If neither / nor k corresponds to the un-
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observed particle, pi and pk are both independent of 
angle and the integral may be easily evaluated; the 
result is 

rl /pi'-pk prpk\ 
2T\ [ — — — ]dx, (2.23) 

J-iKpMk) px
2(lk)' 

where 2px(lk)= (l+x)pi+(l—x)pk, with a similar 
definition for pj. If / and k are any combination of 1 and 
2, px equals pj and this integral is identically zero; the 
same is true for l=k~i. Under the assumption that the 
momentum resolution is good (Apz/pz<Kl or A^4/^4<$C1), 
it can be shown that the remaining terms of this form 
(hkr^j) are also unimportant; the details are in the 
Appendix. 

In case k or / corresponds to the unobserved particle, 
the corresponding momentum will depend upon the 
angular variables in the integration. For example, in 
Experiment I we have 

k-pi=yh 

and 
p{ • pi = p{ • ( £ 4 + dps) -pi-k ,2 2 4 . 

2*pfpi-k-pi'. 

In evaluating the integrals, we are interested only in 
keeping contributions which can be large under fore
seeable experimental conditions. If terms of non-
logarithmic order are neglected, the calculation is rela
tively easy; the details are given in the Appendix and 
the results are contained in the following formula: 

^8=—I-ilnafl+—M. (2.25) 
2TT I \ m*J J 

The energy spectrum may now be obtained from 
(2.20) and (2.25) by differentiation: 

dcr aa0 f f / 2T1\-] 1 
— = \2Z£Pl+zA 2 P 2 - l n ( l + 1 \-4,Z1Z2\nv\ 
dpz ir&pzi L \ w 2

2 / J J 

(exp. I) , (2.26a) 

da- a<r0 f r / 2 r 2 \ n i 
— = \2Z<?P2+ZA 2 p i - l n ( l + ) -4ZiZ2 lni7 
dpi irdpd L \ WiVJ J 

(exp. II) . (2.26b) 

In the terms arising from 8B, the denominators should 
be 8pi[l+(fnj2/2Ti)~] rather than dpi. However, these 

where T is the 7-matrix operator appearing in the basic 
scattering matrix element. In order not to make use of 
the detailed properties of T, we wish to arrange the 
calculation in such a way that 7 matrices need not be 

terms are important only if T£>>m/, and in that case the 
given approximation is valid. 

C. Spin-Convection Contributions 

The convection contributions discussed in the pre
vious subsection are independent of the spin of the 
charged particles. If the particles have spin, additional 
terms, such as (2.1b), will appear in the factors for 
emission and absorption of photons. These terms depend 
on the details of the current distribution at somewhat 
smaller distances than the convection terms. This is 
evidenced by the extra powers of k they contain, which 
tend to emphasize the harder photon contributions. 
However, as will be seen, the interference between the 
spin and convection terms has a part which is large (i.e., 
logarithmic in a large energy ratio) and is independent 
of the specific details of the scattering interaction. In 
contrast to the infrared part of the convection terms, 
which is characterized by an integral of the form Sdk/kj 
the spin-convection contribution is characterized by 
fdk/E, with an upper cutoff of order E for virtual 
photons and AE for real ones. Thus, the approximation 
of neglecting k inside the residual factor in the matrix 
element is not likely to be as good in the latter case. 
However, there seems to be no indication that the 
correction to this approximation contains logarithms of 
large energy ratios; this of course does not prevent it 
from having a large numerical value. 

In view of these remarks, the significance of the spin-
convection contributions is somewhat uncertain in the 
general scattering situation. However, they may then 
give us some information about the order of magnitude 
of the errors in the straight convection approximation. 
In any case, there are numerous important applications 
where the basic scattering is given quite well by the 
Born approximation; the approximations required can 
then be studied in detail and they are generally found to 
be quite adequate. The following analysis will be for 
Dirac particles only, with no anomalous moment in
cluded. The contributions of the anomalous moment of 
the proton in electron-proton scattering will be discussed 
explicitly in Sec. I I I . 

Consider the virtual photons first. If the incident 
particle has spin one-half, it contributes the following 
spin-convection term: 

shifted through it. In fact, if we restrict our attention to 
logarithmic terms, we will find that it is possible to 
eliminate the extra 7 matrices and thus express 8M(1) 
in terms of MQ. If the k dependence of T is neglected, 

M£(l) 
iZ^a r d4k u{pz){V(pz-k, pi-k)[k£^+[phK]T(pz-k, Pi~k)}u(pO 

~ 4TT3 J , (k2-2k'pz)(k
2~2k-p1) 

(2.27) 
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the integration with respect to k is easily carried out and 
it leads to the result 

si OL r dx 
dM(i)=— / —{(i+*) izfo)r |> iA>(pi) 

16TT J _ I p2 

+ {l-x)u(pz)[jhpz-]Tu{p1)}, 
with 2px— (l+x)pi+ (l — x)p%. Now if terms of order mi 
are neglected (ultimately in the cross section they would 
be of order mi2/Ei2), the commutators can be replaced 
by the invariant scalar product 2pi • p2 and we find 

5M(l) = aC(l)M0, (2.28a) 
with 

Zx
2 rl dx Zx2 2pvps 

C(\) = —pvpz\ —^— In . (2.28b) 
47T J-lpx2 2w Ml2 

By the same arguments (we see in the Appendix that 
the neglect of terms proportional to m2 gives no ap
preciable error), we find for the interference of spin and 
convection currents of the target particle 

Z2
2 a2 /a2+{a2

2~m^y!2\ 
C(2)= lnf ), (2.29a) 

2TT (a2
2-ni2A)m \ m2

2 J 

which reduces to 

Z 2
2 2^2*^4 

C ( 2 ) = — I n when prp^m*2. (2.29b) 
2w m 2

2 

The latter approximation will be used for all values of 
p2'pA although it yields a small (order unity) error for 
small p2-p4-

For the cross terms between particle l and particle 2, 
we have to distinguish the contribution from the 
interference of the spin current of particle 1 with the 
convection current of particle 2 called C(12) with the 
corresponding contribution C(21). The result, whose 
derivation is presented in the Appendix, is 

Z i Z 2 p2' p% Z1Z2 
C(12) = C(21)= In = In* (2.30) 

2TT pvp2 2T 

Thus, the contribution from the spin of particle 1 to 
radiative corrections is given by 

2o[C( l )+C(12)] , 

and similarly the contribution from the spin of particle 
2 is 

2a[C(2)+C(21)J 

At first sight, the real photon spin-convection terms 
involve integrals of order afdk/E and they should 
accordingly be of relative order aAE/E. However, if the 
undetected particle is extremely relativistic in the 
laboratory, a photon emitted parallel to it can carry off 
considerable energy and a much larger contribution 
might be obtained. When this situation attains, it is no 

longer profitable to attempt a general analysis since 
other features, such as variation of the traces through 
the dependence of the final momentum on k, will be of 
comparable importance. Accordingly, we do not include 
these terms among what we choose to define as the 
external radiative corrections. These contributions are 
discussed in greater detail in the following section. 

III. REFINEMENTS AND LIMITATIONS 

The preceding section contains most of what can be 
said in a general way about the radiative corrections 
without a detailed consideration of the basic processes. 
Before turning to some of the refinements which are 
possible for specific processes, let us review qualitatively 
the origin of the logarithmic terms. The doubly loga
rithmic terms are associated principally with the 
infrared divergent integrals; roughly speaking, one 
logarithm comes from the strongly peaked angular 
integration and the other from the dk/k integration.9 In 
the case of the virtual photons, the upper limit of the 
dk/k integration is effectively determined by the ex
ternal momenta. In making the external radiative 
correction approximation, the dependence of the basic 
factor on k was neglected. If this variation with k is, in 
fact, not too violent, the doubly logarithmic terms 
should be well estimated.10 The effect of the variation of 
the basic factor on k may perhaps be estimated by 
expanding it in a power series in k. The linear term in 
k would no longer contain an infrared divergence, but 
it could yield a single logarithm from the angular 
integration. This procedure will be used in one of the 
estimates that follows. 

In the noninfrared parts of the external radiative 
corrections (occurring in both the convection and spin-
convection contributions), some single-logarithmic terms 
are associated with the strongly peaked angular inte
grations times a nonlogarithmic dk/E integral. Others 
are residues of the spurious ultraviolet divergence, which 
is logarithmic. Clearly if there is any important varia
tion of the basic factor, these terms have not been 
reliably estimated. In that situation there is no justi
fication in retaining them if the corrections mentioned 
in the preceding paragraph are ignored. In the most 
general situation, we therefore regard only the dominant 
doubly logarithmic terms as having been reliably 
estimated. 

Fortunately, in most of the contemporary or possible 
experiments in which radiative corrections are likely to 
be an important consideration, a more detailed study is 

9 More precisely, tiie form of the doubly logarithmic terms 
occurring in B and B separately depend on the type of infrared 
cutoff employed. However, the ambiguous terms cancel in the sum 
B+B. 

10 In case the basic factor already contains infrared divergences, 
its variation with k is important. This problem of overlapping 
infrared divergences is discussed in Appendix A of reference 1, 
where it is shown that the neglect of this k dependence is com
pensated by the neglect of photon emission and absorption from 
internal lines. 
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possible. Some of these refinements on the general dis
cussion will now be presented. 

A. The Effect of the k Dependence of the 
Basic Process 

Suppose the basic scattering is due to the exchange of 
a single photon. Consider two-photon exchange; in 
obtaining the convection contribution for the soft 
photon, we have made the following approximation 
relative to the hard photon: 

!/(«—*)*—>!/«"- (3-D 

The correction to this approximation corresponds to 
inserting an extra factor (2k • q/q2) into the definition of 
$(12), Eq. (2.16). The resulting correction is easily 
found to be 

& B ( 1 2 ) = — ^ l n i j , (3.2) 
2TT 

which is important enough to be included in our final 
formulas. 

Suppose the basic interaction is more complicated, 
but still may be expressed by a function G(q2). Then 
(3.2) must be multiplied by a factor 

-^G ' (g 2 ) /G( ?
2 ) , 

where the prime denotes differentiation with respect to 
the argument. If the scattering is due to electromagnetic 
interaction, but involves finite structure, G(q2) takes 
the form F(q2)/q2, where F is the form factor, and the 
correction factor which should multiply (3.2) becomes 

l-q2F'(q2)/F(q2). (3-3) 

The second term, which might become more important 
than the first in some circumstances, has been omitted 
from the tabulated formulas presented in the following 
section. 

The preceding argument is valid only when the basic 
factor does not vary much within the range of values of 
k which are important in the integral. Some examples 
where this variation must be considered more com
pletely will now be cited. The first of these is electron-
electron scattering at small center-of-mass angles. Then 
q2 is small and the magnitude of (2k-q/q2) might 
become large. To see how important these effects might 
be, we may compare the contributions obtained by the 
present methods with the exact two-photon exchange 
contributions.2 The surprising result is that our methods 
yield quite accurate answers for this example. Another 
example is Compton scattering near 180° in the center-
of-mass system. The dominant diagram is the one in 
which the incoming electron emits the final photon 
before absorbing the initial one. The intermediate 
electron propagator then yields the small denominator 
2pz-p2. In this case if we compare our result with the 

exact one,8 we find a difference (exact minus approxi
mate) in B of 

1 /pvpi\ 
AB^+— ln2( ). (3.3) 

47T \pVpZ/ 

An exact calculation of B for large energy loss has not 
been done, so we cannot determine the corresponding 
error AB in the calculation of real photon emission. To 
the extent that AB and AB are associated with infrared 
photons, they may tend to cancel like the doubly 
logarithmic terms which depend on the type of infrared 
cutoff. The term (3.3) is not included in the tabulated 
result of Sec. IV; the results for Compton scattering 
are clearly less reliable than those for the other processes 
tabulated. 

We conjecture that the difference between electron-
electron scattering and Compton scattering arises as 
follows. The effective range of integration over k which 
yields the major contribution is determined by the 
external charged lines. For small q in electron-electron 
scattering, the range is proportional to q. Thus, as q 
decreases, k-q/q2 does not increase in importance. On 
the other hand, for Compton scattering the important 
range of k is probably determined from (ps—pi)2, which 
is large relative to 2prpz in the situation under con
sideration. Important corrections result. 

B. The Effect of the Anomalous Magnetic 
Moment of the Proton 

In electron-proton scattering, suppose that the extra 
soft photon exchanged between the two particles 
interacts with the anomalous moment of the proton 
rather than with its convection or spin current. Corre
sponding to the fact that the photon is assumed to be 
soft, we consider the terms with the least number of 
powers of k in the numerator and we neglect the 
dependence of the basic interaction on k. I t is then easy 
to give an argument why these contributions vanish to 
logarithmic order. For example, suppose the photons 
are exchanged between the incident particles; we then 
have to study the structure 

f LKP{\ d*k 
(p2+m2) u(p2). 

J (k2-2k-p2)(k
2+2k-p1) k2 

But the result of the k integration can only replace the 
k in the commutator by pi; it is then trivial to see that 
the remaining Dirac operators acting on the proton 
spinor give zero. 

The point of this demonstration is that no logarithms 
arise from the interaction of soft photons with the 
proton's anomalous moment. However, if we take into 
account the variation of the basic interaction with k, or 
the contributions from electron spin interacting with 
the proton moment, a nonvanishing contribution could 
occur. These contributions come mainly from the region 
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of very large k and they are not easily included within 
the framework of our present discussion. 

C. Small Virtual Electron Four-Momentum 

A situation in which the integration over virtual 
photon momentum might have a large contribution 
due to several denominators becoming small simul
taneously occurs as follows. The virtual photon emitted 
by the incoming electron takes nearly all the energy and 
momentum of the electron. I t then scatters from the 
proton as a nearly real photon and is reabsorbed by the 
electron. We might view this qualitatively as a Compton 
scattering of the Lorentz contracted proper field of the 
electron. Letting p be the momentum of the virtual 
electron, we consider the contribution arising from the 
region of small p: 

r 1 1 
u{pz) / d*p 

J (p2-2pvp+m1
2) {p2-2prp+ml

2) 

(P+m) 

As in the case of the spin convection and infrared terms, 
a logarithmic factor arises from the angular integration. 
More important, the factor p is replaced (in form) by 
pi+pz; we then find 

(y\piv+pz\y»)Xlog. 

When this is combined with the factor associated with 
the scattering of the photon by the proton, which we 
denote simply by F„\(pi,pz,p2,pi) (p is here neglected), 
the result is zero by gauge invariance: 

Thus, no large contribution arises from the situation in 
which the virtual electron is "soft." 

In this subsection and the preceding one, the two-
photon exchange terms have been studied from the 
point of view of radiative corrections. Other studies11 

have placed the emphasis on the off-the-mass-shell 
Compton scattering by a physical nucleon. While a 
critical study has not been made of the extent to which 
the two methods overlap and the extent to which they 
are supplementary, it seems significant that they agree 
that the specific two-photon terms are unimportant at 
energies below 1 BeV. Our analysis shows that, as a 
consequence of gauge invariance, an unusually large 
nucleon Compton scattering need not result in a large 
two-photon contribution. There is no theoretical indica
tion that these terms will become important at higher 
energies, but neither is there proof that they do not. The 
situation is also subject to experimental study by com-

11 S. Drell and M. Ruderman, Phys. Rev. 106, 561 (1957); 
S. Drell and S. Fubini, ibid. 113, 741 (1959). 

parison of electron-proton and positron-proton scatter
ing, the difference in cross sections being due to the 
interference between the one- and two-photon terms. 
Present experiments12 give no indication of a significant 
two-photon term at incident energies of 200 and 300 
MeV. Two-photon contributions could also introduce 
terms in the cross section which would make it im
possible to fit the experimental data with the Rosen-
bluth formula.13 There is no experimental evidence for 
such a "breakdown" of the Rosenbluth formula.14 

D. Radiative Corrections to Electromagnetic 
Scattering of Spin-Zero Particles 

Radiative corrections to scattering of spin-zero par
ticles have already been partially included in the so-
called convection contributions. However, in case the 
basic interaction is electromagnetic, there are certain 
additional refinements which we would like to describe 
briefly. These refinements are actually of no practical 
importance, because in actual physical situations the 
basic interaction is nonelectromagnetic. 

The first of these refinements is that two photon lines 
may terminate at the same vertex because of the A2<j^(j> 
term in the Lagrangian. Thus, it is possible for a virtual 
photon to have one end terminate on the external boson 
line and the other terminate at the same vertex as the 
exchanged photon. I t is not difficult to show that this 
gives purely a contribution to the "spurious charge 
renormalization," and is, hence, not of interest. The 
second refinement comes about because the photon 
emission operator depends on the momentum of the 
charged particle. Thus, in the radiative correction in 
which the boson emits a virtual photon, exchanges a 
photon, and then reabsorbs the virtual photon, the 
emission operator for the exchanged photon has the 
factor (pi+pz—2k)fl in place of the factor (pi+pa)^ in 
the basic matrix element. Using standard methods, the 
~2kfi results in a contribution to be added to B: 

(3a/2ir)ln(2pvpz/mi2). 

E. Other Refinements Involving Virtual Photons 

Some other refinements are relegated to the Ap
pendix ; these are necessary for the justification of some 
of the approximations which have been used, but they 
are not in themselves of any great intrinsic interest. 
They will be described very briefly here. One of these is 
electron spin-proton convection contribution arising 
from an additional exchanged photon. In Sec. I IB, this 

12 D. Yount and J. Pine, Phys. Rev. 128, 1842 (1962). 
13 M. N. Rosenbluth, Phys. Rev. 79, 615 (1950); the possible 

form of such anomalous terms has been studied by D. Flamm and 
W. Kammer (to be published). 

14 K. Berkelman, R. M. Littauer, and G. Rouse, in Proceedings 
of the 1962 International Conference on High-Energy Physics at 
CERN, edited by J. Prentki (CERN, Geneva, Switzerland, 1962), 
p. 194. 
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term was treated by neglecting powers of the proton 
mass in the numerator in comparison with its energy. 
On its face, this is not a good approximation unless 
the electron energy is very much greater than the 
proton mass; nevertheless, the error is shown to be 
unimportant. 

F. Refinements in the Calculation of the Real 
Photon Contribution 

In some situations, the kinematics permit the un
observed photon to have an energy comparable to that 
of the unobserved particle. For example, if the proton 
is detected in high-energy electron-proton scattering, 
an unobserved photon emitted parallel to the electron 
can carry away most of the unobserved energy. The 
approximation of neglecting powers of ft in the numera
tor is then no longer valid, and the calculation must be 
reconsidered carefully. In addition to the explicit ft de
pendence of the integrand, there is an implicit one due 
to the dependence of the final electron projection 
operator on ft: 

pz'+mi 

2mi 
(pi-k+dpt+md/lm!. 

In the calculation of Sec. I IB, this projection operator 
was approximated by (pz+nti)/2nii. 

A direct calculation of the additional contributions 
arising from ft dependence would be possible, but some
what lengthy. Fortunately, as we are interested only in 
the logarithmic terms, it is possible to give a rather 
detailed discussion without explicit evaluation of the 
traces. As usual, the logarithmic terms turn out to be a 
simple multiple of the original traces. For defmiteness, 
the discussion will be given for Experiment I I . Recall 
that the product of the traces can be reduced ultimately 
to a polynomial of invariant products of the momenta 
Ph Ph Ph Ph &Ph Pz'i a n d k- Because of the conservation 
equations (2.8), there are various relations between the 
invariant products. Clearly, since bp± is small, it can be 
neglected everywhere in the trace. Also, p% may be 
eliminated by: 

pzfz=pz—k+dp4, 

^pz~k. 

The product of traces then depends on invariant 
products of pi, p2, pz, p*, and ft. Its value for ft=0 is just 
the trace occurring in elastic scattering. We have then 
to consider integrals in the special frame with poly
nomials in k-pi in the numerator. The detailed con
siderations are given in Appendix D ; and the results, 
which are simple, are the following. If the integrand has 
the form 

tn2/(k'Pzf)2 or 1/(ft-fi) (*•#*); Z, ft 5*3, 

extra powers of ft in the numerator may be neglected. In 
integrals containing a factor (1/k-pz), the other ft's in 
numerator and denominator may be replaced according 
to the substitution 

• * # • • 

For example, 

and 

k-pi prpi 
» 

ft * pz'k 'ph ft * pZpZ • ph 
Lk^3 

k'plk'pk 1 pZ'plpZ'pk 
> /, ft, m ^ 3 . 

k'pz'k'pm 2 k'pzpZ'pm 

If there are higher than two powers of ft in the numera
tor, an additional numerical factor is required. However, 
in all these cases, it will turn out that cancellations will 
give a result which is identically zero. 

Because of these simple results for the integrals, we 
can neglect all terms in the trace which do not involve 
photon emission from external line 3 ; wherever possible, 
factors of mi are neglected. Let us consider first the 
interference terms; the pertinent factor in the traces is 

-Pt'-
(2pz,,+ylik) 

2ft- pz' 

== • • • (pz2pz/-2kpzft+pz7fik)/2k'Pz^ 

The first term is the one already included in B'. With 
the substitution "k—*\pz and the approximation pz2 

= nii2=~0, the second and third terms cancel. Thus, the 
interference terms may be ignored; this applies also 
to interference terms in which the other factor corre
sponds to emission from an internal line. Finally, the 
term involving emission only from line 3 involves 

(2pz»'+k7lx) (2pzfi
f+y,k) 

-pz~ 
2ft- pz' 2ft- pj 

mz 

& ; 
(k-pz')2 2k-pz' 

The first term is already incorporated in B'. The second 
term is proportional to the original trace and yields the 
radiative correction 

l n ( l + — ) , 
4rr \ mfi 

(3.4) 

where i refers to the observed and j to the unobserved 
particle. 

IV. SUMMARY OF RESULTS FOR VARIOUS 
EXPERIMENTS 

The aim of this section is to assemble the various 
contributions derived in Sees. I I and I I I into convenient 
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formulas for various possible experiments. Since terms 
of order unity have already been neglected in approxi
mating the various integrals, we omit terms from the 
general formula which will be small in any foreseeable 
practical energy range. An exception to this remark is 
that we keep certain terms of order one when they are 
associated with the electron vertex function or vacuum 
polarization. There is no particular justification for this, 
except that the numbers are simple and well known. I t 
would be feasible to calculate these terms of order unity 
for pure electrodynamic processes—in fact, they are 
partly contained in some earlier exact calculations—but 
present experimental accuracies for this type of experi
ment do not seem to warrant the effort at the present 
time. To get an estimate of the error involved in neglect
ing these contributions of order unity, we note that they 

are to be multiplied by (a/w) to yield a relative correc
tion to the cross section. An educated guess is that errors 
as large as 1% are likely, but errors larger than 2% are 
not likely. Although some new notation is introduced 
here most of the quantities are denned in Sees. IIA and 
IIB. Particularly to be noted are (2.9), (2.10), and 
(2.21). 

A. Electron Scattering from a Proton with 
the Electron Detected 

To conform with the notation of Tsai, we set mi=mJ 

m2=M, Z i = l , Z 2 =— Z, where Z is 1 for electron-
proton scattering and —1 for positron-proton scatter
ing ; AEz is the energy resolution of the electron detector 
as discussed in Sec. IIA. According to (2.10) and (3.2) 
the fractional correction is then given by 

8^2a(ReB+B), 

ap 28 

9 

{2pvpz\ "I r / A £ 8 \ H IS (lpvpz\ 
In ) - l l n U ) + — l n ( ) - J l n V 

\ m2 J J L \ E 3 / J 6 \ m2 J 

l m y l n l " / — \ f—\ l - / 5 (2£ 1 /M)+ /? (2£ 3 /M) j 

£ 4 / £ 4 + M 1 r £ i 2 M £ 3 \ 2 l / 2 £ A / M l 

+ - 1 
7T I 

I t has not been necessary to include 5B in this expression 
since it is negligible for all feasible energies. By differ
entiation, we find for the spectrum of scattered electrons 

da cr0 a 
— ^ \2 
dpz bpz IT 

+ 4 Z In?? 

+2Z' 
£ 4 /Et+p4 
— In 
.p* \ M H) (4.2) 

Table I contains two numerical examples of the appli
cation of (4.1); they are the same examples given by 
Tsai, whose results are labeled 5*. We may note the 
following differences between the present calculation 
and Tsai's: (i) The terms retained by Tsai are expressed 
in terms of Spence functions; in effect, our calculation is 
arranged so that all Spence functions are of order unity 
and they are neglected, (ii) In the Z and Z2 contribu
tions we retain spin-convection and noninfrared con
vection terms which Tsai neglects; these terms have a 
single power of a logarithm of energy ratios, but they 
are not numerically very important in the cases con
sidered. The difference between these two approxima-

TABLE I. The table contains the fractional radiative corrections 
for electron-proton (e~—p) and positron-proton (e+—p) scattering. 
A and B are experiments in which the electron (or positron) is 
detected and Af and B' are experiments in which the proton is 
detected. The results of this paper are given by 8, and those of 
reference 3 by 5*. The experimental conditions for the various 
experiments are: 

A(A'): £ i = 900, E3 = 327, £4= 1511, AEZ = 1S.1 (A£4=10); 
B(B'): £1 = 5000, E3 = 500, £4=5438, A£3=10 (Ap,= 110); 

where the energies and momenta are in MeV. 

Case 

A 
B 
A' 
B' 

Coefficient of 
a/ir Za/ir Z^a/ir 

- 4 7 . 7 
- 5 8 . 2 
- 5 3 . 5 
- 4 4 . 1 

- 1 3 . 0 - 0 . 8 
- 3 1 . 2 - 7 . 2 
- 1 8 . 4 - 1 . 9 
- 3 0 . 1 - 7 . 1 

e~ • 
8 

- 0 . 1 4 2 
- 0 . 2 2 5 
- 0 . 1 7 1 
- 0 . 1 9 1 

5* 

- 0 . 1 5 0 
- 0 . 2 1 0 

e+ 

8 

- 0 . 0 8 2 
- 0 . 0 8 0 
- 0 . 0 8 6 
- 0 . 0 5 1 

"V 
- 0 . 0 8 6 
- 0 . 0 9 9 

tions is not unreasonably large; and as far as accuracy 
is concerned, there is no great basis for preferring one 
over the other. 

B. Electron Scattering from a Proton with 
Proton Detected 

The principal difference between this and the preced
ing example is that bB is quite important, corresponding 
to the fact that a photon can carry off a large amount of 
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energy if it is emitted parallel to the final electron, even 
if the energy loss of the proton is relatively small. An
other complication of lesser importance is that it is 

necessary to treat the electron trace in its entirety, 
including spin contributions, as discussed in Sec. I I IF . 
The fractional correction is 

air /2pvpi\ 1 17 /2pvpz\ 28 l 
dQ*r-\\ lnf 1-1 lnA+—In ) § l n 2 A - f l n A 

TTIL \ m2 I J 12 \ m2 J 9 J 

+ — l m j l n A* \-^2El/M)+fi{2Ez/M) 

Z2airE4 Z*airEA /E4+pA\ -i r(pvpz)2 1 /2EA\ } 
+ — — ln( - ) - l In A2 + | l n — ) - | l n ^ , (4.3) 

where A= [ ( £ i + M ) / £ 4 ] ( A £ 4 / £ 4 ) . The energy distribu
tion of the recoil protons is 

da <7o a 

dpi 8pA 7T L \ m2 J 
- 1 - l n A - l + 4 Z lni/ 

+2Z2 
•E4 /Et+pt 
- l n f 
.pi \ M H (4.4) 

I t should be noted that the "radiative tail" is con
siderably smaller in proportion to the cross section than 
for the case where the electron is detected; it also de
creases somewhat more rapidly with increasing energy 
loss. Table I contains numerical examples for the same 
experimental parameters worked out previously for the 
electron detection experiment. I t should be noted that 
(4.3) disagrees with the result obtained by Krass.4 The 
disagreement can be traced to an error in the hard 
photon calculation in reference 4. In particular, the 
equation giving k-pz after (3.18) should be replaced by 

k-p^(pz«
l/pz){k-pfl). 

With this change, his result can be reconciled with 
ours.15 

C. Electron-Electron Scattering 

There is now no physical distinction between Experi
ments I and I I ; the radiative corrections may be cal
culated in either way and both methods give the same 
results. Adhering to the restrictions imposed earlier, we 
assume that both final electrons are extremely rela-
tivistic in the final state (laboratory system) when the 
scattering is elastic. A slight complication is introduced 
because exchange gives rise to two terms in the scatter
ing amplitude. In the doubly logarithmic corrections, 
both terms are corrected by the same factor. However, 
for the singly logarithmic corrections, these factors are 
different and the scattering amplitude is not altered by a 
common factor. This difficulty may be overcome by the 

following observation. When the two terms are com
parable, the factors are the same. When they are not 
comparable, we may simply use the factor associated 
with the biggest term, with negligible error. To see this, 
consider vacuum polarization which modifies the photon 
propagator occurring in elastic scattering 

by the factor 
Viti-P')' 

L 3TT \ m2 / J 

Here p! refers to either pi or pi, and a linear combination 
of both photon propagators occurs in the elastic scatter
ing matrix element, corresponding to the direct and 
exchange contributions. If pi-ps and pi-pi are com
parable (i.e., the same within a factor of 3 or 4), we can 
use either as the argument of the logarithm with an 
error of order unity. If they differ by a large factor, the 
photon propagators will also differ by a large factor; and 
the term with the smallest values of pvpr dominates. 
Accordingly, we can take as our rule that the minimum 
value of pvpf be used as the argument of the logarithm; 
this is simply mEm, where Em is the smaller of E 3 and E4. 
A similar argument may be used with respect to the 
two-photon terms. Recall that the single logarithmic 
contributions arising from convection and spin-convec
tion were fortuitously cancelled by the contribution of 
Sec. IIIA. As a consequence, only the single logarithmic 
terms from the vertex parts survive. These may also be 
expressed in terms of Em. The fractional radiative cor
rection is then 

o f f 2EZEA -| / E x 2 \ / E x 2 \ 
« £ H In 1 lnf H ) - i l n 2 ( - r) 

T [ L mEi J \EzEi / \EzEi 1 

11 (2Em\ /£i\l 
+-ln( )-iln(-r) , .(4.5) 

3 \ m J \m J J 
16 Dr. Krass agrees with these remarks in a private communica

tion. where r depends on the type of experiment and the 
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resolution 

r=Api/pi 

pi sinQi 
r = AOi 

m 

for type (a) experiment, (4.6a) 

/ EA ASi 
^ 2 1 1 ) for type (c) experiment. (4.6b) 

\ Ei/sinBi 

I t is also a simple matter to revise (4.5) for a clashing 
beam experiment (pi+P2=0) where only one of the 
particles is detected with energy resolution. Simply re
place Ei by the invariant pvpi/m\ r is then given by 
(4.6a) with the understanding that Api and pi are 
center-of-mass quantities. As usual, the energy dis
tribution may be obtained by differentiation; it will not 
be reproduced here. Equation (4.5) differs from the re
sult of Tsai.3 His calculation uses approximations 
adequate for the experimental conditions he envisaged, 
but the present results are valid for more general 
conditions. 

D. Electron-Positron Scattering 

The results are contained in a single formula: 

air f2E1E4\ 1 / Ei2 \ /Ez air / 2 £ i £ 4 \ 1 { E? \ /Ei\ 

T T I L \ mE% J J \EZE, J \ E 4 / 

11 /2EA\ /Ei\) 
+ - I n — - f i n l - r ) , (4.7) 

where r is given by (4.6). The result may also be used in 
the center-of-mass frame using the rules given in the 
preceding subsection. 

E. Compton Scattering with Photon Detected 

In this case, particle (1) has mass and charge zero; as 
in electron-electron scattering, 8B is quite important. 

The result is 

t / \m / 
+§ ^ 

/2£4 
(4.8) 

From the discussion given in IIIA, this formula is not 
expected to be very reliable for backward scattering 
in the center-of-mass system, corresponding here to 
E i » E 8 . 

F. Compton Scattering with Electron Detected 

There is now a slight complication in that the un
detected particle has zero mass; the separation of B' 
into B and B8 is. therefore, apparently meaningless. 

However, we may use our previous result by taking the 
limit of the expressions for B and 8B as nil —» 0. Only 
B contributes, and the correction is 

^ H ^ ) 
+fln( 

/IE. 

\ m -)-JKs) (4.9) 

The validity of the limiting procedure (wi—»0) has 
been confirmed by a direct calculation in which m\ is 
taken to be zero and B' is evaluated directly. As in the 
preceding example, this equation is not expected to 
be reliable for E{^>Ez. 

V. DISCUSSION 

Two basically different approximations have been 
made in obtaining the results of the preceding section. 
The first of these, which was discussed with the aid of 
numerous examples in Sec. I l l , is the neglect of all 
terms which are not obviously large because of the 
confluence of several small denominators. The terms 
retained can be studied without reference to the details 
of the basic interaction; we have termed them external 
radiative corrections. The internal radiative corrections, 
whose complete evaluation would be many more times 
difficult, have in most cases been estimated to be of 
lesser importance. A general estimate of the error made 
in neglecting the internal radiative corrections cannot 
be made. In the case of Compton scattering with nearly 
complete interchange of momentum between the elec
tron and the photon, the corrections appear to be large. 
On the other hand, in those cases where the basic inter
action is due to the exchange of a photon between 
charged particles, there is no reason to suppose that 
these corrections are important relative to the second 
type of approximation, which is the neglect of terms of 
order unity (times a/V) in the external radiative correc
tions. This second approximation is expected to intro
duce an error of order 1% and probably not more than 
2% in the calculated cross section. 

There is one other important question to be discussed; 
namely, to what extent can the higher order corrections 
be estimated by assuming that the factor (1+5) is 
actually the beginning of the series expansion of e5, 
where e8 provides a good estimate of the corrections to 
all orders. I t is known that the infrared part of the 
radiative correction should be exponentiated in this 
manner.16 The doubly logarithmic terms in the virtual 
photon contribution B clearly are related to the infrared 
divergence since they depend on the type of cutoff (X or 
&min) used in the calculation. With very good resolution 
(Ti sufficiently small), the real photon contribution 

B' (~:B) is purely infrared, and so its doubly logarithmic 

16 See reference 1 and other references given there; a more recent 
work on the same subject is K. T. Mahanthappa, Phys. Rev. 126, 
329 (1962). 
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contribution may also be exponentiated. With poorer 
energy resolution, 8B becomes important and terms 
involving the square of the logarithm of the energy 
resolution arise. Although these terms are not of the 
typical infrared form, their main contribution does arise 
from the smaller values of the energy loss [see (2.26)]. 
We, therefore, make the following conjecture. If 5f is the 
doubly logarithmic part of 5, the expression 

e8'(l+8-5f) 

yields a better estimate of the radiative corrections than 
does the original estimate (1+5). 
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APPENDIX A. KINEMATICAL DETAILS 

As discussed in Sec. I I , it is convenient to carry out 
the final-state integration over the phase space of the 
final unobserved photon and particle by first integrating 
over angles in a special Lorentz frame in which the 
total momentum of the unobserved constituents is 
zero. There is a different Lorentz frame for each value 
of the four-momentum loss of the observed particle. This 
section of the Appendix will be concerned primarily with 
the details of how various kinematical quantities, as 
seen in the special frame, depend on the momentum loss 
of the observed particle. Unfortunately, the analysis is 
complicated and uninteresting, but it is straightforward 
and it seems unavoidable if all the terms of logarithmic 
order are to be properly identified. 

The special Lorentz frame is defined by the relation 

energy E{ of any other particle as seen in this special 
frame can then be determined from 

p / + k = 0 . (Al) 

In this equation, and in the remainder of the Appendix, 
we shall always let the subscript j refer to the final 
unobserved particle and i to the observed particle; the 
spatial parts of four-vectors in this frame are indicated 
by boldface type. The energies of the unobserved 
constituents in the special frame are 

k=yi/C and jB/= ( m / + 7 ; ) / C , (A2) 

C = (*% 2+2T<) 1 / 2 , 

When it is necessary to distinguish, we use C=C\ or C2 

in Experiment I or Experiment I I , respectively. The 

with 

and 

CE/^ik+p^-p/^iPj+dpd-p/. (A3) 

The resulting values of E{ for the two experiments are 
the following: 

iment I : 

m2Ez+yi-- fn28Ez m2Ez+yi 

Ci d 

m2E^-\-m2hE% 
P ' — 
^ Cl ' 

E3'= . 

(A4a) 

(A4b) 

(A4c) 
Ci 

Experiment I I : 

m2{E±-~nh)+72—m2dEA m2(E^—m2)+72 

E 2 ' = 

C2 

m2Ez-\-m2hE^ 

C2 

c2 
m2Ei 

" C2 

•, (A5a) 

(ASb) 

(A5c) 

Obviously, in these expressions 8Ei is zero for Experi
ments I c and IIC. In order to make suitable approxima
tions in evaluating the final integral over the momentum 
loss, it is necessary to know whether these various 
energies are relativistic or nonrelativistic. The situation 
is complicated by the fact that as dpi varies, some of the 
energies may vary between relativistic and nonrela
tivistic values. This variation is to be studied under the 
general experimental restrictions we have imposed, 
namely, that the energy of the incident and scattered 
particle be extremely relativistic as seen in the labora
tory, that I q21 »Wi2 , and the resolution of the detected 
particle be reasonably good (say |5p t-|/ |p»| <0.05). 
Also, we assume m\^m2 and if wi\—m2 that both final 
particles are extremely relativistic in the laboratory 
system. As dpi tends toward zero, the various E{ ap
proach limits Ei which are simply the energies of the 
elastically scattered particles in the Lorentz frame in 
which the unobserved particle is at rest. For the two 
experiments these are: 

I. Ei=Ez, E2=EA, EZ—E\. 

I I . £ 1 = ^ 2 ( ^ 4 - ^ 2 ) / % , E2=tn2Ez/nii, E^—m2Ei/mi. 

Now we can discuss the situation in the two experi
ments. In Experiment I it is easy to see that Ei and 
E% are always much greater than m\. I t is also easy to 
see that if E2 is large compared to m2 (i.e., E£$>m2), 
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£2 will be large compared to m2 for all 8p$. The only 
case that might cause trouble then is that £2 might be 
comparable to mi for small 8pz, but might become 
relativistic for larger 8p%. From (A4b), this could 
happen only for Experiment I 0 when 8Ez^>E^ which 
implies E£$>E± and, hence, Ei/Ez~l. Now the condition 
that EA be a nonrelativistic energy is simply that 
\q2\/ni22 be much less than one. But since \q2\^>>mi2, 
this may happen only if W2»Wi. Thus, we need 
simultaneously 

fni2<^\q2\<£ni22 and Ez^8p3^>m2. 

In the most "favorable" case of electron-proton scatter
ing, one could reach these conditions by the following 
experimental parameters: 

£ i = 5 0 BeV, 03=O.5X1O-3 rad, and 8ps=5 BeV. 

I t seems unlikely that precision work will be carried out 
in this region in the near future; even if it was, it would 
not be justified to investigate this point in further 
detail in view of other more serious approximations that 
have been made in the calculations. Thus, for Experi
ment I we conclude that the £{ always have the same 
character (relativistic or nonrelativistic) as the corre
sponding Ei. 

In Experiment II, £\ and £4 are always extremely 
relativistic; £2 is also extremely relativistic, but under 
certain conditions, £2 may become nonrelativistic. For 
electron-electron scattering these conditions cannot be 
attained because of the restriction that both final 
particles to be extremely relativistic. For electron-
proton scattering they can be attained for Experiment 
II0 when E i » m 2 and 64 is small. We shall not present a 
detailed analysis here, but in the calculations special 
attention will be paid to those integrals which depend on 
£2 in Experiment I I . 

Finally, we present a simple approximation which is 
useful in evaluation of certain integrals which will occur 
in the next section. Angular integrations often result in 
expressions of the form 

E /E+p\ 
- I n ). 
p \E-pJ 

I t is easy to show that this function can be bounded 
from above and below in the following manner: 

/2E\ E 
21n( — ) < — In 

\ m / p 

/E+p\ ( m2\ /2E\ 

\^r)<2^+—W—)• (A6) 
\ 2E2J \ m I 

If E^m, we can approximate the function by the lower 
bound; the upper bound is numerically a better ap
proximation than the lower bound (error is less than 
5 % for all E), but it leads to slightly more complicated 
integrals. These bounds will be particularly helpful in 
the case of £2 in Experiment II since it will enable us to 
determine the consequences of its variation from 
relativistic values to nonrelativistic ones. 

APPENDIX B. CALCULATION OF hB 

We have to evaluate the integrals of the form given 
in (2.22): 

J w = <to\ — . (Bl) 
J [k-pi'k-pk k-ptk-pj 

The angular integration in the first term is carried out 
in the Lorentz frame defined by (Al) ; that of the second 
term is defined by py=0. We have given arguments in 
Sec. II that all terms with / and k combinations of 1 and 
2, and the term with l=k = i are identically zero. Now 
we shall show that the terms with l—i and k = 1 or 2 
are also unimportant as a consequence of the restriction 
I Ap* I <<C I pi I. The integral (2.34) yields a logarithm only 
if pi' pi^>minii; in that case it is approximately 

r A , {P*'P*\ A ( Pl'd^\ 7w=4ir In ^ 4 x . 

\pk-piJ \ pvpil 

The resulting contribution to 8B is always of order 

We must therefore consider only two cases for (Bl ) : 
1. The case k = j , l^j. 

Using (2.35), we find for the integrand 

E{ Ei 

£i'—pi cos0 Ei—pi cosfl ji 

which yields 

\£{ /Ei'+fa'\ 

\p{ \E{-p{) 

£1 /£i+pi\ 27i 

Pi \£i-pj mj
2+2yi 

2. The case k = l=j. 
The integrand is 

mfk2 mj2 

7< (£j-pj cose)2' 

which yields 

/ / i = 4 j r 
ntj2 

1 
_W/+2Y; 

7% 
= - 8 T T 

(B2) 

(B3) 

The results may now be combined and the final 
integrals evaluated for the two experiments. 

Experiment I. 

I t is convenient to split 8B into three parts associated 
with the decomposition of 5 ' . For Experiment I, 523(1) 
vanishes and we need consider only 8B (12) and 8B(2). 

file:///E-pJ
file:///pk-piJ


R A D I A T I V E C O R R E C T I O N S TO H I G H - E N E R G Y P R O C E S S E S 1227 

The arguments of Appendix A showed that E{ and Ez 
are always relativistic, so it is permissible to approxi
mate the functions of (B2) by the lower bound of (A6). 
I t follows that 

ZXZ2 r^d7l / £ i ' £ 3 \ 
5B(12)Q=± / — l n f ) 

* Jo Yi VEi^sV 

ZiZ2 rTldyx ( 71 \ 
= / — l n ( l + ) 

x Jo Yi \ m%Ez/ 

•('+—)• 

are 

Z1Z2 
S ln2( 

2 T 
(B4) 

There are no experimental conditions for which this 
term is likely to be important. The expression for 
8B(2) reduces to 

Z2
2 r^dyi(E2 /E2+p2\ 

2ir J 0 yiip2 \E2—p2l 

E 

p2 

/ /E2'+p2\\ 

' \E2'-p2')\' 

If we use the simple lower bound approximation from 
(A6), the result is 

_ x Z2
2( / 2I\ \ / AEZ\) 

8B(2)^— - l n 2 ( 1 + — 1 + 2 ln2( 1 + ) . (B5) 
4TT I \ m 2

2 / \ EJ\ 

The additional contribution that would be obtained by 
using the upper bound of (A6) rather than the lower 
bound can, after considerable labor, be reduced to 

Z2
2w2

2f / 2TA / AEZ\ 
-ln2( 1+—)+ln2f 1+ ) 

8TT £4
21 \ m2y \ £4 / 

+21nfl+ %J —)\. (B6) 
\ Ej KlEtAEz/) 

We want to show that this can safely be neglected. Note 
first tha t it can be comparable to (B5) only if E 4 is 
comparable to m% The logarithms can then have a large 
argument only if Ez=E{^>Apz^>m2^ As discussed in 
Appendix A, there are no practical experimental situa
tions where these and the other restrictions are likely to 
be met. The approximation (B5) is, therefore, adequate. 
I n practice, only the first term of (B5) is likely to be 
important. 

Experiment II 

JThis time fig (2) vanishes. The results for fiS(l) and 
61? (12), using the lower bound approximation of (A6) 

Zi2( / 2 r 2 \ 
« B ( 1 ) = — - I n 2 ( 1 + ) 

+Hi+{irlfB'(B7) 

(.+-} (BS) _ ZiZ2 
SB (12) = ln: 

2TT 

The contribution resulting from the difference between 
the upper and lower bounds of (A6) is of order (mi2/Ez

2) 
compared with (B8) and is, hence, completely negligible. 
As in Experiment I, only the first term of (B7) is im
portant in practice; the unimportant terms are dropped 
in the result quoted in Sec. I I B . 

APPENDIX C. SPIN-CONVECTION TERMS 
INVOLVING A HEAVY PARTICLE 

The purpose of this Appendix is to derive some of the 
results of Sec. I IC . In effect, it is an exercise in the 
manipulation of relatively complicated expressions to 
reduce them to a simple form by neglecting terms of 
order unity. Consider first the contribution arising from 
the convection current of particle 2 and the spin current 
of particle 1. Following the procedure used in deriving 
C( l ) , the result may be written 

ZiZ2 r1 f pvp2 pypi \ 
C(12) = / (l+x)dx\ + , CI 

" J V W(12) px
2(32)\ 4TT 

where 

px
2(12)==ll(l+x)2m1

2+(l--x)2m2
2-2pvp2(l-x

2)']} 

px
2(S2) = il(l+x)2m1

2+(l-x)2m2
2+2pz'P2(l~x2)']. 

I t is understood that (CI) is a principal-value integral, 
since the imaginary par t will not contribute to the 
cross section to order a. The general restrictions assumed 
on the parameters are 

Pl'p2, pZ' ^2»W-lW2, 

however, it is possible that m2
2^>pi • p2, pz * p2> 

Neglecting terms of order unity, we find 

ZiZ2i fpyp2\ m2
2 /2pvp2\ 

C(12)= ln ( - ) + lnf - ) 
2TT I \fiz'p2/ m2

2+2pvp2 \ m2
2 J 

mt 

m2
2—2prp2 

Z\Z2 fpip2\ 
lnf ). 

2T \pz'p2/ 

•&B- (C2a) 

(C2b) 
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The approximation is justified as follows: I t is clear that 
the second and third terms of (C2a) are important only 
when the arguments of the logarithms are small; the 
third term is of order one when 2p^-p2^m2

2 in spite of 
the small denominator. The scattering kinematics yield 

2prp2 2£ 3 2El/m2 2pvp2/m2
2 

m2
2 m2 1 + (_V *»_-) (1 — cos03) ' l+(2pv p2/m2

2) 

Thus, if 2pi'p2^>m2
2, the second term of (C2a) is small 

and the third of order unity. If 2pvp2<^m2
2, the second 

and third terms tend to cancel; and, in fact, C(12) itself 
is small. 

In calculating the contributions involving the spin 
of particle 1, the approximation 

piu (pi) = m\u (£i)==0 

was used repeatedly. In fact, detailed examination of 
the trace shows these terms are actually of relative 
order (m2/E^). In evaluating the contributions from 
the spin of particle 2, more care is needed since these 
terms may not be negligible if m2 is large. The contribu
tion from the convection current of particle 1 and the 
spin current of particle 2 yields a contribution C(21) 
which is identical to C(12) (to order unity) plus a 
residue 

m2ZxZ2 r1 ipiT+Tpz pzT+Tpi\ 

8TT i - i I px
2(32) p 2 ( \ 2 ) I 

m2ZiZ2 [ In (2/>3 • p2/m2
2) 

= [ £ i r + r ^ ] 
2w I m2

2—2pz'p2 

\n(2pvp2/m2
2)} 

+£PP+Tpd — . (C3) 
m2

2+2pvp2 J 

If m2
2<<C2pi • p2l 2pz - p2 these terms are of relative order 

(m2
2/2pvp2)Xln(2pi-p2/m2

2) and hence negligible. If 
m2

2^>2pv p2, 2pz'p2, their relative order is Ei/m2 or 
Ez/m2, which is again negligible. In the intermediate 
region, they are of order unity. 

The contribution involving the spin and convection 
current of particle 2 may be evaluated in a similar 
manner. Again, the terms involving a factor m2 are of 
order unity or less and the surviving contribution is 
given by (2.29). 

APPENDIX D. FORMULAS FOR CALCULATION OF 
THE EFFECT OF TRACE VARIATION 

In this Appendix the formulas needed in the analysis 
of Sec. I I I F will be derived. The integrals required in 
the evaluation of Bf take the form 

fVidyi r _ k*pa'-pb' 
/ — / dQ . 

J0 li J k'pa'k'pb' 

The modification of these integrals produced by factors 
of form k - pc in the numerator is to be determined for 
various choices of a and b. I t may be helpful to preface 
the following analysis with a brief outline of the argu
ments which will be used to determine which terms are 
significant. The main point is to observe the y2 de
pendence resulting after the angular integration. If m^ 
can be neglected without causing a divergence for small 
72, and if there are powers of 72 in the numerator, the 
final integral will be some positive power of T2. Such 
terms will be of relative order (| Ap4 | /£i)w , n^ 1, and 
hence negligible. We, therefore, retain only the terms 
with the smallest degree in y2 (as mi2 —> 0). How this is 
used may be illustrated by the following example: 

Va'Vb = EaEb — pa'pb, 

po'(p*+8pi)pb-(pz+8p4) 
f^> 

mi2+2y2 

Case 1. a—b—3 

/

k2nti2 k2mi2 mi2 

d& =4TT =4?r 
(k-pz')* 722 m1

2+2y2 

2 7 2 
= 47T—4?T . 

m!2+2y2 

Here the first term yields a contribution to B and the 
second to dS. Suppose there is an extra factor k-pc

f in 
the numerator. If c = 3 , this factor will yield an extra 
factor 72 after the angular integration, and it may there
fore be neglected. Suppose c^S; then 

k'pc'=k(Ec—pc cos#), 

~_ y2pc'(pz+8pd 
=kEc= , 

^ i 2 +272 

where a term drops out in the angular integration. The 
final integration yields a result of order unity. Thus, an 
extra power of k-pj, gives a result which may be 
ignored. The same is true of higher powers as well, so in 
this case the trace variation may be neglected. 

Case 2. a—b9^3 

If the extra factor is k-pz=y2 or k-pa the resulting 
contribution is clearly negligible. If it is k-pc (c9*3, b), 
we write 

k'po~kEc—k-pc, 

^ E c - ( k ' P a P o - P a / i 5 a
2 ) - ( k X P a ) - ( p C X P a ) / £ a 2 , 

Ec pc' (pz+dpt) 
^—k'pa = k-pa. 

Ea p*-(p*+8pt) 
The second term in the second line was transformed by 
the argument given in the introductory paragraph and 



R A D I A T I V E C O R R E C T I O N S TO H I G H - E N E R G Y P R O C E S S E S 1229 

the third drops out upon angular integration. The final Case 4. This time the last term involving (kXp&) 
• (pcXpb)/Eb

2 ink-pc and a similar term in k-pd cannot 
be eliminated by angular symmetry since there are two 
such factors in the numerator. However, they may be 
eliminated by another argument: 

contribution is negligible 

Case 3. a ^ J , 6 F ^ J , a^b 

I t is necessary to consider only the special cases c = 3 , 
a, or b, since all other cases may be reduced to these by 
momentum conservation. If c—3y the extra factor of 72 
yields an unimportant contribution. If c=a, the angular 
integral yields 

4 T T — — lnf J. 

(kXp&MpcXp*,) 

Eb 

^— {[p>X(pcXp>)]2}1/2, 
Eb* 

= — [ P O W - C P C - P * . ) 2 ] 1 ' 2 , 
Eb 

But (k/Ei) = y2/fb-(ps+8pi), and the resulting con
tribution may be neglected. 

Case 4. a=3, b^3, one factor k-pcin numerator 

This is now the only case which can yield an im- neglected, 
portant contribution. A factor k-p$ in the numerator 

and 

2-Eo-l1/2 

~r 2M°~\ 

may be neglected. Thus consider 

,k2k-pcpz'-ph 

I dtt-

Because of the factor &^ (72/2)1/2, this term may be 

k-pc^(Ec/Eb)k-pb, 

k2p3'pbk'pck'pd 

As in Case 2 

k-
Ec 

pc^—k 
Eb 

Ec 

Eb 

pb 

pb 

k'pz'k'pb 

(kXPbMPcXPfc) 

dti-
k-pz'k-pb 

^4TT-

= 4TT-

lzp^pbEcEd 

72 Eb 

Y22 pZ'pbpc'pZpd'pZ 

(wi2+272)2 pb'pz 

This is just what is obtained by the substitution 

k'pc/k-pb—> pz'pc/pz'pb. 

Case 5. a=3, b^ 3, factor k-pjz-pd in numerator 

The resulting term logarithmic in T2 is precisely what 
would be obtained by the substitution 

k • pck • pd 

k-pb 
If c or d=3, the result is immediately negligible. For 

c, d^3, the factors k-pc and k-pd are rewritten as in in the original expression. 

1 prpcprpd 

2 prpd 


