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The Bethe-Salpeter equation for higher wave bound states of two scalar particles is investigated in the 
ladder approximation. It is shown that all solutions have the Deser-Gilbert-Sudarshan-Ida integral represen­
tation and that they behave like o[(pi)~l~2~] as p2 —•> °° apart from a solid harmonic. The angular momentum 
/ is continued to complex values, and it is proved that the wave functions are essentially holomorphic with 
respect to / in Re l> — J. The equation for the Regge trajectories is also discussed. 

I. INTRODUCTION 

TH E relativistic bound state problem is usually 
dealt with by the Bethe-Salpeter equation. For 

solving it there are the following three approaches, 
which are mutually complementary. 

The first approach, which was first introduced by 
Wick,1 is to transform the relative momentum into an 
Euclidean vector. By this technique, one can avoid the 
singularity of a propagator and make use of many 
mathematical theorems. 

The second one is to use the so-called Deser-Gilbert-
Sudarshan-Ida integral representation.2 A special case 
of this representation was used by Wick1 and Cutkosky.3 

A general consideration for S-wave solutions was made 
by Wanders.4 Recently, Ida and Maki5 have proved 
that all 5-wave solutions have this representation. On 
the other hand, Sato6 has shown that the Fredholm 
theory is applicable for the weight functions in the cases 
of S and P waves. All these considerations are naturally 
restricted to the ladder approximation. This approach is 
useful for investigating the analyticity of the wave 
functions. 

The third method is to utilize the fact that the 
invariant Bethe-Salpeter amplitude has a double 
dispersion representation when the total momentum is 
continued to a space-like region. Recently, the present 
author7 has shown that even the exact Bethe-Salpeter 
equation can be solved in an elegant way by this 
method. 

The purpose of the present paper is to investigate 
higher wave solutions. Unfortunately, the double 
dispersion approach does not seem to be suitable to this 
purpose. Hence, we use the second approach and confine 
ourselves to considering the ladder approximation. In 
Sec. I I the Bethe-Salpeter equation is decomposed into 

1 G. C. Wick, Phys. Rev. 96,1124 (1954). It should be remarked 
that for a multiple Feynman integral Wick's simultaneous rotation 
of integration paths of energy variables is not a mathematically 
justifiable notion. If one applies Cauchy's theorem correctly, one 
will generally meet complex singularities. 

2 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115, 
731 (1959). M. Ida, Progr. Theoret. Phys. (Kyoto) 23,1151 (1960). 

3 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 
4 G. Wanders, Helv. Phys. Acta 30, 417 (1957). 
5 M. Ida and K. Maki, Progr. Theoret. Phys. (Kyoto) 26, 470 

(1961). 
6 1 . Sato, J. Math. Phys. 4, 24 (1963). 
7 N. Nakanishi (unpublished). See also N. Nakanishi, Progr. 

Theoret. Phys. (Kyoto) 24, 1275 (1960), and reference 14. 

partial-wave equations. In Sec. I l l we introduce the 
DGSI integral representation and derive an integral 
equation for the weight function. In Sec. IV it is proved 
that any partial-wave solution can always be represented 
as the form introduced in Sec. I I I . In the final section 
the angular momentum I is considered as a complex 
variable. The Fredholm solutions of the weight function 
will be obtained by using Sato's method,6 and the wave 
function is shown to be holomorphic for Re Z>—J 
apart from some multiplicative factors. A connection 
with the Regge trajectory8 is also discussed. In the 
Appendix the asymptotic behavior of the weight func­
tion is investigated. 

II. PARTIAL-WAVE DECOMPOSITION 

We consider the Bethe-Salpeter equation in ladder 
approximation for two scalar particles having masses 
m\ and m% which exchange a scalar meson \x: 

[>i2- {pWJwi- (P-WMP) 

X r f(q) 

- * / * tf-ip-qy-ie 
(2.1) 

where p is the relative momentum, 2k the total mo­
mentum, X the squared coupling constant, and f(p) the 
wave function. For simplicity, we always take the rest 
system k~ (kofififi). We assume the stability condition 

(tni+tn2)
2>u=4k2>0. (2.2) 

According to the addition theorem of the Legendre 
polynomial Ph 

47T l 
Pj(cosco) = £ F i m ( 0 , 0 ) F , m * ( 0 > ' ) (2.3) 

2 / + 1 m=-l 

with 
cosw=cos0 cos0'+sin# sin0' cos (0—<f>'), (2.4) 

and a formula 

( 0 - c o s c o ) - 1 ^ £ (2/+l)<2z(£)Pz(cosco) (2.5) 
1=0 

with 

ftGs) 
i r1 , Pitt) 

= - # • -, 
2J-i /3-f 

(2.6) 

8 T . Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960). 

1230 



P A R T I A L - W A V E B E T H E - S A L P E T E R E Q U A T I O N 1231 

the propagator in (2.1) can be decomposed into where %im stands for a solid harmonic, i.e., 

[ M 2 - ( ^ - g ) 2 - i 6 ] - 1 = 2 7 r | p | - 1 | q | - 1 E Z = o 0 0 & ( « %m(v)^\v\lYlm(e,ct>), (3.2) 
i and 

X E Ylm(d,<l>)Yln*(d',<l>'), (2.7) s^(P+k)\ t^(p-k)\ (3.3) 
-i 

where The integer n must be chosen so as to make the Feynman 
^M2+P2+Q2— (po~<?o)2—ie integral convergent, namely, 

2 | p | | q | ' n+l>l/2. (3.4) 

and ($,<!>) and (0',0') are the polar angles of p and q, In order that (3.1) is meaningful, we assume 

respectively. If we put l i m _ ^ W ^ / ^ I ^ Q , (3.5) 

/ ( # ) = I P | - V K I P I , # O ) F J W ( ^ ) , (2.9) ^M(s,-oo) = 0. (3.6) 

(2.1) becomes T h e n a p a r t i a l integration of (3.1) leads to 

[ m i 2 + p 2 - ( ^ o + ^ o ) 2 ] [ w 2 2 + p 2 - ( ^ - ^ o ) 2 > z ( I p | ^ o ) cPl^-^(z,a)=(n+l)-1(d/da)iPi^(z,a). (3-7) 

— _ f rf I I f /7 r> f/̂  / (I I "* 9̂ 1 c\\ Now, it is easily shown that for an arbitrary function 
F one has a formula3 

A r r 
- d\q\ dqoQi(P)H\*\,qo) (2-10) 
-i J o J-oo 

with (2.8). A similar equation was given by Lee and / dqF(q2)%m(q+v)=%m(p) dqF(q2), (3.8) 
Sawyer.9 J J 

The trace of the kernel of (2.10) is . , , ,, , , ,, . ,. , , « , ,. 
v J provided that both integrals are convergent. Substi-

2 r00 r°° tuting (3.1) in (2.1) and using (3.8) after Feynman 
ens—- / d\p\ / dpo parametrization, we obtain 

iri J o J _oo 

n-^-2 rl r00 

x QK1+MV2P2) / ( p ) = <y!m(p)x/ <W ^« '^W( 2V) 

p2 X a " [ 0 ( a ) - 0 ( a - J ? ( v ' ) g ( « ' , 2 ' ^ ) ) ] 

X , (2.11) x C a - K l + z X s - W ! 2 ) 
[p 2 +p(2)] 3 / 2 [M 2 +2p 2 ( i - r ) ] 

where - * ( ! - * ) ( < - « * ) - * « ] - * - * , (3.9) 
where 

p( 2) = l ( l + Z)W l2+J(l-2;)W 22 
- i ( l - # ) « ^ p o > 0 . (2.12) g ^ / ^ - ^ E a ' + a - ^ P ^ O l + a - ^ - V , (3.10) 

^ ( ^ ^ ( ^ ^ / ( l T ^ ) for 2 ^ * ' . (3.11) 
III. INTEGRAL REPRESENTATION 

Comparing (3.9) with (3.1), according to the uniqueness 
As a simple extension of the integral representation t h e o r e m o f t h e D G S I i n t e g r a l representation," we have 

in the S-wave case,4,5 we assume that higher wave 
solutions are represented as M / > f . J " , , 

* <PiM(zfiL) = \j dz' da' 

/

l /.00 J —l J -co 

dz\ da x^i I n ](«^;«>0^ [ n l(«V) (3.12) 
-1 J-» with 

x PI™ (*,<*) Kl[»] ( ^ . 3^/) 
[ a - K l + ^ ^ - ^ - K l - ^ ) ^ - ^ 2 ) - ^ ] ^ 1 /.1 

(3.1) = " / ^^ i~ n~ 1[g(o: ' ,2 ,^)]-T l- 1 9 B . W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 
Their proof of the convergence of the series is mathematically x (d/da){an[d(a) — d(a—R{z,Zf)g(a',z',%))2}. (3.13) 
insufficient because they used Wick's simultaneous rotation of 
integration paths (see footnote 1) and made term-by-term B y s o l v i n g (3.12) one gets solut ions of (2.1) t h r o u g h 
continuation (rotation) before establishing the convergence of the /{ i\ » \ / o \ / o 
series. One should note that the scattering Green function is (3.1). 
essentially different from the Bethe-Salpeter amplitude in the 
analyticity on the pQ plane, 10 N. Nakanishi, Phys. Rev. 127,1380 (1962). 
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The following properties can be derived from (3.12) Finally, we notice the following important result: 

a n d ( 3 , 1 3 ) ' l im«^o^W(«^) = 0 for O r g ^ Z + 1 . (3.23) 
(1) <PlW(z,a) = 0 for a < 0 . (3.14) . . . . . „ _ . . , . , 1 

I ts proof is given in Appendix. In particular, for n=l+l 
Hence, we hereafter consider a ^ 0 only. we have 

/
oo 

da*>,W(*,a) = 0, (3.24) 
'1'Jtiis property is proved m Appendix by using tne 
assumption (3.5). which implies that the integral in (3.1) vanishes faster 
(3) (d/dajKrW(zcrz> a>\ t h a n (P2)~l~2 as ^ 2 - > oo. This assures the convergence 

L, /X J r' ,w / /x , ^ . „> ^ of Sato's normalization integral.6 

= -(d/da')Kil"-U(zfit\z!/)L') for » ^ 1 . (3.16) 6 

I t should be remarked that (3.16) is no longer valid I V ' EQUALITY OF THE TRACES <r* AND <r< 
for n=0. In this section, we prove, by Ida and Maki's method,5 

From (3.12), (3.7), and (3.16) we obtain that any solution of (2.10) has the representation (3.1). 
Let \u be eigenvalues of (2.10). Then 

\ r1 r™ 
<Piln-1](z,<*)= — / dzfl dot n^ZiXiC1. (4.1) 

n+U-i Jo-
The totality of the eigenvalues of (3.12) is naturally a 

d 

• f dz'i da! 
.7—1 J o— 

vl~ d ir r„ 11/ / A "I r-i/ / A /*><>7\ subset of {XK}. When XK>0, therefore, all solutions of 
IMKl {Z>a; ^ O j w w ( ^ 0 . (3.17) ( 2 < 1 0 ) a r e p r e s e n t e d as in (3.1) if and only if 

By a partial integration (3.17) becomes the same 
equation as (3.12) except for the superscripts, which The positive definiteness of XK is proved only in the case 
are now replaced by n—1. By repetition of the above f»i=W2.n But we assume that the same is true also for 
procedure (3.12) reduces to mi^mz. In the following we demonstrate (4.2). 

Comparing (2.11) with (3.21), we see that (4.2) 
rnW N . _ , , _ , immediately follows if 

<PZ[01(Z,G:)=X / dz' J da' 

m(r)=Wv), ^ M V P W (4.3) 
l(zp)=\[ dz'( da' 

J - i J o— 

X#z [ o 1 fa; z',a')cpi[0] (*',«'), (3.18) is proved, where 
where 

1 -i xi-i -i 
# , I M ( * W * > ' ) = - / dx Vl(p)^ / # P « ( f ) 

2 Jo g(a',z?,x) J-i 

X p ( a ) - 5 ( a - i ? ( Z A ( « » ) ) ] . (3.19) x[ d\j>\ P - , (4.4) 
Jo (p2+i)3/2[^+2p2(i-r)] 

If (pi[0] is found, <pi[n] is given by 1fM x 

r1 :r(l—x) 
,« ,« rn(v)=\d%- . (4.5) 

^ M ( * ^ ) = ( » + l ) ! / & • • • / d a ^ t ° K « ^ ) (3.20) Jo (l-xjv+x2 

Both ?7i(̂ ) and rji(v) satisfy dispersion relations 
(where there are n integrals on the right-hand side), .. w t ( '\ 
which is always a solution of (3.12). / \ I ^ ____ r^^\ 

The trace of Ki[n](z,a; z',a')> which is naturally J0 v'+v 
independent of n, is _ , N 

frjs- / <fe/ Jx , (3.21) , 7o / + ? 
2 7__i 7o ( l - 4 2 + f p ( 2 ) where 

or r1 

r1 r1 r1 &{V)^ * p , ( f ) 
<rz= / dxi I dx2 I dxz 7- i i= I dxi I dx2 I 

Jo Jo Jo 0 .oo p 2 

xz
l5(l-x1-x2-x3) X d\p\ 5 ( / - 2 p 2 ( l - f ) ) , (4.8) 

X Jo (p2+l)3 / 2 

Xitni2+x2m22+xzii2—x1xznii2—%2x%m2
2—XiX2u • 

(1 99^ U ^ e e r e ^ e r e n c e 1 anc* 5. For demonstration of positiveness of the 
\p'^^J kernel, use the technique given in a footnote of N. Nakanishi, 

in F e y n m a n pa rame t r i c form. Brookhaven National Laboratory Report (unpublished). 
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. / N fl ,. . . ^ For continuation we replace xl by Pf. xl if necessary.12 

Si(v ) = / dx x\l-x)b{{\-x)v'-x2). (4.9) 0 u r E (3>18) i s n o w ^written as 
J o 

Hence (4.3) is equivalent to *,N(*/0 = <tf («)-X f <U 

W) = W). (4.10) -/-i 

From (4.8) we have 

v 
,'1/2 -1 PKf) 

&("') = — / # • -. (4.11) with 
2 ;_x [ / + 2 ( i - f ) ] » « 

X /" <&' Hz(z,a; 2 V ) ^ [ 0 ] («V), (5-2) 

Hi(z,a;z',a') 
Using the generating function formula of the Legendre 
polynomial. R(z,z') f1 

=- / dxxl-^{a-R(z,z')g{a',z',x)). (5.3) 

(l-2/*f+#!)-1/2=£!-o00/* iP,(f) for |*| < 1 , (4.12) 2a J0 

we obtain Carrying out the integration, we have 

" , , H „ , We(7-a'-M2-2M(«'+p)1/2) 
'-» 2a[(7-a'-M2)2-4M2(«'+p)]1/2 

3 r1 Here 
= - , ' « — / ^ C ( l - 2 f e r + A 2 ) ( / + 2 - 2 f ) ] - ^ y=a/R(z,z'), 

( v ' + 4 ) > « ( l - A ) - ^ ( l + A ) P P \ . ' . 
= (413) w=tfi !(l-xi)+X2 !(l-#2), (5-5) 

L J and #1 and %z are two roots of an equation 
On the other hand, (4.9) leads to / I N O I / 9 / O \ I / I n /c *\ 

' v ' (Y+P)#H-(M 7—«— 2p)x+a + p = 0 (5.6) 
C^+2-/1 /2(/+4)1 /2] i[( I / '+4)1 '2-v'1 '2] , . . . 

f, („') = - — — (414) and satisfy 
2*+V+4)1 '2 0 < * i ^ « , < l . (5.7) 

Hence 
Hence for ReJ^O we have 

z=o and for ReZ<0 

= ^ Z ^ ! . (4.15) |« . |<2|(7+p)/(« ,+p) | - I t a I (5-9) 
2 ( / + 4 ) i / H l - i * [ / + 2 - ^ ( / + 4 ) ^ ] } o n a c c o u n t Qf |^|>|^2|. I n a q u i t e analogous way 

We can easily check that (4.15) is identical with (4.13) to Sato's calculation we can prove that the second 
by rationalizing the denominator of (4.15). Thus we iterated kernel Hi2(z,a;z',a') can be transformed into a 
have established the equality (4.2). Hence, in general, bounded kernel belonging to a finite region if13 

both traces of the nth iterated kernels coincide with T? /v > _i (% \0) 
each other because they are equal to £» \u~n. 4' 

The resolvent is, therefore, given by a quotient 
V. FREDHOLM SOLUTIONS , , 

\2D(z,a; z',a ; /; \2)/DQ(1 ; X2), (5.11) 
In this section we shall present Fredholm solutions , _ , . . , , ^ . , , , 

of (3.18) according to Sato's method.* The angular a n d t h e analytiaty of D and D0 is determined by 
momentum I may now be complex. Such analytic i t e r a t e d k e r n e l s ' W h e n a ^ ° > t h e s o l u t l o n s a r e w r i t t e n 

continuation is unique if one requires that <pi[0](z,a) a s 
vanishes for J-> oo in all directions in the right half- ^ [ 0 ] ( ^ = fl| f ^ /* & / p ( 2 _ a ' )5 («_«') 
plane. We assume /x^O. J _ i J o -

We put 
> x . i M +X2Z)(Z,a;SV^;X2)/A(/;X2)] 

ai=- dz'\ da' dx <p;l°J(z',a')- (5.1) V rl 1 
2y- i Jo Jo g(a',3';^) X «(oO-X/ dz"Hi(z',a';z",0) . (5.12) 

12 L. Schwartz, ThSorie des distributions (Hermann and Cie, 
Paris, 1950), Chap. II . Pf. xl equals xl Re/> — 1, and for 13 The number —J comes out essentially from the factor a~5ti in 
Re/^j — 1 it means to take an appropriate finite part when inte- the inequality (A2) of Sato's paper (in his notation t is used 
grated over x. instead of a). 
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If ai=0, we must have Do(l; X2) = 0 in order that (5.2) 
has solutions. Hence, if ai is chosen so as to be propor­
tional to Do(l;\2), (5.12) can be used in any case. Thus, 

is bounded everywhere except for a = 0 and <Pi [o] 

holomorphic with respect to I in the domain (5.10). 
From (3.1) we see that the Bethe-Salpeter wave 
function f(p) is holomorphic in 

(s,t)eDa(2), R e / > - i , (5.13) 

apart from the solid harmonic and a normalization 
constant, where Da(2) is a notation defined in reference 
10. 

Now, the eigenvalues of X are determined by substi­
tuting (5.12) in (5.1). If X is fixed and I is considered 
as a variable, then this equation gives the so-called 
Regge trajectories.8 When X is small, as the lowest order 
approximation to the Regge trajectory of the ground 
state we have 

1 = X*,(«), (5.14) 

where cri(u) is given by (3.22). This equation is es­
sentially equivalent to the approximate trajectory 
equation of Bertocchi, Fubini, and Tonin.14 For real /, 
(5.14) implies 

dl/du>0, (5.15) 

where, of course, u< (W1+W2)2 is assumed. Finally, we 
remark that (5.14) is also identical with the approximate 
equation given by Lee and Sawyer9 because of the 
identity (4.2). 
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APPENDIX 

Here we investigate the asymptotic behavior of 
(pi[n](zya). From the result given in Sec. V, (pi[n](z,a) 
will not contain such a factor as QnaQ-1 asymptotically. 
Accordingly, we may understand that 

lim^oo orm<piln] (z,a) = 0 (Al) 

is equivalent to the statement that there exist positive 
numbers ao, M, and e ( < | ) such that 

\<pi^(zfii)\<Mamr-€ for a>a0. (A2) 

First, we will/show 

l i m a ^ ^ 0 K * , o O = 0 (A3) 

under the assumption [see (3.5)] 

\cpi^{z,a)\<Ma1-^ for a>a0. (A4) 

14 L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25, 
626 (1962). See Eq. (4.13) of their paper [corresponding notations 
are as follows: u —> t, mi —• 11, m2 —* ji, M2 —* So,1 —> a (/)]. 

F o r a > 0 , by (5.2) together with (5.4) we have 

rl dzf r l*>iI0](«V)l 
I <Pim(*,<*) \^\oT* / da' 

J - i i P - J o (a'+M2)1-' 

diy-a'-tf-lnia'+p)1'2) 

x-[ (7-a , -M 2 ) 2 ~4/x 2 (« , +p)] 1 / 2 
(A5) 

where R^R(z,z')- Because of (A4) the integrals are 
bounded, and hence (pi[0](zya) vanishes as a—> <*>.n 

From (A3) and (3.20) we obtain (3.15), i.e.,16 

\<Pi[n](z,a)\<Man-2e for a>a0. (A6) 

Now, we will prove (3.23). Starting from (A6), we 
shall inductively show that 

\crh<pi™ (z,a) I <Ma~2* for a>a0, O^k^n^l+1. (A7) 

Namely, we shall show that (A7) is valid for k = m— 1 
if it holds for k = m*zl. 

F o r a > 0 , (3.12) together with (3.13) leads to 

la-m+i^ni (s?a) I ^I^z^+h&a), (A8) 
where 

^ X r1 r00 

1^)=— dz'l <fa ' |** I n l(*>')l 
2 J_i Jo_ 

X / dx xl-n-1g-n-1an~m6{g—a), 
Jo 

X r1 r00 

I*(zflt)=- / dz'\ da' |*>,M(*V)I 

X / dx xl~n"lg~n-lan~m+1b{a-Rg), (A9) 

with g=g(a',z',x). Since 

g~n-1an-me(g-a)^g-m-1+ea~eS(g-a) 

S xm+1~ea /~m-1+6a-€, (A10) 
we have 

n\ r1 r00 

Ii(z,a)^—or' / dz' / da! \ <pi{n] (*>') \a'-m~l+* 

X / dxxl+m~n~\ (Al l ) 
Jo 

Because of 
l+fn^n, (A12) 

and the assumption (A7) with k = m, the integrals in 
(All) are convergent and, hence, Ii(z,a) —» 0 as a —» 00. 

15 From (A5) we have only 

\<pi^(z,a)\^Ma-'/(l-Z2)1-* for a>a0, 

but the singularities at z = ± l are spurious. Indeed, if we substi­
tute the above inequality in (5.2), we get the desired result. But 
the above inequality is already sufficient for our applications. 

16 Of course, a0, M, and e may be different from those in (A4). 
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Likewise, since 

g-n-lan-m+l$ (a-Rg) 

^ai-*x™+i-*a
f-™-i+*§(a-Rg), (A13) 

we obtain 

X r1 r00 

I2{zia)S-cr* I dzf / da' \ <ptW(»')|af-m~1+< 

XJ(z,a;z',a') (A14) 

I. INTRODUCTION 

INTEREST in radar cross sections has encouraged 
investigations on the backscatter of waves from 

inhomogeneous media. In general, this is a difficult 
problem to analyze. Exact solutions are rare, and the 
Born approximation1 is worthless when the index of 
refraction differs significantly from unity. The Schiff 
approximation2 is expected to have a wider range of 
validity, but its usefulness hinges on the evaluation of 
a difficult volume integral. In this paper, we consider 
the simplest spherically symmetric systems to which a 
"semiclassical" approximation is applicable. Specifi­
cally, the index of refraction of such a system is a 
continuous function of r, and it has a unique zero at ro. 

The scalar-wave problem is studied by investigating 
the equivalent problem of electron backscatter from 
repulsive potentials. The correspondence principle is 
derived for 180° scattering; that is, a WKB scattering 
amplitude is obtained which gives the correct classical 
cross section. The classical result is shown to have an 
upper limit of \rtf. In addition, the inverse square-law 
potential is examined in some detail, for the phase 
shifts are known exactly, and corrections to the classical 
result can be derived. 

* The research reported in this paper was sponsored by the Air 
Force Ballistic Systems Division, Air Force Systems Command, 
under contract No. AF04(694)-1 with Space Technology 
Laboratories, Inc. 

1 D . S. Saxon, Lectures on the Scattering of Light, Scientific 
Report No. 9, Dept. of Meteorology, UCLA, 1955. 

2 L . I. Schiff, Phys. Rev. 104, 1481 (1956). 

with 

/ ( z , a ; z V ) = / dxxl+m~n-€ab{a—Rg) 
Jo 

2 7 % - a , - M 2 - 2 j u ( a , + p ) 1 / 2 > 
^ — (A15) 

[ ( T - ^ - M ^ - V C a ' + p ) ] 1 7 2 

on account of (A 12). Therefore, the a' integral is finite 
as a—» oo, and hence I<L{Z,OL)—»0. Thus we have 
established (A7). 

It is known3,4 that the problem of electromagnetic 
scattering from a spherically symmetric dielectric is 
reducible to the solution of two scalar problems; i.e., 
two radial differential equations must be solved for two 
sets of phase shifts. For our purpose, the amplitude for 
vector backscatter is proportional to the difference of 
the corresponding scalar amplitudes. While difficulties 
arise because of the zero in the index of refraction, 
these scalar amplitudes can be replaced by WKB 
approximations analogous to the one introduced earlier. 
This approximation is valid in the extreme geometrical 
optics limit. Here expressions simplify, with the 
differential cross section for electromagnetic backscatter 
reducing to three-quarters of the result predicted on 
the basis of the scalar wave equation. 

II. THE SCALAR PROBLEM 

The time-independent scalar wave equation is 

[ V 2 + ^ 2 ( r ) > ( r ) = 0, (2.1) 

where n(r) is the (spherically symmetric) index of 
refraction of the medium, and 2r/k is the wavelength 
of the incident wave. The asymptotic scattering solu­
tion of Eq. (2.1) is 

r (2.2) 
| k | = * , 

3 P. J. Wyatt, Phys. Rev. 127, 1837 (1962). 
4 D. Arnush, Space Technology Laboratory Report No. 

6110-7466-RU-001 (unpublished). 
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A WKB approximation is used to calculate cross sections for the 180° scattering of scalar and vector 
waves by a class of spherically symmetric, repulsive potentials. These potentials are such that the corre­
sponding index of refraction has a unique zero. The scalar problem is discussed in the framework of quantum 
mechanics, and the result is just the classical cross section. Electromagnetic backscatter from a dielectric is 
found to be three-quarters of the scalar approximation in the extreme geometrical-optics limit. 


