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A gravitational action operator is constructed that is invariant under general coordinate transformations 
and local Lorentz (gauge) transformations. To interpret the formalism the arbitrariness in description must 
be restricted by introducing gauge conditions and coordinate conditions. The time gauge is defined by lock­
ing the time axes of the local coordinate systems to the general coordinate time axis. The resulting form 
of the action operator, including the contribution of a spinless matter field, enables canonical pairs of vari­
ables to be identified. There are four field variables that lack canonical partners, in virtue of differential con­
straint equations, which can be interpreted as space-time coordinate displacements. In a physically distin­
guished class of coordinate system the gravitational field variables are not explicit functions of the coor­
dinate displacement parameters. There remains the freedom of Lorentz transformation. The generators of 
spatial translations and rotations have the correct commutation properties. The question of Lorentz in-
variance is left undecided since the energy density operator is only given implicitly. 

INTRODUCTION 

ELECTRODYNAMICS is characterized by the 
property of gauge invariance—the freedom to alter 

the phase of any charge-bearing field arbitrarily at 
each space-time point while subjecting the electro­
magnetic potentials to a corresponding inhomogeneous 
transformation. I t is not surprising that Weyl, the 
originator of the electromagnetic gauge invariance 
principle, also recognized1 that the gravitational field 
can be characterized by a kind of gauge transformation. 
This is the possibility of altering freely at each point 
the orientation of a local Lorentz coordinate frame 
while suitably transforming certain gravitational po­
tentials. Such a transformation is quite distinct from 
the more familiar global coordinate transformation. In 
a subsequent development of this conception, Yang 
and Mills2 introduced an arbitrarily oriented three-
dimensional isotopic space at each space-time point 
thereby relating a hypothetical vector field to isotopic 
spin. (The occasional remark that the gravitational 
field can be viewed as a Yang-Mills field is thus rather 
anachronistic.) 

Due to the great interest in non-Abelian vector 
gauge fields as a possible foundation for comprehending 
the strong nuclear interactions, there have been some 
developments in the formulation of a relativistic quan­
tum field theory of interacting vector fields. I t is our 
intention here to begin the task of applying this ex­
perience to the more difficult problem of "quantizing 
the gravitational field". Since this work is based upon 
the quantum action principle, there will be areas of 
contact with the similarly based but differently de­
veloped semiclassical considerations of Arnowitt, Deser, 
and Misner.3 

* Supported in part by the Air Force Office of Scientific Re­
search under Contract No. AF-49(638)589. 
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ACTION PRINCIPLE 

The field variables that we shall use4 to describe the 
gravitational field are 4 X 4 e / ( x ) and the 4X6wMOb(^) 
= —<*V&a(#). These are vector fields with regard to 
general coordinate transformations, 

ea*(x)=(d&/dtf)ea
v(x), 

a>MO&(:c) = (dxv/d&)u)Vab(%)-

The response to a local Lorentz transformation is 

eaf
i(x)-=lah(x)eb

fl(x), 

Utxabix) = la' (x)hV {%)V>fi*'b> (X) + Ibb' (%)djab' (%), 

where 
laa,(x)ga'b'hh,(x) = gaby 

and gab is the constant metric tensor of a Minkowski 
space. 

The inhomogeneous term in the gauge transformation 
of a>Ma& must be removed to form a covariant that can be 
used in the construction of an invariant action operator. 
This is accomplished with the aid of the local spin 
transformation 

L(x)~lld^-^i^ab(x)Sab^L(x) = d^~iio)^b(x)Sab
} 

where 
L{x)~lSahL (x) = l\. (x)lb

b> (x)Sa'b\ 

We consider the coordinate-spin commutator (there is 
no reference here to operator properties of coMO&) 

[dM~iMtfMo65
,a6, dv-%ia)vcdScd2= -hiR»vab(x)Sah, 

where 

Rixvab(x) = dyCOVab— d lX0 / M ,&~a> / i Oc^C&+C0yacCd/iC6 

= -K-vpab^2 -K-nvba,) 

and observe that 

RfxVab(x) = I*' (x)lbV (x)RpVa' b' (%)-

4 The viewpoint and notation follow a previous paper of the 
author [J. Schwinger, Phys. Rev. 130, 800 (1963)]. 
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Thus, Rfxvab is an antisymmetrical tensor with regard to 
local Lorentz transformations. I t is also an antisym­
metrical tensor for general coordinate transformations, 
in virtue of the curl derivative structure. The Jacobi 
identity obeyed by a double commutator implies a 
differential identity for the functions R^abix). This is 
expressed most compactly with the aid of the dual 
tensor density 

*R>»ab(x) = iefivXKRxKab(x), 

*RQlab=R2Zab ^ 2 3 o & , ' • ' 

as 
dM *R*iVab-Ulxa

C *R»V
ch-0)llh° *R*»ae=0. 

The term tensor density refers to the general coordinate 
transformation property 

*lfrab(x)= (detdx/dx)(d&/da^)(dx*/dx^ *RKb(x). 

There is also a double dual tensor density 

* * i ^ a 6 = ie^x^x«cde«6cd, 

with the local Lorentz transformation behavior 

**Rp*h(x) = [detJ(*)]JV (x)lhb>(x) **i^"a'&'(x). 

This object obeys the differential identity 

dfi WRiwh—wfc **&""*—u^c **Rv™=0. 

To construct an invariant action operator 

W-- dx)£, 

we must devise a local function of the gravitational 
field variables that is a scalar density for general 
coordinate transformations, and a scalar with respect 
to proper local Lorentz transformations. The two 
simplest possibilities are 

and 
[_dtteli

a(x)~\e^{x)evb{x)RiiVah{x), 

\**R!™h(x)Rvab(x), 

which share the property of reversing sign under an 
improper local Lorentz transformation. The second 
choice is constructed entirely from co^b- I t is not an 
effective contribution to an action operator, however, 
for the differential identity obeyed by **Ri*v«b implies 
that 

8[J**^i«»%Fflft]=dM[**iJ^»&>roft], 

which is devoid of consequences for field equations. 
Let us adopt provisionally the gravitational action 

operator 

where 

squared, and proceed to use it in a heuristic manner, 
without regard to precise operator properties. Then, 
apart from divergence terms, 

SW= (—1/2/c) / (dx)[detedea»(2Rf-efR)+da>,abK>Mb']J 

in which 

K'Mb= dj[dete(e^evh—efibeva)'] 

- c o / c [ d e t e ( ^ V & - . ^ V c ) ] 
- c o / c [ d e t e ( ^ a e " c - ^ V a ) ] , 

and 
R^R^W^R^ 

We have also written 

de t0=dete / . 

The functions defined by the variations must obey 
differential identities as a consequence of the invariance 
of W under local Lorentz transformations and coordi­
nate transformations. Thus, the infinitesimal local 
Lorentz transformation 

8ea
fl=$o)abebi*, 

Suyab— do)a
ccopcb-{- &o& caw+ dv8oOab, 

8Uab(%)=—8Uba(x), 

implies the identity 

dvK
mb-o)v

a
cK

vcb-uv
b

cK
mc= — dete e^^iR^—R^), 

where 

The infinitesimal coordinate transformation 

8e/= - bordveJi+ea
vdv&&, 

8o)vab= ~~ dx^dxaiyab—wubdydx*, 

gives the identity 

dv[dete(2R/- V # ) ] + d e t e ( 2 i ? / - e^d^ej 

= dv{Kvab^ab)-Kvabd^vah. 

These identities become more familiar if we set Kmb 

equal to zero, for then 

while 
J^-/JLV -K-VHJ 

dw=J (dX) (-sy»hsr(- iA) (R^-h^R), 

in which 
g^=e/gabeh% 

and 

W= / (dx)(dete»a)(-l/2K)R, 

while K is a constant with the dimensions of length 

dl(-g)ll2(R/-WR)l 
+ (-^)1/2(^~kx^)i^"-o. 

Thus, RnV--%gnvR is Einstein's tensor. 
The field equations 
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can be presented in the form 

where 

and 
^ab=ea

vdve^-eh
vdveji, 

\a= (dete)-ldv[(dete)ea
v1+o)bba. 

An equivalent version is given by 

&cab~03abc-)rO)bac-\-gbcXa— gac^b—0, 

and a special consequence of the latter is 

-2b
ba-Glbba+3\a=0. 

But 
^bba=dvea

v-ea
ve^bdveb,i 

= (dete)~1d,[(dete)e/], 
and, therefore, 

X«=0. 

That property is still implied by the resulting equation 

l6abc~~Wbac — ®cab, 

which has the solution 

0)abc— 2lSll>ca-\-&cab~®abcJ' 

This represents a dynamical deduction, based upon 
K"ah=0, of the symmetry restriction 

A abc J- bac 

for the quantities 

Tabc=o)abc— (ejdpebtync. 

Invariance with respect to arbitrary local Lorentz 
transformations and coordinate transformations implies 
that the field equations exhibit a corresponding in­
completeness in the description of the time evolution of 
the system. In order to obtain a clear physical interpre­
tation of the formalism one must limit this arbitrariness 
by restricting the choice of local Lorentz frame and 
general coordinate system. We shall designate such 
restrictions as gauge conditions and coordinate condi­
tions, respectively. 

TIME GAUGE 

The first objective will be to give the time coordinate 
a physical meaning by locking the time axes of the local 
coordinate systems to the time axis of the general coordi­
nate system. The time coordinate x° can be distin­
guished by the requirement that ea° (x) shall be a time­
like vector in the local coordinate frames, 

-ea°(x)gabeb
0(x)>0. 

Then it is possible to choose each local coordinate 
system so that the spatial components of ea° vanish. 
This is the time gauge, 

e(*)°(*) = 0. 

An equivalent characterization in terms of the inverse 
system e^ is 

e*(0)(*) = 0. 
Note also that 

*o(0)=(«(o>°)-S 
and 

while 
eo(k)=-eQ(o)ei(k)eio)it 

Furthermore, 

detV=0 O
( o ) deteiw = [e(0)° de t^ )* ] " 1 . 

The gravitational action operator appears in the 
time gauge as 

W= (1/K)j(dx) detwc[e*»>Uo*(o)ci) 

- f e o ( 0 ) ^ ^ ^ I W i ? W ( m ) ( n ) + e o ( 0 ) ^ ( w ^ ( 0 ) l i ? H ( r o ) ( 0 ) ] , 

where 

Rok (0) (i) — d(p)k(0) (i) ~~~ d;fck>0(0) (i) 

+Wfc(l) (m)CO0(0) (m)+Wfc(0) (m)C00(m) (1), 

Rkl(m)(0)= ~ ^/bWz(0)(m) + ^^A;(0)(m) 

+0)k(m) (W)W|(0) (n) — 03l(m) {n)O)k(0) (») , 

and 

Rkl(m) (n) = (Z)Rkl(m) (w) ~~ O)k(0) (m)^l(0) (w) + ^Z(0) (m)^A;(0) (n)-

In the last equation, the notation (z)Rki(m)(n) implies 
the formation of this tensor from the three-dimensional 
quantities co&(m)(n). We have also written 

det(3)e=detez(A;). 

I t will be observed that cakww and det(3)g ek(l) obey 
equations of motion. There are no equations of motion 
for wo(oxi), uo(i)(m), Wfc(z)(»), e{0)\ or ew°. When only the 
gravitational field is considered, the variations of the 
first three sets of variables give equations of con­
straint which are, respectively, 

dkidet^ee^)10) — «fc(o(w)(det<8)e *<«)*) = 0; 
w ( O ( 0 ) ( w ) = C0(OT)(0)(Z), 

where 

°>(l) (0) (m) = e(l)JcO)k(0) (m) *, 

( 3 ) ^ M m ) ( n ) = d e t ( 3 ) e | - e M m ) ( W ( 0 ) ( 0 ) ( n ) _ e Z ( n ) a z m e ( ) ( 0 ) ) 

-e* ( n ) (« ( o)(o) ( m ) -^ ( m ) di lne 0
( 0 ) ) ] , 

in which 

W(o)(0)(m) = e(0)icoz(o)(m) + (̂0)0a?o(0) (w) 

and (3)iTA(m)(n) is formed from three-dimensional quan­
tities in the manner of Kfmb. 

If the first constraint equation, 

d*(det (3)ee (o*)+det (3)eco (m)
(m) (o = 0, 
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and 

T ° = (i/2/c)g (z)R-2Kiikl(q
klqmn-qknqlm)ttmr, 

The explicit structure of 

is combined with the formula for (s)Kk(m)(n), the latter in which 

simplifies to r*= " - n I w d ^ * + d * ( 2 n ^ » ) - d , ( 2 n * m ^ * ) , 

tf)Kk(m) (n) = — d e t ( 3 ) e [ ( 3 ) ^ ( m ) («) 

— eHp)(a)(m)(n)(p) — W(n)(m)(p) ) ] , 

and a second application of this constraint shows that 

= -det ( 3)^[(3)^ ( m )(W)(n)+co^)(m) ( n )] = 0. ^ ^ g (z)R=qkl wRki 
is given bv 

Accordingly, " M r> ^ ^ „H_i_n 
u<o)(0)(m) = e(m)*<Mne0

(0), w h e r e 

and 

or -Jg^lntf^diln^/8), 
and 

CO(fc) (Z) (m) = §[(3)&(Z) (m) (*) + (3)&(m) (fc) (?) ~ (3)^(A) (Z) (m) ] , 0 = d e t g H = g2, 

all of this being a three-dimensional counterpart of the while 
four-dimensional discussion. qu—g^gu 

In virtue of the symmetry possed by a>(4,(0) ( „, there m a t r i x i n v e r s e 

are six pairs of variables in the time-derivative term ot * 
the action integrand. A particularly convenient choice 
is obtained by introducing MATTER FIELD 

o>k(0)i=-o)Ho)<im)ei(m) 

= «z<o>Jfc, 

and the three-dimensional tensor 

We shall consider here only the simplest example of a 
matter field. The action operator of a zero spin field in 
a prescribed metric field gM„ can be written as 

wgki=ekMel(n) = gki, ^=Jw[^M*+i^(-^)-1 / 2fo^-i^(-g)1 /Vl 

together with its inverse 
,, x 7 , T where df is a vector density. The constraint equation 

(8)g e (̂m) ^ g . implied by variation of <t>k is 

O=d*0+(-g)-1'W> 
or equivalently, in the time gauge, 

Thus, 

det(8)tfe*(I)aow*(o)(i)=-g1/V»^o(«*Co)m«(i)w), 

where 
g=det(8)gjfei, - ^ o ^ 5 " ^ 1 ^ ^ ' 

and this becomes ^phe S q u a r e 0f this local vector equation gives the 

- ^ ( . , ^ o « ^ > , - ^ ^ c o ) | d o . ( 3 ) g * i relation 

- i r ^ ^ o f c ( 3 ) ^ ) - W 2
 wg*WUJ W ^ = («co>°)Vfi^+.(*»)'• 

The time-derivative term may be omitted since the A n ^ ( ^ a t i v e . c o m b i n a t i o n > obtained by multiplication 
action operator of a given dynamical system can be e k(^y l s 

altered by the addition of boundary terms. The required —e^)g~l,2dk<t>qkldj(p = 4>kdh4>'-- 0o(o)0(O) V°d*0-
pairs of variables are 

The resulting form of the action operator, from which 
qkl = g (z)gkl, cf)k has been eliminated, is 

and 

Note that the other terms in Rok(0)(i) are effectively ^ 
equal to zero by virtue of the constraint conditions, , 
provided that e^)k and dkeo(0) vanish sufficiently __ _ ,0~ , 
rapidly at remote spatial points. , k— <p ktyj 

The resulting form of the action operator is m ,,_, N , 

W= I (dx)[Ukidoqkl—eowefQ)krk—eo(0)g~'1/2T0~] The equal-time commutation properties of these opera-
J tors follow easily from the canonical commutation rela-
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tions obeyed by <£ and $°. Thus, 
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-i[r°(x),r°(^)] 
•lq^(x)Tl(x)+qkl(oc,)Tl(x

,)-]dk8(x-xf)) 

and 

-i[Tk{x),Tl{x')-] 

tions, and here 

(y2)2q=dkdlq
kl=-2K60. 

The action operator can now be reduced to 

-.-T^dkdix-x^-TkWdJix-x'). W--

COORDINATE CONDITIONS 

The action operator of the combined gravitational 
and matter field system is 

-eoio)g-1/2(T°+T»)J 

The constraint equations supplied by variation of e^)h 

and eo(0) are 

Alternative forms are 

2 (diUki— dkUu) = tk+ Tk=^ Ok, 

: j (dx)\jLklTd0q
klT+<l>0dacl> 

+0kdo(-iqk)-ff>do(-2KTl)~], 

which also exploits the freedom to add boundary terms. 
The operators 6k and 0° are to be constructed from 0°, 
<j> and UkiT, qHT, together with qk and II. The pairs of 
fields are evidently canonical dynamical variables 
while qk and II are numerical transformation param­
eters. The action operator is formed additively from 
operators describing infinitesimal increments of x°, 

Wdi °= /\dx)[Ukl
TdqhlT+<tPd<t> 

+dkd(-iqk)-#>d(-2Kll)-]. 

and 

where 

- dkdiqH= 2K(P+ T°) = 2K0°, 

h= -Ulmdkq
lm+d£2Ulm(qlm-dlm)2 

-dl2Ukm(qlm-dlm)'], 
and 

fi= (l/2K)Q+2Knki(q
knqlm-qklqmn)nmn. 

This version presents the constraint equations as im­
plicit determinations of certain linear differential func­
tions of the fields qkl and Uki. 

The same field combinations will occur in the time 
derivative term of the action operator if one writes 

qkl = qklT+h(dkqi+diqk)-dkidmqm+dkdiq, 

and 

nki=nki
T+Udkm+dink)-8kldmiim+dkdiiL, 

where qklT, for example, the transverse-traceless part of 
qkl, is such that 

dkqkiT==0i qkkT=0t 

The two independent components of this field combine 
with qk and q to represent the six-component field qkl. 
These representations are such that 

j\dx)Ukld0q
kl^ I (dx)lUkl

Td0q
k 

- (f dkdiUt+iVm^doqjc+Ildoi^yq], 

under the conditions that validate the partial integra-

The infinite-dimensional parametric transformation 
given here can be identified with a local description of 
the physical space-time evolution of the system. Thus, 
d(—\qk) and J(—2/cII) are interpreted as infinitesimal 
local space and time coordinate displacements, while 
6k and 0° appear as momentum and energy densities, 
respectively. With this physical identification of coordi­
nate parameters, we can proceed to restrict the mathe­
matical freedom of coordinate transformation in order 
to exhibit a physically distinguished class of coordinate 
system. 

Under what circumstances are the qkl not explicit 
functions of the space coordinate displacement param­
eters? The condition is 

J (dkdqi+didqk) — dkidmdqm~ 0, 

or equivalently 

dkdqi+didqk=0, 

which also implies that 

V 2 ^ = 0 . 
As a consequence of these restrictions, —%dqk can only 
be the linear space coordinate function 

— %dqk=dek(x°) — dG)ki(x
0)xi, 

do)ki+do)ik=0, 

which describes a rigid translation and rotation of the 
coordinate system. The associated generating operators 
are the total linear and angular momentum 

Pk=: / (dx)6k, 

7fcz= / (dx)(xkdi—xidk). 
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In a similar way, Uki will not be an explicit function of 
the time displacement parameter if 

dkdidll=0, 

so that dU is a linear space coordinate function, 

— 2KdU=de° (xQ)+do)ok (x°)xk. 

The corresponding generating operators are the total 
energy 

P°= f(dx)ff>, 

and the Lorentz transformation generator 

J°k-x°Pk=- (dx)xk6°. 

A given member of this distinguished class of Lorentz 
transformation equivalent coordinate systems is char­
acterized by the coordinate conditions 

— %qk=%k, — 2/dI=#°. 

In such a coordinate system, the field operators simplify 
to 

and 
n*i= n*i r +! (d*n,+d,n*) - ^zamnm. 

A spatial boundary condition thereby indicated for 
points far outside regions occupied by energy, 

|xI-> oo, ajbdife+fx2)—>0, 

is compatible with the fourth order differential equation 
obeyed by q or #+f x2. 

The linear and angular momentum operators involve 
only the canonical variables in the explicit forms 

Pk= [ (dx)Z-4Pdrf-nlm
TdkqlmTl, 

and 

Jki= / {dx)[_—4P(xkdi—Xidk)<j> 

- n m n
r ( ^ 3 , - ^ , ) g - ^ + 2 n , M v w r - 2 n . w ^ z ^ ] . 

All the anticipated commutation properties of these 
operators can be derived from the equal-time canonical 
commutation relations: 

-i&*lr(*),n»»r(«/)j=C5mn*I«(x-x/)]r, 
s ki—i(s ks ?_i_^ kx i) 

including 
Zql™T(x),Pk-]=-idkq

l™T(x), 

and 

[qmnT(x)Jk{]= -i{xkdi--xldk)q
mnT{x) 

+i(5inqkmT+8imqknT-8k
nqlmT-5k

mqlnT). 

These observations show that the quantum-mechani­
cal formalism associated with the canonical commuta­
tion relations satisfies the requirement of invariance 
under three-dimensional translations and rotations. The 
question of Lorentz invariance depends upon integral 
aspects of the energy density equal time commutator. 
It is at this vital point that the gravitational field differs 
from all other physical systems, for there is no explicit 
formula for 0° in terms of the fundamental variables 
but only an implicit determination by means of the 
constraint equations. While such a lack of explicitness 
in a classical theory would raise computational diffi­
culties, in a quantum theory it could also be a formidable 
barrier to verifying the consistency of the formalism. 

We shall consider aspects of this basic problem in a 
separate paper. 


