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Solutions of the relativistic wave equation for three different coupling schemes to an external source are 
examined. The Regge trajectories are observed to exhibit a high degree of model dependence and to possess 
singularities which are often assumed absent in a fully relativistic theory. It is shown that these arise from 
multiple poles in the scattering amplitude and can occur in theories for which no collapse into the center is 
possible for physical values of the angular momentum. 

I. INTRODUCTION 

RECENT work of Regge and others1 concerning the 
analytic properties of the radial Schrodinger 

equation has resulted in many attempts to determine 
general properties of the so-called Regge trajectories. 
In particular, it has been shown for the class of 
potentials 

/.oo e-fxr 

V(r)= dy, erGO (1.1) 

that the Regge poles and their residues are analytic 
functions in the E plane cut along the positive real axis 
(if there exist no multiple poles in the scattering ampli­
tude). Although attempts have been made at the fully rel­
ativistic problem using the Mandelstam representation 
and unitarity,2-3 as of yet no rigorous correspondence to 
the nonrelativistic case has been established. In view of 
the limited success of the latter program, it is natural to 
investigate a domain of intermediate complexity as 
represented by the relativistic wave equation. In this 
connection Oehme4 and Singh5 have found in the 
Coulomb problem that in addition to the expected right-
hand cut, there exist complex branch points which are 
the result of the well-known modification of the centrif­
ugal term of the radial wave equation. While this par­
ticular case is of limited applicability in the context of 
strong interactions, Oehme has observed that these com­
plex singularities arise solely as a consequence of the 
behavior of the potential near the origin and are, there­
fore, expected to persist for the class of potentials (1.1) 
in a relativistic wave equation. He has thus suggested 
that these results might have an analog in the static 
limit of a vector meson theory. 

In this paper we consider three possible schemes for 
the coupling of a relativistic particle to a 1/r type source. 
It will be shown that for each of these, the functions 
an(v) which prescribe the location of the Regge poles 
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have singularities on the physical v\_= (E2—m2)/m2'^ 
sheet in addition to the expected right-hand cut. Oehme 
has suggested that these branch cuts could arise from 
the possibility of a "collapse into the center" and might, 
therefore, be absent in a fully relativistic theory.6 We 
demonstrate that in a scalar coupling model such branch 
lines occur despite the fact that there is no collapse.7 

Their existence is seen to derive from the frequently 
overlooked possibility of multiple poles in the scattering 
amplitude. 

II. A SCALAR COUPLING MODEL 

The vector coupling model has enjoyed considerable 
popularity as a consequence of its application to electro­
dynamics. Another coupling scheme which is even 
simpler in structure, however, is the scalar model which 
also admits a solution for the 1/r type source. It is 
described by the Lagrangian 

<£= / dx {<}>»*dd>-l\jn+ex(%)J<l><t>* 

+i^%+c .c . } , (2.1) 

where we have used the metric (1, 1, 1, —1). In the 
fixed source limit x—"~e/r- The Lagrangian (2.1) leads 
to the wave equation 

[ - V + (m- e 2 A) 2 > (*) = 0, (2.2) 

which is equivalent to the radial equation 

-*(*)= —+ k*>- (2-3) 

L2m 2mr2 r J 
2m 

Note that the Lagrangian for a classical point particle 
in interaction with a scalar field is 

«£=— / [m+ex(oc)~](—dx^dxy)112, 

6 R. Oehme, Phys. Rev. Letters 9, 358 (1962). 
7 It should be emphasized at this point that throughout this 

paper the term "collapse into the center" will refer to the failure 
of a given Hamiltonian to possess a lower bound for physical 
values of the energy and angular momentum. 
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and that the corresponding Hamiltonian 

H2=p2+(m-e2/r)2 (2.4) 

gives rise to (2.2) by the usual canonical substitutions. 
This shows that the replacement of m in the free Lagran-
gian by m+ex is indeed the simplest and most natural 
definition of a scalar coupling. I t is to be noted that the 
Hamiltonian (2.4) is positive definite in contrast to the 
corresponding expression (3.3) for the case of a vector 
coupling and is, therefore, a more reasonable model of 
a fully relativistic theory. 

Comparison of the wave equation (2.3) with the usual 
Schrodinger equation for the Coulomb field, 

rpr* 1(1+1) e*-\ 

L2m 2mr2 r J 

and the corresponding S matrix,8 

T\J+l-ie>(m/2Eyi2l 
S(l,E)= - , 

r p + l + w ^ w / Z E ) 1 ' * ] 

yields for the scalar theory 

V{l(l+^)2+e^2+i-ie2Zm/(E2-m2)1f2li} S(l,E)-
T{l(l+^)2+e'Jf2+i+ie2\im/(E2-m2)lf22} 

Xexp{iw(l+i-l(l+i)2+e^1/2)}, 

where the physical sheet is defined by the condition 
Im[(E2—m2)1 / 2]>0. Since r ( 2 + l ) is meromorphic in 
the finite z plane with poles at z——n (n=l, 2, • • •), 
the singularities of the S matrix are trivially found to 
occur at 

E2—m2 

{n+l(l+l)2+e*Ji2-l}2 
(2.5) 

which for positive integral values of / yields the eigen­
value spectrum. The inversion of (2.5) gives the Regge 
trajectories : 

sponding to the vanishing of aw(E)+2> real branch 
points at 

y = - « * / ( » - J ± « » ) 2 . (2.7) 

In contrast to the vector coupling model, the eigen­
values denned by (2.5) remain real for arbitrarily large 
values of e2 as a consequence of the positivity of H2. 
I t is therefore of interest to examine the analytic 
properties of Eq. (2.6) for all real values of e. I t is clear 
from Eq. (2.7) that e2=n—| defines that critical value 
of the coupling for which the left-hand branch point 
of an(E) moves to v— — oo. We thus distinguish be­
tween the two domains in which e2 is less than and 
greater than n—\. For the former of these, Fig. 1 shows 

v=e 

z/=±00 

Im{{+£) 

-Vfn-£j2-e4 

\ 
\ 

\ 
\ 

Re({+Jr) 

(a) 

Imtf+1) 

\ 

Ve4-(n-ir)2 

Re({+^}-

(b) 

FIG. 2(a). Trajectory of a Regge pole in scalar model for 
e2<n—J. (b) Trajectory of a Regge pole in scalar model 
for e2>n—J. 

K ie2m \ 2 . 11 / 2 

—n+U-e*\ - J . (2. 
(E2-m2yi2 J J 

6) 

I t follows from (2.6) that an(E) has in the v plane both 
the expected cut on the positive real axis and, corre-

jtmtttftHWHA 

"(n-i-+e2J 

v Plane 

lUHiiiiimimmmtiMtHUMM* 

FIG. 1. Cuts of an(v) for scalar model. 

8 H. Bethe and E. Salpeter, Quantum Mechanics of One and Two 
Electron Atoms (Academic Press Inc., New York, 1957), p. 34. 

the cuts of an(v) in the complex v plane. For e2 approach­
ing the critical value of n—\ the left-hand branch point 
moves to v— — oo and emerges on the unphysical sheet. 
Further increase in the value of e2 has no effect on the 
branch cuts on the physical sheet. In Fig. 2 (a) is shown 
the Regge trajectory as defined by the contour C of 
Fig. 1. Finally, Fig. 2(b) indicates the corresponding 
trajectory for the case e2>n—J. 

We remark that while the spin-zero wave equation has 
been the basis for the above discussion, the extension to 
spin one-half is straightforward. In this latter case the 
Dirac equation 

y^-dn+m 
_ i r J 

k*)=o, 
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which follows from the Lagrangian 

- / < <£= I dx l-^Yd^—iCw+exC *)]#}, 
can be solved by the usual techniques to yield the energy 
spectrum 

E2-m2 e4 

wr {n+Z(J+i)2+e*J<2}2 

The preceding discussion is extended to this additional 
case with no difficulty. Except for the replacement of 
n—\ in Eq. (2.6) by n, the results are identical. 

In concluding this section, we draw attention to the 
fact that Oehme has used the nonrelativistic Schrodinger 
equation with a repulsive 1/V2 potential to obtain 
results similar to those described here. These, however, 
emerge in a more natural way using a relativistic wave 
equation with a scalar coupling. 

v Plane 

itttlHHHhHMtMH* \tnttttttttttttnitiftttM}tHlH}HMtiM}iff&~ 

FIG. 3. Cuts of an{v) for vector model. 

III. THE VECTOR COUPLING MODEL 

The familiar Coulomb problem is represented by the 
Lagrangian 

£ = / dx [>M*dM0- |w20*<£+i<£M4>M* 

- ^ * < M M + c . c . ] . (3.1) 

While the form (3.1) emphasizes the vector character 
of the coupling, we shall consider only the usual fixed 
source limit A = 0 , A°=— e/r. Corresponding to (3.1) 
one has the wave equation 

E2-m2 

-<f>(x) 
- [ • 

p2 l(l+l)-e* Ee2 

m r 2m L2m 2mr2 

and the nonpositive definite Hamiltonian 

]*(*), 

H= + (p2+m2) 1/2 

(3.2) 

(3.3) 

Because the e4/r2 term in (3.2) represents an attractive 
term in the effective potential, there exists a possibility 
of collapse in this theory. 

v=+oa 

c 
ytn-^+e* 

v=6 

b 

1/ 

Imtf 

cd 

e2 

\ \ 
v=-e \ 

Re({+^) 

FIG. 4. Trajectory of a Regge pole in vector model. 

A significant departure of this paper from previous 
considerations4,5 of the Regge poles in the Coulomb 
problem arises from our choice of £2— m2 as the analog 
of the usual invariant square energy variable rather than 
E itself. The models considered here have all been solved 
by comparison with the nonrelativistic Schrodinger 
equation for a 1/r potential, and one observes that 
(E2—m2)/2m does in fact correspond to the nonrela­
tivistic energy variable. In Eq. (3.2) the 1/r term is 
proportional to (E2)112 and one would, therefore, expect 
a left-hand cut for an(v) originating at v~ — 1. While 
the choice of E as the basic variable is sufficient to 
eliminate such a kinematical cut, the utility of this de­
vice is unique to the vector theory. 

The equation for the Regge trajectory, 

f r e2E -]2}112 

I L {E2-m2yi2 J J 

shows immediately the existence of branch points at 
j>=0 and v= — l. In addition, the vanishing of a w M + i 
yields complex branch points at 

le2/{n-h)-] 

\±2i{e2l(n-\)-\ 

The branch cuts are chosen as in Fig. 3 with the curve 
connecting the complex branch points defined by 

— 1 
l+le2/(n-i+i\e2)J 

as X varies in the interval 

- 1 < X < 1 . 

This choice of the cut guarantees that 

lman(v)^0 

for lm*>^0. A trajectory corresponding to the path C 
is illustrated in Fig. 4. I t is interesting to note that in 
the scalar theory the trajectories closed at 

l=~L(n-i)2-e^2-h 

while for the vector coupling they close at the neces-
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sarily complex values 

/ = - [ ( » - i ) 8 - 2 W ( » - l ) ] 1 / » - i 

This contrasts with the usual Schrodinger theory in 
which the trajectories approach the negative integers 
for E approaching plus and minus infinity. 

IV. THE SCALAR PARTICLE IN 
GENERAL RELATIVITY 

Another case for which a solution can be found for a 
fixed source is that of a scalar particle in the general 
theory of relativity. Here, one considers the Lagrangian 

£ = dx ( - g ) 1 ' a [ * ' * a M « + i * ' r i t f o ^ ' - i w V * * + c . c . ] . 

The field equations are 
d^+g^^O, 

which is equivalent to 

G. S . G U R A L N I K A N D C. R . H A G E N 

which, for the classical Lagrangian, 

L = - m(-gtivdxfldxvy12 

leads to the canonical equations of motion 

dr $A 

dt {m2A~l+tf) 

^ p / ^ = - [ W 2 ^ - l + p2]-l/2[-p2 + l w 2 ^- l ] ( e 2 r ^2/ W f 3) ? 

where A~l= (\+e2/mr). For completeness, we remark 
that the energy momentum tensor corresponding to this 
metric in spherical coordinates is8a 

&r7V= -87r7V= - S r r T y = -Az(e2/2mr2)2, 
(4.2) 

87rTQ°=-3A*(e2/2nir2)2. 

With the above choice of metric, Eq. (4.1) becomes 

[ - (l/A)(d2/dt2)+AV2-m22(t>(x) = 0. 

- (-g)ll2d»(~g)llYvdv<l>+™<2<i>== 0. (4.1) T h e corresponding eigenvalue problem, 

A metric which admits a solution to this equation is £ 2 _ m 2 rp 2 m_j_i)__e4£2/m2 e2,£2 * • 

-*(*)= ~ + ( * ) 
L2m 2mr2 r\m2 / . ds2 

/ A J/2 
--(l+—)(dx2+dy2+dz2)-
\ mrl l+e2/mr 

2m Vim 

yields the £ matrix 

W\ 

£(/,£) = 
r { [ ( ; + | ) 2 - ( £ V ^ e 4 ] 1 / 2 + | - i ( 6 2 / w ) ( £ 2 ~ i w 2 ) / ( £ 2 - w 2 ) 1 ^ 2 } 

T{l(i+i)2-(E2/m2)eAJ/2+i+i(e2/m)(E2~^m2)/(E2-m2y^2} 

and the spectrum of bound states 

£ 2 - ^ 2 eA(E2/m2-^)2 

exv{iw(l+±-t(l+^2-e*E2/m2J/2)}, 

cussed in terms of the discriminant 

fe(a3/27)+(62/4). 

m" {n+[_(l+i)2-eAE2/m2J \}2 

As in the vector theory, there exists the possibility of a 
collapse into the center because of the attractive 1/r2 

term in the wave equation. 
The Regge trajectories, 

Here 

a = K i ~ i ^ V [ 3 ( i ~ ^ 2 ) - 4 / 5 2 ] , 

& = ( 2 / 2 7 ) ( l - i ^ 2 ) - 3 [ 8 ^ 2 - 9 ( l - i / 3 2 ) + 2 7 ( l - i / 3 2 ) 2 ] , 

and we have defined p=e2/n'. One finds for d the 
expression 

d= (1/432) ( l - i^ 2 ) - 4 [16+31 i 8
2 +28^+27/3 6 ] . 

From the general theory of the cubic equation9 it is 
have the usual branch cut from E2=m2 to £ 2 = 00 and deduced that because of the positive definite property 
additional branch points corresponding to the solution 
of 

an{E)=-l+ \eAE2+\ ie2m — » + i 
I L (E2~m2)1!2 

2-| 1/2 

E2-m2 

- = - e 4 -
{E2lm2-\)2 

nr [n+ (-eAE2/m2y'2-±J 

The substitution %= —im/E yields 

x\jx? {ri2- e4/4)+2e2n'x2+n'2x+ 2 e V ] = 0, (4.3) 

8a Note added in proof. It is perhaps useful to remark here that 
this choice does, in fact, represent a physically realizable possi­
bility. Such an energy momentum tensor can arise, for example, 
from a spherically symmetrical distribution of a uniformly charged 
"fluid" which acts as the source of the radial electric field 

poT — j[3l2_ 

2mr 
By associating with this fluid a sufficiently large charge-to-mass 

where we have introduced n' = n—\. Equation (4.3) ratio, the combination T^t^v^-VT^i11" can be made to yield the 

immediately exhibits the branch point at \E\ = «>^ ^ TB^OT™ H^lVlf Mathematical Tables and 
The remaining cubic equation is conveniently dis- Formulas (Handbook Publishers, Inc., Sandusky, Ohio), p. 7. 
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of d for all 0, Eq. (4.3) has one real and two complex 
conjugate solutions in addition to the null root already 
observed. These correspond to a branch point on the 
negative E2 axis and a complex conjugate pair. 

The positions of the branch points can be extracted 
to lowest order in e2 by using the following form of 
(4.3): 

(l+r>) (%n'2+2e2ri) = eV/4. 

From the factor xn'2+2e2n', it is seen that one of these 
occurs at 

E2=-m2{n-\)2l^eK 

Expansion around %=±i yields the remaining branch 
points at 

r e 

E2=m2\ 1 4 ( ^ - | ) 2 2(n-±Y 
-0(e*) 1 

It can readily be shown that the real solution of (4.3) 
is on the unphysical sheet of the E2 plane. However, for 
the repulsive case which is formally obtained by the 
replacement of e2 by — e2, this branch cut appears on 
the physical sheet. In this latter case for small e2 there 
is a cut from £ 2 = - o o to E2=-m2{n-\)2/^e\ As e2 

increases this branch point approaches the origin which 
it reaches at the critical value of e2=2n'. Further in­
crease in e2 causes it to move back on the negative axis 
and to approach minus infinity for very large coupling. 

Figure 5 shows a trajectory of this model for the 
analog of contour C of Fig. 3. In contrast to the scalar 
coupling theory for which an(v) approaches a path 
independent value for |.E| —> oo and the vector theory 
for which it approaches a path dependent value, an(v) 
has no finite limit for | E | —» oo. 

V. MULTIPOLE POLES IN SCATTERING 
AMPLITUDES 

Because of the fact that the "pathological" features 
we have found are a consequence of the modification of 
the centrifugal term in the wave equation at small 
distances, it is to be expected that they will persist even 
when the potential has no long-range tail. In the case 
of the usual Schrodinger equation for the potential (1.1) 
with the representation of the scattering amplitude as 

a(l,k) = N(l,k)/D(l,k), 

it has been shown that D(l,k) is analytic in the product 
of the right-half I plane with the E plane cut along its 
positive real axis. Since the relativistic wave equation 
for the scalar theory considered here is formally mapped 
into the nonrelativistic case by the replacement of E by 
{E2-m2)/2m and I by [ ( /+J ) 2 +e 4 ] 1 / 2 - | , one can infer 
in this case that the corresponding denominator function 
is analytic in the product of the v plane cut along the 
positive real axis with the I plane cut from l=—^+ie2 

to 1=*— h—ie2, 

V- -00 . 
' -nVx . 

\ 
\ 
\ 
\ 

Re({+£) 

FIG. 5. Trajectory of a Regge pole in tensor model. 

The Regge poles occur for 

D(l,v) = 0, 

the inversion of which yields the trajectories an{v). By 
the implicit function theorem it follows that in a domain 
of analyticity in I and v, singularities of an(v) can arise 
only if there exist multiple roots of D(l,v), i.e., from 
solutions of 

z>(W=o, 
dD(l,v)/dl=0. 

As has been previously noted, the left-hand branch 
points of an(v) occur for Z=— J which, by a suitable 
choice of the branch cut of D(l,v) connecting the points 
/=—-TfiLie2, does indeed lie within the domain of 
analyticity of D(l,v). Thus, the left-hand cut of the func­
tion an(v) must originate in the existence of multiple 
roots. This can be seen directly by showing that D(l,v) 
has in fact a double root at 1= — \. Because this function 
is analytic in [(H-J)2+e4]1 / 2- h it follows that 

dl 
£([a+i)2+e4]1/2-i, v) 

=£M[(H4)2+e4]1/2-|} 
dl 

--U-
(/+*) 

[(H-!)2+e4]1/2 
(5.1) 

demonstrating the double root at l——\. In writing 
(5.1) we have used a dash to indicate the derivative of 
D with respect to [(H-|)2+£4]1/2—h Similar considera­
tions hold for the vector coupling model and in fact we 
have shown above in quite general terms that a modifi­
cation of the wave equation such as that considered here 
will give rise to multiple roots in D(l,v). 

VI. CONCLUSION 

In this paper we have considered three coupling 
schemes which are the simplest possible relativistic 
models. The scalar model is a particularly satisfactory 
one by virtue of the positive definite character of its 
Hamiltonian. Viewing these models as static limits of a 
fully relativistic theory, three points emerge which might 
have application to a complete theory, 
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(1) We have shown in various examples the existence 
of multiple poles in the scattering amplitude, the pos­
sibility of which has frequently been ignored. 

(2) I t has been suggested that the singularities of 
an(v) which occur off the positive real axis might be 
absent in a true field theory because of their connection 
with the fall into the center.6 However, the scalar 
coupling theory considered here has displayed such 
singularities in spite of the fact that it has no possibility 
of collapse for physical I. The occurrence of these addi­
tional branch cuts in a complete theory cannot be ex­
cluded, and it would be almost remarkable if the con­
sideration of recoil could completely eliminate them. 

(3) We have noted that the trajectories associated 
with the models considered in this paper display marked 
differences in their qualitative behavior and analytic 
properties. All of these display analytic properties in 
conflict with those which have been expected to occur 
in a real field theory. I t might well be anticipated, there­
fore, that the problem of analytic continuation in the 
complex angular momentum plane is not independent 
of the nature of the coupling. 
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The singularity introduced artificially into the equations of the new strip approximation, in order to 
bridge the gap between low and high energies, is investigated in detail. By explicit construction, it is shown 
that a necessary and sufficient condition for a (unique) solution of the N/D equations to exist is that the 
unitarity constraint on the cross section just above the strip boundary should be obeyed. The only singu­
larities of the solution in the right-half angular momentum plane (Re/>0) are Regge poles. 

A 
I. INTRODUCTION function Bt

p(s) has a logarithmic branch point: 

SET of approximate dynamical equations based -i 

Bip(s)- • - I m B , y ( * 0 l n ( * i - j ) . 
l 7 T 

(1.2) on the strip concept has recently been proposed 
for determining the self-consistent strong-interaction 
S matrix with Regge asymptotic behavior.1 This paper 
is concerned with the singularity at the strip boundary Let us split off the singular part of the integral in (1.1): 
introduced as a consequence of the approximation 
procedure. We propose to show that in spite of its N1(S) = B1

P(S)+ C ds' KAs s')Ni(s') 
artificial character this singularity plays a useful J 
physical role and does not prevent a numerical solution 
of the equations. I t also does not affect analyticity 
properties in angular momentum. The reader is assumed 
to be familiar with reference 1, whose notation is where 
maintained here. 

The integral equation in question is (III. 11) of 
reference 1: 

k(s,s') = 

\i rsl 

/ ds'k(s,s')Ni(s'), (1.3) 

In (si—s') — In (si—s) 
(L4) 

Ni(s)=Bf(s) 

s'—s 

X,=P j(*i)ImB,p(*i), (1.5) 

and where Ki(s,sf) is the residual part of the kernel 
4__ f fa' l l (s')N (s') (11) S ta ined by comparison of Eqs. (1.1) and (1.3). In the 

T J s'—s ' dangerous region, s —> sh sf —> si, 

The singularity arises in the kernel because &t s=si the 

* Work done under auspices of U. S. Atomic Energy Com­
mission. 

1 G. F. Chew, Phys. Rev. 129, 2363 (1963). 

(si—s') ln(si—s')— (si—s) \n(si—s) 
Ki(s,s')cc , (1.6) 

a behavior that causes no trouble. Equation (1.3) may 


