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(1) We have shown in various examples the existence 
of multiple poles in the scattering amplitude, the pos
sibility of which has frequently been ignored. 

(2) I t has been suggested that the singularities of 
an(v) which occur off the positive real axis might be 
absent in a true field theory because of their connection 
with the fall into the center.6 However, the scalar 
coupling theory considered here has displayed such 
singularities in spite of the fact that it has no possibility 
of collapse for physical I. The occurrence of these addi
tional branch cuts in a complete theory cannot be ex
cluded, and it would be almost remarkable if the con
sideration of recoil could completely eliminate them. 

(3) We have noted that the trajectories associated 
with the models considered in this paper display marked 
differences in their qualitative behavior and analytic 
properties. All of these display analytic properties in 
conflict with those which have been expected to occur 
in a real field theory. I t might well be anticipated, there
fore, that the problem of analytic continuation in the 
complex angular momentum plane is not independent 
of the nature of the coupling. 
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The singularity introduced artificially into the equations of the new strip approximation, in order to 
bridge the gap between low and high energies, is investigated in detail. By explicit construction, it is shown 
that a necessary and sufficient condition for a (unique) solution of the N/D equations to exist is that the 
unitarity constraint on the cross section just above the strip boundary should be obeyed. The only singu
larities of the solution in the right-half angular momentum plane (Re/>0) are Regge poles. 

A 
I. INTRODUCTION function Bt

p(s) has a logarithmic branch point: 

SET of approximate dynamical equations based -i 

Bip(s)- • - I m B , y ( * 0 l n ( * i - j ) . 
l 7 T 

(1.2) on the strip concept has recently been proposed 
for determining the self-consistent strong-interaction 
S matrix with Regge asymptotic behavior.1 This paper 
is concerned with the singularity at the strip boundary Let us split off the singular part of the integral in (1.1): 
introduced as a consequence of the approximation 
procedure. We propose to show that in spite of its N1(S) = B1

P(S)+ C ds' KAs s')Ni(s') 
artificial character this singularity plays a useful J 
physical role and does not prevent a numerical solution 
of the equations. I t also does not affect analyticity 
properties in angular momentum. The reader is assumed 
to be familiar with reference 1, whose notation is where 
maintained here. 

The integral equation in question is (III. 11) of 
reference 1: 

k(s,s') = 

\i rsl 

/ ds'k(s,s')Ni(s'), (1.3) 

In (si—s') — In (si—s) 
(L4) 

Ni(s)=Bf(s) 

s'—s 

X,=P j(*i)ImB,p(*i), (1.5) 

and where Ki(s,sf) is the residual part of the kernel 
4__ f fa' l l (s')N (s') (11) S ta ined by comparison of Eqs. (1.1) and (1.3). In the 

T J s'—s ' dangerous region, s —> sh sf —> si, 

The singularity arises in the kernel because &t s=si the 

* Work done under auspices of U. S. Atomic Energy Com
mission. 

1 G. F. Chew, Phys. Rev. 129, 2363 (1963). 

(si—s') ln(si—s')— (si—s) \n(si—s) 
Ki(s,s')cc , (1.6) 

a behavior that causes no trouble. Equation (1.3) may 
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be written as two coupled equations, 

Nlo(s)^Bl
p(s)+ f ' ds' KiMNiW, (L7) 

«/ so 

tfi(*) = #i°(*) — f is' k{s,s')Nl(s'\ (1.8) 
n2 JSQ 

and we shall show in Sec. I I that (1.8) can be explicitly 
solved to give 

Ni{s) = f ds' 
J so 

0 , ( v ' ) W ) , (1.9) 

where O j ( v ' ) is a known operator depending only on A*. 
Equation (1.7) then becomes a linear integral equation 
iorNKs): 

Nl
a(.s) = B,p(s)+f ds'K/isJWis'), (1.10) 

with 

K 
/

si 

o 
iTKv'OOi^V). (I.H) 

Finally, it will be shown that (1.10) is a nonsingular 
Fredholm equation. 

II. THE OPERATOR Oi(s,s') 

Directing our attention first to Eq. (1.8), we make the 
change of variables 

which leads to 

ni 

(II.1) 

A ; i X—X 

(x) = m°(x)+~ / dx' »,(*'), (H.2) 
W o e*'-*—l 

if tii(x) = Ni(s(x))9 with a corresponding definition of 
ni°(x). Now we have achieved the Wiener-Hopf form 
and may use the standard approach through Fourier or 
Laplace transforms.2 

The key to the analysis is the asymptotic behavior as 
x—>oo (or as s-*s 1). I t is immediately evident that 
there are no solutions of Eq. (II.2) diverging more 
strongly than ex, but the physical requirements are 
sharper because, as we now show, a behavior ccealx 

implies that the limit of the phase shift as s —> s\ is irai. 
Furthermore, the value of di is related to Az. To under
stand these points it is necessary to recall that in 
reference 1 the partial-wave amplitude was given by 

Bl(s) = Nl(s)/Dl(s), (IL3) 

where Di(s) is real analytic except for the cut between 
$o and si, along which it has the same phase as Brl(s), 
i.e., the phase — 8i(s). Di(s) is normalized to unity at 
infinity and is finite except at s—si, so it must have the 

2 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Part I, 
p. 990. 

form 
(s—di)---(s—dml) 

(s-si)v 

r i /•« aj(*')-8i(*on 
Xexp — / ds' , 

L TJH s'—s J 

(II.4) 

where dv * -dmi are the positions of the (real) zeros of 
Di(s) in the physical sheet. Then if di(s) approaches a 
limit as s—*si, it follows that (to within logarithmic 
factors) one has 

Di(s) «: Or-*!)-™* exp [S*(*i)--«*(*>)] l n ( s -^ i ) 
•"*" I T J 

= rs — Sl\-{ {dUsi)~8Uso)]lT+mi} (H.5) 

or, if we adopt the convention that di(sQ) = niiir, 

s-*si 

Now, it was explained in reference 1 that elastic 
unitarity puts an upper bound on Bi(s)ior SQ^S^SI and 
that if ImBi(s) approaches a limit as s—> si this limit 
must be equal to IxaBip(s 1)7^0. We, thus, deduce first 
that Ni(s) should have the same limiting behavior as 
Di(s), i.e., 

Ni(s) cc (s-Si)-^si)i^ ( I L 6 ) 

and second that 

lim ImBi(s)--
sin25^(^i) 

Pi(si) 

or 
= ImBl(si), 

sin2di(si)=\i. 

(H.7) 

I t follows from formula (II.7) that \i must lie between 
0 and 1 in the physically interesting case, and formula 
(II.6) gives the required physical interpretation of the 
asymptotic behavior as well as the connection with X?. 
Our final remarks before attacking Eq. (II.2) with 
Wiener-Hopf theory are that physically we expect both 
A* and di(si) to approach zero as /•—> + 00, and that we 
hope we are dealing with a solution analytic in /. I t is, 
therefore, the first-quadrant branch of formula (II.7) 
that is of interest, where 0<5z<7r/2. 

Let us now consider the Fourier transforms of the 
various terms in Eq. (II.2), defining -

1 r00 

glM (k)= — / dx eih*ni(x), (II.8) 

ftM(*)-

gM) = 

( 2 T ) 1/2 f dx eik*ni(x), (II.9) 

(2x) 1/2 
dxeik*ni°(x), (11.10) 
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with the convention that ni°(x)~Q for x<0. If ni{x) 
oc exp (ai%) as x —> + <*>, then gj ( + ) (k) is well defined and 
holomorphic for I m £ > ah while from Eq. (II.2) we see 
that g; ( - ) (k) is holomorphic for Im& < 1. An examination 
of the definition of ni°(x) shows that gf(k) is holo
morphic for lm&>0 (remember that ai<l). We may-
then take the Fourier transform of Eq. (II.2) anywhere 
in a strip such that 0 < l m £ < l , Im&>az, to obtain 

for lm&>0 and a piece analytic for Im&<Im&2j: 

&°(*) 1 f™+i* dV gi°(k') 1 r°°+*e dkr 

2wi J-^+uk'—l 

gi^(k)ti-*lRm+gl^(k)=gnk), (mi ) 
where 

1 r™ x 
R(k)=— / dxe~ihx 

7T2 J-oo ex—l 

<t>2l(k) 2iri J_<,+* k' — k(j)2l{kf) 

— / . (11.19) 
lid J -oo+k2i-i€ k'—k <j>u (k') 

The former we identify with the first term on the left-
hand side of Eq. (11.18), and the latter with the second 
term [remembering that if ni(x) is finite except at <*> 
theng z

( + )(£) and gi^^k) separately vanish as \k\ —><*> 
within the appropriate half-planes], giving 

= l/sin2(7r^). (11.12) 

The function R (k) is holomorphic in the strip 0 < Im& < 1 
and the function l—\iR(k) is similarly holomorphic but 
with a pair of zeros when sin2(7ri&) = Xz, that is, at 

gi(+)(k)=-
<t>u{k) r+i< dk' gl°(k') 

-cc+ie & 2-Kl J-oo+ie k'~k <t>2l{k') 

and 
ku=(i/T)di(si)9 

^2Z= (iA)[7T— 5 | ( j i ) ] . 

(11.13) 

(11.14) 

2iri J~00+k2l-ie k' — k <j)2l(kf) 

(11.20) 

(11.21) 

As \i —> 0 the positions of these zeros approach 0 and i, 
respectively, while as X* —» 1 they converge on the mid
point of the strip at i/2. Since we want a solution such 
that ai=8i(si)/w, it is permissible and desirable for 

Inspection of these formulas shows that our objective 
has been achieved. The function gz(+) (k) is meromorphic 
for lm&>0 with a simple pole at k = ku, while gi(~] (k) is 
holomorphic for Im£ < 1. 

The operator di(x,x'), such that 

(+) 
ai=di(si)/T, it is permissible and desirable for f 

(k) to have a pole at k = ku but not at k^k2l. The w , ^ , > 0 / d%' **fo*')»i0(*'), gl 

problem is to construct a function gi(+)(k) consistent 
with Eq. (11.11) and with its uppermost singularity at 
k = ku. 

To achieve this end we write 

is given by 

6i(x,x') = 

1 — 
X* <t>2l(k) 

(2x)' "I J C 

dk dk' 
eik>x>~ikx QUQ^ 

k'-k <t>2l{k'j 
(11.22) 

sm2(wik) <t>u{k) 
(11.15) 

where3 

<j>u(k) = iT{-ik+al)T{-ik-ai)~]/T<*{--ik) (11.16) 

is holomorphic and free from zeros for Im& >Im&n, while 

«?5>2K^)=r2(i+^)/r(i+^-az)r(i+^+^) (11.17) 

is holomorphic and free from zeros for Im£<Im&2z. 
Evidently, <t>2i(k) has a simple zero at k = kn, while 
4>u(k) has a simple pole at k = ku, the remaining zeros 
and poles of <j>u and <j>2i lying outside the strip 
0 < l m & < l . Both <t>u(k) and </>2z(&) approach constants 
as \k\—»oo within the appropriate half-planes of 
analyticity. Let us divide Eq. (11.11) by faiik) to obtain 

where the horizontal contour C passes above ku while C 
passes below C and also below k2i. The asymptotic 
behavior of di(x,xf) may then be inferred to be 

6i(xyx') oc e-ikux=eaix^ 

x' fixed 

oc e+ik2ix==e(ai— l)x'^ 

X' —> oo 

A; fixed 

Changing variables back to s, s\ one has 

Oi(s/)^dl(x(s),x(sf))/(s1s
f)) so that 

Oi(s,s') cc (Sl-s)-ai9 
S — > S l 

s' fixed 

gi (+)(*) * / M ( * ) giKk) 
(11.18) 

4>u(k) fci(k) <t>2i(k) 

and then split the right-hand side into a piece analytic 

oc (Sl—s')-
al. 

s fixed 

III. THE FREDHOLM EQUATION 

(11.23) 

3 1 am indebted to J. R. Taylor for these expressions. 
I t remains to be established that Eq. (1.10) is of the 

Fredholm type, or specifically that 
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/

si /.si 

/ dsds'\Ki'M\*<«>. 
- 0 J s 0 

The upper limit is the dangerous point, but as long as 
a>i<\ we see from Eq. (11.23) that there is no trouble. 
The Fredholm form has indeed been restored. 

Perhaps the most immediate subsequent question is 
whether our new kernel K/ (s,sf) is holomorphic in / over 
the same domain as Bip(s). This is equivalent to the 
corresponding question about Oi(s,sf), which then leads 
us to an examination of (11.22). Evidently, as long as 
0 < X z < l , so that Im&2z>Im&n, we are dealing with an 
analytic function of / wherever X* as given by (1.5) is 
analytic. Now it will certainly happen that, for some 
choices of Si or some guesses about Regge trajectories 
and residues for the crossed channels, we shall find from 
the formulas of reference 1 that Xz> 1 or Xz<0 for some 
Re />0 . When this catastrophe occurs, however, it is a 
sign either that we have made a bad guess or that the 
aforementioned formulas are insufficiently accurate, 
because in an exact calculation unitarity requires 
O^X*^ 1. Thus, if physically reasonable solutions of the 

I. INTRODUCTION 

IN a previous paper1 the "master" or Boltzmann "gain-
loss" equation was derived from the Schrodinger 

equation for an isolated "supersystem" [^4+^D com
posed of a "system of interest" [A^\ in relatively weak 

* Some of this work was done while the author was a National 
Science Foundation Postdoctoral Fellow at C.E.N, de Saclay, 
1960-1961. 

t Part of this work was done while the authors were members of 
the Physics Division of the Aspen Institute of Humanistic Studies. 

{ The work of this author is supported in part by the National 
Science Foundation. 

1 A. Sher and H. Primakoff, Phys. Rev. 119, 178 (1960). This 
paper will be referred to as I in the present work. 

strip equations can be found they will have the property 
that the only singularities in the right half / plane are 
Regge poles, arising from the zeros of Di(s). I t is 
expected that Bip(s) and, therefore, X* has fixed 
singularities in the left half / plane. By analogy with 
potential scattering one might expect Regge trajectories 
to terminate at these points, but the continuation based 
on our approximate equations must fail somewhat 
sooner, when X* exceeds the unitarity bounds. 

I t follows, incidentally, from the manner in which our 
N/D equations have been constructed that both 
KeBi(s) and ImBi(s) are continuous through the point 
Si. In a one-channel approximation this means that the 
inelastic cross section vanishes at s=si and rises 
gradually to the correct Regge limit. If a generalization 
of the equations in this paper to several two-body 
channels can be made, a more realistic inelastic thresh
old can be achieved. 
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interaction with a larger system called the "surround
ings" [7T|. The random phase assumption was required 
for the state of the supersystem [ / I + 5 ] at the initial 
time only. The Hamiltonian 3C of such a supersystem is 

3C=3CU](0)+3C[B]®>+F, (1) 

where 3C[A](0) contains only \\A~] system dynamical vari
ables, 3C[B](0) only [B~] dynamical system variables, and 
V dynamical variables of both systems. A master equa
tion for the occupation probabilities of the system of 
interest was then derived in I under the assumption that 
the surroundings [_B~] have a large internal energy com-
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The present paper contains an extension and generalization of results in a previous paper on the basis of 
the master equation for the approach to equilibrium of a system of interest. The concept of quasi-equilibrium 
of the system of interest associated with a time-dependent temperature is introduced and is then applied to a 
description of the processes of longitudinal and transverse relaxation in magnetic resonance and to a dis
cussion of the law of entropy variation. Systems of interest of "size" comparable to their surroundings are 
consistently included in the treatment. 


