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81 81
/ / dsds'| K/ (s,8")|2< 0.
) 80

The upper limit is the dangerous point, but as long as
;<% we see from Eq. (11.23) that there is no trouble.
The Fredholm form has indeed been restored.

Perhaps the most immediate subsequent question is
whether our new kernel K;'(s,s’) is holomorphic in / over
the same domain as B;P(s). This is equivalent to the
corresponding question about O;(s,s’), which then leads
us to an examination of (I1.22). Evidently, as long as
0<\; <1, so that Imky>Imky;, we are dealing with an
analylic function of / wherever \; as given by (1.5) is
analytic. Now it will certainly happen that, for some
choices of s; or some guesses about Regge trajectories
and residues for the crossed channels, we shall find from
the formulas of reference 1 that \;>1 or \;<0 for some
Rel=0. When this catastrophe occurs, however, it is a
sign either that we have made a bad guess or that the
aforementioned formulas are insufficiently accurate,
because in an exact calculation unitarity requires
0<\;< 1. Thus, if physically reasonable solutions of the
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strip equations can be found they will have the property
that the only singularities in the right half / plane are
Regge poles, arising from the zeros of D(s). It is
expected that B;P(s) and, therefore, A; has fixed
singularities in the left half / plane. By analogy with
potential scattering one might expect Regge trajectories
to terminate at these points, but the continuation based
on our approximate equations must fail somewhat
sooner, when \; exceeds the unitarity bounds.

It follows, incidentally, from the manner in which our
N/D equations have been constructed that both
ReB;(s) and ImB;(s) are continuous through the point
s1. In a one-channel approximation this means that the
inelastic cross section vanishes at s=s; and rises
gradually to the correct Regge limit. If a generalization
of the equations in this paper to several two-body
channels can be made, a more realistic inelastic thresh-
old can be achieved.
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The present paper contains an extension and generalization of results in a previous paper on the basis of
the master equation for the approach to equilibrium of a system of interest. The concept of quasi-equilibrium
of the system of interest associated with a time-dependent temperature is introduced and is then applied to a
description of the processes of longitudinal and transverse relaxation in magnetic resonance and to a dis-
cussion of the law of entropy variation. Systems of interest of “size’”” comparable to their surroundings are

consistently included in the treatment.

L. INTRODUCTION

N a previous paper! the “master” or Boltzmann “gain-
loss” equation was derived from the Schrédinger
equation for an isolated “supersystem” [4-+B] com-
posed of a “system of interest’” [4 7] in relatively weak

* Some of this work was done while the author was a National
Science Foundation Postdoctoral Fellow at C.E.N. de Saclay,
1960-1961.

T Part of this work was done while the authors were members of
the Physics Division of the Aspen Institute of Humanistic Studies.

I The work of this author is supported in part by the National
Science Foundation.

1 A. Sher and H. Primakoff, Phys. Rev. 119, 178 (1960). This
paper will be referred to as I in the present work.

interaction with a larger system called the “surround-
ings” [B]. The random phase assumption was required
for the state of the supersystem [A4 B] at the initial
time only. The Hamiltonian 3C of such a supersystem is

=310 O +3zO+V, 1)

where 3C;4;©® contains only [4 ] system dynamical vari-
ables, 3¢5 only [ B] dynamical system variables, and
V dynamical variables of both systems. A master equa-
tion for the occupation probabilities of the system of
interest was then derived in I under the assumption that
the surroundings [ B] have a large internal energy com-
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pared to that of the system of interest [4 ] ((B]>[4]).
Finally, a master equation was derived for individual
-particle states in situations where the particles could be
treated as effectively independent, and several applica-
tions were discussed.

This previous work did not, however, take explicit
account of interactions which connect different states of
thesystemofinterest with the same energy. The purpose
of the present paper is to include such interactions in
some detail, to treat situations where the internal energy
of [B] is not necessarily large compared to [4]
(CB]=[41]), and to consider various other extensions
and generalizations of the results obtained in I.

To make the problem more definite we can write, in
a notation only slightly modified from that of I,

SHER AND H.

PRIMAKOFF

3Cra1 PP a1 (€u,0t0) = € 1a) (€ustar),
318118 (Muy8.) = 1 181 (,84),

where the states of the [A4] system, ¥iaj(esay), are
specified by their energy e, and by other quantum num-
bers a,, which distinguish among the various degenerate
states with energy e,; we have a,=1, 2, -+, 94 (ex)
where 94; (e,) is the number of [4 ] energy eigenstates
with energy eigenvalue ¢,. The states of the [B] system,
Y181 (Mu,B84), are defined analogously. The interaction V
effects transitions among mutually accessible supersys-
tem states Vi (€u,0tu) Y151 (MusBu) Y141 (€0,00) *¥181 (10,5)
with the same total energy e, +n.= e, +n,=E.

The interaction V' can be divided, for our purpose,
into a sum of three kinds of terms:

V= V[A]+ V[B]+ V[AB]E V[A]+ V[B]+ V[AB] secular+ V[AB) nonsecular (2)

where V4 and V) depend only on dynamical variables of [4 ] and [ B], respectively, V45 depends on dynamical

variables from both [4] and [B], and
[0,V 1=0;

(513, V81 1=0;
EJC[B](o)’V[AB]secular:|=0; [R[A](O),V[AB] nonsecular:I#O; EGC[B](O),V[AB] nonsecular]#o.

1 —0-
[3C(4 @,V iap®car ]=0;

©)

The various developments below will also necessitate the assumptions:

3C[A](0)>>V[A], V[AB]secular; JC[B](O)>>V[B], V[AB]secular; GC[AI(O)+3C[B](0)>>V[AB]nonsecu]ar.

Suppose now that, in addition, Vi, Visy, Vias ¥, Viap "0"ecuar are such that?

(eustu; Wu;.Bul Via ] €’ 3 NuyBu) %0,
<Eu,01u; nuyBul V[B] I Eu)au; ﬂu,6u1>7£0;
(eustu; "luyﬂul Viam secularl w0’ 5 MuBu)#0,

(eustus MusBu| Viam "7 | e’ s ufu’) =0,

for all @y, o, with a,#a,/;
for all Ba, B’ With B.5B;
for all ay, e, and By, B 4)

with .58, if au=0a, and a,7a, if B,=8.;

for all ay, @,/ and By, 8.

Then, since Eq. (3) implies that {eu,0u; Mu,Bu| V41| €23 1u,B84)=0 for all v (and similarly for corresponding
matrix elements of Vip), Viap*™e) and (e, ; u,Bu| Vias "% | ¢, 0y 5 110,0,)570 for all 952w, the interactions
Vian, Vs, Vias®°U% do not exchange energy between the [4] system and the [B] system such energy exchanges
being effected only by the interaction Viap™°"s"2r, On the other hand, one can see from Eq. (4), that the inter-
actions Vi, Vs, Vias e do'have a tendency to equalize the occupation probabilities? Ppaj(ey,e; £) and
Pray(ewrd s £) 5 Prsy(nu,Bu; t) and Piey(nu,84; t). Thus, while the interactions Vi, Vs, V[,“;»]sec“h"r do not con-
tribute to the time rate of change of (€):=> «,.qa, €uPr4](€u0u; ), they nonetheless do play a crucial role in de-
termining the nonequilibrium values of Ppaj(eu,au; ), Piay(nu,Bu; £), as will be discussed in detail below.

From the point of view of the individual particle states* within the system of interest [4] we shall show [see
especially{Eqgs. (17), (18), (32)-(45), (70), below ] that the transitions induced by the interactions Vy4j, Viap %W
tend to establish and maintain a quasi-equilibrium occupation probability distribution for the [g]th individual
particle Py,yauasi-equil [41 (5 (0, )= Py auasi-equil 4] (¢(3y(D) o (4(2);¢) characterized by a time-dependent tempera-
ture O ()=kT14(¢):

P[q] quasi-equil [A4] (%(‘1) ; t)EP[q] quasi-equil [4] (e(u(q))’a (u(q)) ; t)E Z P[A] quasi-equil [4] (eu,au; t)
all states of every

particle but the [¢]th

= Z P[A]quasi-equil [A]({u(i)} ; t): —e(u(q))le[,q(t)/{ Z e—e(u(q))/eu](t)}, (5)
{u(D}@ «(@

2 The necessity of this condition was pointed out to one of us (A. S.) by Professor A. Abragam.
3 See Eq. (I-55).
4 See Eqgs. (I-108) and (I-109).
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where
eutu=e({u®P}), a({uP}); {uDy=u®, 4@, oy o gD gD gylat L.

{u(l)}(q)Eu(l)’ u(2)’ teey, u(l)’ vy u(Q*D’ u(q+1), ceey,

(6)

and where we have neglected the effect of symmetry or antisymmetry of the many-particle wave function of [4 ]
(Boltzmann statistics). We shall also show [see Eqgs. (36)—(45), Eq. (18) ef seq., below ] that dT'4;(¢)/dt is governed
by the strength of the interaction V 4z "°"¢U1aT which exchanges energy between the system of interest [4 ] and
the surroundings (heat bath) [B] so that eventually T'4;(f) becomes equal to the ultimate and time-persistent
equilibrium temperature common to both [4] and [B].

II. THE MASTER EQUATION FOR THE SYSTEM OF INTEREST [4]

To derive the master equation for the system of interest we begin with the master equation for the supersystem®:

dPay 51 (€untu; Mu,Bus b)

Z [W[A-i-B] (Eu;au; ﬂu;ﬁu/ev,av ) anﬁv)P[A+B] (ev:av; N,00; t)

dt €v,Qv; 1y, B
h ~Wiatn (6,003 ﬂv;ﬂv/fu;aw NusBu) Pra+pi (w0t NusBus t)]: (M
wnere

2r
W 441 (€us@u s MuyBu/ €0y s 10,80) = W 14451 (60,00} M0y80/ €urQui’s MuyBus) =~h~6(eu+nu-— €0— 7o) | (€, Mu,Bu| Viay

+ V[B]+ V[AB] secular |- V[AB]nonsecularl €0,000} 770;61:) l 2, (8)

In Egs. (7) and (8), Piays(eu,®u; Mu,Bu;t) is the occupation probability at time ¢ of the supersystem state:
Va1 (€u,00) Y181 (Mu,Bu) and Wias ) (€u,@u; Nu,Bu/ €0, 5 M0,80) is the probability per unit time for transition of the
supersystem from the state Y¥1a;(€,@) ¥181 (1,8,) to the state ¥y (€w,0tu) - ¥ MuyBu)-

Let us first assume that Vg >V a1+ Vias S + Viap Pomsecular 3 situation which can occur not only when
[BI>[ 4], but also when [B]=~[A4]. Equation (7) may then be written as

d
‘-P[A+B] (eu,au; ﬂu,5u§ t)
dt

=3 Wiasn1(eusatu; MuBu/ €uwsous MuBu’ )P 1a+81 (€us0tus MuBu’ 5 1) — Prat i (€us0tu; uyBu 1) ]
Bu’

+ 2 Wiars (ewou; NuyBu/ €usttd s NuyBu’ )L P14+ B (€u,0t” 5 NuyBu’ 3 8) — Pray 51 (€u,u; 1,8 1) ]

au’,fu’

+ 2 Wiarm (éu>au§ ﬂu;Bu/fv;avi ﬂv,Bv)[P[A+B] (0,005 10,805 1) — Prat 51 (€us0tus Mu,Bu Hl,

€9, Q3 v, By (07 u)
with [see Egs. (8), (4), and (3)]

W 411 (€us0u; NusBu/ €0 MusBu VW 14481 (€005 NuBus/ €0y 5 MufB’) (i),
W 4481 (€uy®u; NurBu/ €00t 3 MyfB0) (v#u).

Thus, the statistical configuration of the supersystem [A- B] associated with the guasi-equilibrium of the sur-
roundings [ B] is described by

Prars @5 B (e oy s 1B £)= Prags ™0 BB (eyu; 1u,Bu’ 5 £) ; t— 1R Tquasicequil (B1, (11)

a condition which renders the first term on the right side of Eq. (9) equal to zero—it will be noted from Eq. (10)
that if Eq. (11) is not satisfied this first term is generally large and so produces a large (¢/dt) Pray 5y (€u,@u; Mu,Bu; ).
In this way, Egs. (9)-(11) demonstrate that in cases where Vp>>V a1+ V a5 + V4 pyRonsecular the occupa-
tion probabilities Prayp)(€u,u} 74,84} £) first relax relatively rapidly toward the Ppaypdu2sieasil [Bl (¢, o 20,8, ;1)
of Eq. (11) and then approach more slowly the ultimate and time-persistent equilibrium values®:
Pray51°% (€us0tus MusBu) = Pray 51 (60,0t 5 10,80) = 1/ a4 51 (E) ; it should also be emphasized that Eq. (11) shows
that the Prayp@es-eauil [Bl(¢, o+ n,.8,; f) are actually independent of 8.7

5 See Egs. (I-35), (1-36), and (I-54).

6 See Eqs. (I-41), (I-50), and (I-54); (4451 (E) is the number of mutually accessible states of [4+B].

7In I [see discussion after Eq. (I-63)] the Pra;B)(€eu,cu; 14,843 ) are shown to be independent of 8, if [BT>>[4] and provided that

[B] s in equilibrium; our present discussion leading up to Eq. (11) establishes this same independence even if [B]~[A4] provided that
t—ty2> Tquasi-equil [B].

(10)
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We now proceed to a derivation of the master equation for the system of interest [4]. Using Eq. (7) and following
the procedure of Egs. (I-53)-(I-62), we have for the time rate of change of the system of interest’s occupation
probability:

NusBu Bu

d d d
:i;P[Al(eu:au;t)E—’ 2 P[A+B](6u,au;ﬂu,5u;t)=§*2 Praypy(eu,ou; E— ey, Bu; )

=2 [Wia(ew,au/ €005 ) Praj(en,000; 1) — W4 (€0,000/ €uyetus 1) Praj (€us0u; 0], (12)

€,y

with Wiy (eu,0tu/ €003 £) given in terms of Wiayn(eu,@u; NusBu/ €000 10,85) by Eq. (I-57). This last equation also
shows that the Wia)(€w,2u/ €00 ; 1) are actually independent of time ¢ if the Ppais) (€, ; 70,8, ; £) are independent
of B,.” Thus, in light of Eq. (11) et seq., we see that once the quasi-equilibrium statistical configuration of [B] is
attained, the corresponding system of interest transition probabilities W4 ®asieauil [Bl(¢, o /¢, a,; ) are actually
independent of time ¢, and are in fact equal to their ultimate and time-persistent equilibrium values, i.e.,
W ayaeasieauil 1B (¢, v, /00005 £) = W 141 * 3! (€uy0tu/ €0y00) fOT t— 1202 Tquasi-equil (B1. Equation (12) and Egs. (I-60)-
(1-62) then give

Prayetil (enan)  Wiatl (en,on/ent) s (E—eu)

Prareasil (e,0,)  Wiayeauil (e,00/ ena)  Mim (BE—e)

(13)
and Eq. (12) becomes for t—#02 T quasi-equil [B] :

d .
;i;P (41 (w0t s £) =2 Wa1e®il (ey 00/ €u,oa’)[Pra) (e’ 5 1) — Prag (€wyera; 1) ]
+ X [Wiatl (ew,an/ €0,00) Praj (en,n ; £) — WiareUil (€,,00/ €u,00) Pray (€usn; )] (14)

ey, ay(v€u)

We proceed to discuss the relative magnitudes of W 4)®! (ey,0u/ €u,a’) and Wia; * 8 (ey,000/ €,), (v7u) on the
right side of Eq. (14). Let us suppose that not only is Vs >>V (a4 V a5 5818 4 V 4 5y "07se¥1ar byt that in addition
ViV ias®ear >V 4 pyronsectlar Then from Eq. (I-61) we have

Wil (ey,au/ €uad)= 2, Wiarn (€u,u; E— €uy Bu/ €ustu ; E— €uy Bu')/ N5 (E— €4)>>W 470uil (€u,0tu/ €,0t0)
Bu, By’

= 2 Wuin (ewau; E— ey Bu/ €003 E— €, 8,)/Np (E—e))  (v#£u), (15)

Bu,Bv

where the inequality follows since Vig+Viap secular  gp( V (4 pRonsecular contribute, respectively, to
W ra+B) (€u0tu; E—€u, Bu/ €wu s E— ey, Bu') and Wiay by (€u,0tu; E— €y, Bu/ €000 ; E— €y, B), (v7£1) [sce Egs. (8), (4),
and (3)]. Equation (15) shows that with arbitrary Ppaj(eu,etu; bo), to begin with, the first term on the right side of
Eq. (14) will dominate the second term. Under these circumstances the Praj(eu,aq;t) will first relax relatively
rapidly toward the quasi-equilibrium values:

P[A] quasi-equil [4] (euyau§ t) = P[A]quasi-equil t4] (fu,au’; t) ; t_toz Tquasi-equil [41, (16)

and then, i.e., for t—#2 T quasi-equil [4]1>>T quasi-equil [B], approach more slowly the ultimate and time-persistent
equilibrium values given in Eq. (13). It is also worth mentioning that

d d APy (€w,u; ) ,
-d—(e)tE— > elPu(ean;t)= 2 o= 2 (u— €0) Wiar 0 (eu,@u/ €0,00) Praj (0,005 1),
¢

eu,au €u,au dt €u,au; €v, av(v74U)

so that the transitions [eu,0u]—> [eu,./] associated with the action of Va4V 145°!* do not contribute directly
to the time rate of change of the average value of the energy of the system of interest [4].

III. THE MASTER EQUATION FOR AN INDIVIDUAL PARTICLE OF THE SYSTEM
OF INTEREST [A] AND TIME-DEPENDENT TEMPERATURES

Following the procedure of Egs. (I-108)-(I-111), Eqs. (14) and (I-61) yield for the time rate of change of the
occupation probability of the [¢Jth individual particle [see Eq. (5) for notation]:

d
—Prg @ 1) =3 {[Wig@2/v'D; ) Fwiq (wP/v(D; ) JP1y (2?5 £)
dt 0@
—[Wia (0 2/u?; ) twpg (02 /uD; 1) 1P (u'? 5 1)},  (17)
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where
Prg®;0= 2 Pu({u?};1)
d {u®} @
{W[q] (w2 /v t)}= 5 W ageasit ({0} /{v0}) Pray ({009 t}){ 8 (€us€v) } Y Pu({o®);0)
w9/ 050 (@)@ (yo)@ [1—6(eu,e0)] (s} @

Wiars ({u9}) ; E— ey, Bu/ {27} ; E—e,, Bo) 3 (€u,€r)
= DY .
> Pray ({2 }’t)l[1~6(eu,e0)]}/

2 Pu({v};0) (18)

(v} @

(0D} @ (D] @, 8,8, Nz (E— )

and where t—#02 T'quasi-equil [B]. The individual particle transition probabilities W g (%9 /v(?; 1), w4 (u(? /209 ; §)
are thus seen to be associated with transitions of the system of interest [4] between states of equal energy and
unequal energy, respectively, and arise from the interactions Via+Vap %" and Vg Porsecular regpectively.
[See Egs. (8), (4) and (3).] If the system of interest [A] is, as a whole, close to equilibrium, we can write
Pray({v 9} ; )=2P4,°%1 ({#¢}) so that combining Eqgs. (18), and (13) or (I-60):

W el (4@ /3(D) w[q]equil (u'? /y(D)

= Y  Pueail({u®})/ ¥ Pyl ({p®})

W[q]equil(v(q)/u(q)) w[q]equil(v(q)/u(q)) {u®} @ (o0} @
=3 Nag—rq (e e(u D)) Prayeavil (ey,00) /2 Mpar—[q1 (€— () ) P rajeail (e,,00,)
=2 Niar—rq1 (e (@ 9))N5) (E— )/ 2 Npar—1q1 (&— €(0(2) )N 51 (E—e,)

o e(u(D) [0 A) o~ [e(u(@)12/2[0141712. . . [ o—e(0(D)[O[ 4]~ [e(0(@))]2 2
= g~ (u(D)/0[4) g [e(u(D)]2/2[O[4)"] /e €(v(0)[0[4]p—[e(2(2)]2/2[0[4)'] e (19)

with
d
[9[A1]‘152<d— 11131[A1—[q1(6u)>91[111—[q1 ()N (E—en) / 22 Mpar—ta (€)M m (E— €u)
eu \Q€y €u
1 (¢"(E)) ’ 1 t
=—— InMja1—(4 ) )= ——— |nIT E 20
aamy BN Gy () G0
and 2
[9[111']‘252(;—;31[@«[:11(eu))m[m (E—éu)/z N1t ()N im (E— €)+[O141 172, (21)
€y €y €u

where, in Eq. (20), €!(E) is the value of €, for which 9141_(q (€u) -5 (E—e.) has a (very sharp) maximum. An
alternative form of [O4; ] can be obtained by differentiating:

2 Niar—1q (€) N my (E— €)= 22 Npaj—1g1 (E—n) 95 (1)
€u Nu

with respect to E; we find:

[9[A1]_1=Z( ?

pye Indz (E"fu)>31[A1—[q] (€)1 (E— eu)/z Mpar-1a1 (€2) My (B— €

)
>~ InN g (E— € (E)). (22)
oE

Since, in addition [see Eq. (13) or Eq. (I-60)]

(Oeauine— e @yeanil= T [e,— e(u(@) | Praj_r il ({0} (@)
{u®}@

=3 [eu—e(@?) 0 a1—1q1 (eu—e(u(?) )N (51 (E— ex—e(u(?) ) /3" TMa1—1g) (eu— e(u$9) ) 5) (E— eu— e(u'?))

€u

= (£), (23)
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we have from Eqgs. (22) and (23)
a
[9[/11]_1%’5 In9 ) (L—(e)eail). (24)

Similarly, we obtain
62

[e[A]’]—Qg—gE; In9T; 5 (E—<e>cq11il)

I}
g—gg[emE)]—lz[em (E)IYE, (25)

so that, as long as [4] and [B] each contain a large number of individual particles, we can replace
e eCuD20004)1? x g~ 1e(w(D)/O[aNl [(u()/2E] by unity and write on the basis of Eqs. (19) and (17)

Wi geauil (2@ /9(D) gy yeauil (5(0) /9(D)  g—e(u(D)/O[4)
W (0l (000 /(D) oy geauil (560 /(D) g—ee@)/O(a)

Py geauil (u(q)) = —e(u(‘I))IG[A]/Z g e(u(@)/0[4] (26)

w(®

Tt is to be emphasized that Eq. (24) for ©(4) is identical with Eq. (I-63) for ©=£T provided that () * 1%l F = (y)eauil
i.e., provided that [4 <[ B]; thus Eq. (26) and in fact all of the results in the present paper, derived for the case
[A]~[B] (i.e., (& ~ E~(n)1l), become the corresponding results for the case [4 <[ BT if O4; is replaced by
0. It may also be mentioned that Oz, defined, e.g., as in Eq. (22) but with the roles of [4 ], [B] interchanged, can
be shown to be equal to O4;; this result is, of course, necessary for a consistent treatment of equilibrium between
[4] and [B1].

As a particular application of Egs. (17), (18) we deduce the equation for the time rate of change of the average
energy of the [¢]Jth individual particle, {¢q): Thus,

d d AP (03 1)
“{;‘(ErthE“ 3 )P (u?; )= ¥ el ®)—
|

0 2@ dt

= X e[ Wig@2/v'?;)Prg(v'?; ) —Wia (/D5 ) Prg (w95 1)]

w (@, (D

+ X e )[wig @ /v @5 )Py (95 ) —wig (0 P/ul?; )Py (w'?; 1) ]

w(@ (D
= X (e/FNa)[W et ({(u0}/ {09}) Pray ({v2} 5 ) = Weay i ({0} /{u2}) Pray ({w?} 5 £) 1 (eus0)
w®} {o(D
o + X Le@ @)= () J[wig (/v )P (025 0)],  (27)

W@ (@

where we have used, in the first term on the right side, the identity of the individual particles and the effective
additivity of their energies to form e,. This first term on the right side is now seen to vanish [because the &(e,,e,)
only admits contributions to X o}, o)+ + With e,=¢,] and we obtain

d
;("[q])t: > Le(@?)—e(@ @) J[wig @ 2/v P ) Prgy (v?; 1) ]
t w(@ y(@

=3 X [e@@)—e@ ) wq @ /v 25 )Pg (0?5 ) —wig (0 0/u' ;5 )Prg (u'; ], (28)

w(D, (@

which is to be compared with the expression derived above for (d/df){e) in that again only transitions of the system
of interest between states of unequal energy contribute to (d/df){e(q)e.

We now consider the values of Wiq (#(?/9(?; #) in the quasi-equilibrium statistical configuration for [47; in this
statistical configuration Ppqavasieasil 1) (e, o o f)= Py wasieauil (l(e, o, 5 1) for all ay, ay; t—t6> T quasi-equil [4]
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[Egs. (14)-(16)]. From Egs. (18) and (16) we then have
W[q]quasi-equil [A](M(q)/-o(Q); t)
W[q] quasi-equil [A](v( q)/u( ) ; t)

= Z Pra quasi-equil [A]({u(i)} ; t)/ Z P[A]quasi-equil [A]({-I)(i)} ; t)
{u®}@ {o®} @

=3 Npaj—q (eu— e(u ) ) Prayavasieauil (e, 0,5 8)/3° Npaj—q (0— €(v(?)) Pragwasieauil [4](e, a5 8), (29)

€u €u

so that, by an argument similar to that in Egs. (19)-(26), we have
W[q]quasi-equil [A](u(q)/v(q) ; t)/W[q]quasi-equil [A](v(q)/u(q) ; t)= —E(u(q))le[.d](t)/e—e(v(q))le[,q(t), (30)

with a time-dependent temperature Op4;(f) defined by

d
(O ()] '= Z(d_— InJa3-1q1 (eu))mm]—[ql (eu) Prayavasieauil [4](e, a,,; 1) /

€y €y

2 Npa)—tq) (€u) Prayavasieauil ) (e, a5 8).  (31)

€y

Equations (31) and (20) show that as Pgytuesi-eauil Ll(e, o < 1) — Ppgy°0% (e,,04) = N5 (E—e,)/9 [Eq. (I-60)],
O141(£) — O14).

We proceed to treat Eqs. (17) and (18) for the evolution in time of the Prq(u(?;¢) for i— 42 T quasi-equil [4]
DT quasi-equil [B] 1D a self-consistent approximation where we replace Wiq(u(?/v'?;¢) and wiq(u(?/v(9;¢) by
W guasieauil [4)(54(@ /3(@ 5 1) and w1 (42 /9(?; t), We then have from Egs. (17), (18), (30), and (26):

d o —[e(@?)—e(u2)]
—Prg(u'?; t)= 2 Wgavasiequil [4](3(a)/y(D); £) IP 1a (22 t)—eXP|: :|P ta (@ ?;1) }
dt ol O41(2)
— [e(09)— e(u(®)]
+ ¥ wgeast (u<«>/v<«>>{P[q] (9 )= exp] Jpratuc; t)]. (32)
@ (4]

The replacement used is suggested by the fact that Eq. (18) shows that the transition probabilities W g (u(9 /4(2 ; £)
and wiq(#'?/v(?; 1), in general, depend on time much more slowly than Ppy({o®};¢) and Prgy(v(?; 1)
=> o0 Prag({v?}; 1), and by the fact that Wigu(?/v(? ;1) and wiy(@'?/v'?;4) tend to establish quasi-
equilibrium for [4 ] and equilibrium between [ 4] and [[B], respectively. Supposing further that V44 V4 Secular
SV aptonsecular we have [see Egs. (18), (15), (8), (4), and (3)]:

W[q]quasi-equil [4] (u(q)/v(q) ; t)>>w[q]equil (u(q)/v(‘ﬂ), (33)
so that, setting o
Prg(u'?; t)=Pyqauasiequil 141y D ; 1)+ Doy (ul?5 1),

P[q]quasi-equil [A](u(q); t)E —e(u(q))lem](t)/ > e—e(u(q))/e[zi](t), (34)
(D

Dy (“(Q) 5 t)<<P[ql quasi-equil [A](”(Q)Z t); t-tOZ Tquasi-equil [41,
and substituting Eq. (34) into Eq. (32) we get

d
_P[q]quasi-equil [A](u(q); t)

d 1 1
—_ ___..._.._[P{ ]quasi-equil [A](u(Q)- ;)]}_( .___.>
[d(l/em ®) " " la\ew (1) o
o~ Z W[q]quasi-equil [A](u(q)/v(q) ; t){D[q] (7)(4); t)__ —[e(v(q))—e(u(q))]IB[A](‘)D[q] (u(q); t)}
P1¢:

+ Z w[q]equil(u(q)/v(a)){P[q]quasi-equil [A](v(q); t)_._ —[e(w(q))—E(u(ﬂ))]/9[A]P[q]quasi-equi1 [A](u(q); t)} ;
(@)

t—loZ Tquasi-equil [43. (35)
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Equation (35) determines the relatively small terms Dyq (9 ;£) if the time-dependent temperature O 4 (¢) is known.
To find this Op() we substitute Ppg(u(®; )=2Pigtaseasi Ml (4 ;) [Eq. (34)] and wiqu(®/v?; 1)
a2 (19 /9(D) [Eq. (32) ff] into Eq. (28) for

d dPq
E(é[ql>:= 2 e(ul?)

2@

(u( ) ; t)

and obtain

d< 1 1>
dt\O (1) Opa

—1 Y [e(u®)— e(v() Jwpgoauil (24D /0t D)

@ ,y(@
N X{P[q]quasi-equil [A4] (‘l)( q); t)_ —[e(v(Q))—E(u(ﬂ))]IB[A]P[q]quasi-equil [41 (u(q); t)}
- <(e[q])2>tquasi-equil [4] — (<e[q}>tquasi-equil [A])2 ’
) t—to 2 Taquasi-equil [4], (36)
with o
<(€[q]) n>tquasl-equ11 [Al= Z [e(u(q))]nP[q]quasi-equil [A](u(q); t). (37)
w(@

Equations (36) and (37) yield ©14; () which, apart from the Dy (u¢?;¢), determines the evolution in time of the
“Boltzmann-like” Ppy(%(? ;1) of Eq. (34)—it will be noted that on the basis of Eqs. (35)-(37)

Dy (ul9; )~ I:.wequil (u(q)/v(q))/unaSi-eqUil [4] (u? /99 £)] (P[q]quasi-equil [41 (w'?; t)— Pry equil (u(?))
and so Dy @(?; )<K1 [Eq. (33)]. Two specially simple cases of Egs. (36) and (37) may be mentioned?

a: O (@), Orar>e(@?) for all important states #(?

d 1 1 - . 1 1
Zi(eml (i)_?AI):—Ta <9[A1 (l)_wé-[:])y (38)
ral=3 X [e@®)—e( @) Jwgeani (u(@/v0)/{ 3 e @) —[ X e(w2)2/( X 1)}, (39)
(@ y(@ 2@ 2@ )
< ! ——1—)=( ! ———l—)e—(‘—‘*ﬂ s f—t 2 1¥ —ty=Tquasi-equil [4]. (40)
O () O/ O (t*) Oy

B: e(?)(1/014(t)—1/0141)<K1 for all important states #(? and all ¢ considered

d( 1 1 ) 1< 1 1 )
— —— )= -—), #
dt\O1(f) Opa O (t) O (1)

1S [e(uf®)— e(v6D) Joavg yeanil (@ /o @) P eavil (3(2) /

—1

T =
w(D y(@
{ 2 [e(m(2) JPPrgeavil (@) —[ 2 e(u'P)Prgeanil (5(2) ]2} (42)
4D w0
e
—_ )= —— e =N, | — > *— o= T'quasi-cquil [4]. 43
O () O Ora1(t*) O ’ &

Equations (40), (43), (34), and (35) determine the evolution of Pig(%(?;¢) toward its equilibrium value of
Pl (4(9) given in Eq. (26) (see also Appendix A). It is also interesting to mention that for

OparKe(1(D)—¢(0(D);  €(0(?) <e(19)<e(2@) <0 -+, (44)
Eq. (42) reduces to
w[qlequil(()(q)/l(@)
- , 45
1—exp{—[e(1(?)—e(0)]/O 14} o

8 The result in Eqs. (38)—(40) was first obtained in the special case of magnetic resonance (014)(#) is then the time-dependent spin
temperature O s(#)) by L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).

—1__
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so that the rate of relaxation of ©4;(f) toward ©4; becomes independent of O4; for very low ©p4; provided that
w1 (009 /1(D) is itself independent of Op4;. This is expected on the basis of physical considerations in many
instances—e.g., when the [¢]th individual particle of the system of interest [4] is the [¢]th nuclear spin with
ground, first, -- -, excited states: ¥4 (0(?), Y4 (1¢?), - - -{e(0?)= —uH,, e(1¢?)=—u[(I—1)/I]H,, ---} and
when the relaxation transition ¥4 (1(?) — ¢4 (0(?) involves the creation of a phonon in the surroundings [B].

We next consider situations where V34V (a5 %M <V 4 gy Pomsectlar g that Wig (u(?/v(? ; §)<Kwy g (w9 /(9 ; 1)
in Egs. (17), (18), and (32). In this case Eq. (32) for the P4 (#(? ;) becomes to a sufficient approximation

I: €(009) — e(u(®)

O14]

:|P tar (95 1) ], (46)

d
;‘P[ql (w95 8)= 3 wigeawil (u(d/v(D){ Pry (v?; 1) —exp.
7 (@)

and its solution is given in Eqs. (I-130)-(I-132) in the general form
Py (ul®; §)= Py (@) 43, K, (u(®)gortt=t0), @47

with the wy, ws, -+« playing the role of [wiy equil (4/(9) /3(9) — dependent ] relaxation rates and the K, (x(?) depending
on P (u'?; t) as well as on wp %8 (1(9 /2(?), This case is discussed in detail in I [see Eqgs. (I-110)-(I-145)].

IV. TIME-DEPENDENT SPIN TEMPERATURES IN MAGNETIC RESONANCE

We proceed to apply the general theory of the preceding three sections to the concept of a time-dependent spin
temperature Oy (£)=04)(f) in magnetic resonance. It is now fully appreciated® that the supposition that the spin
system of interest [ 4] returns to equilibrium along a succession of Boltzmann distributions, each described by an
appropriate G4 (t), is not just a convenient artifice to find an approximate solution of the master equation for [4]
but is in many circumstances an accurate description of the corresponding relaxation process [see the general dis-
cussion in Egs. (32)-(45) above].

The spin system of interest [ 4 ] will be properly characterized for times —£y> Tquasi-equil [4] by a time-dependent
spin temperature O4;(f) if W @2seauil 141 (54(@ /50 5 £)>>q0( 9% (4(D /5(D) [Eqs. (33)-(45)]; in general no such
characterization will be possible if the inequality is reversed. An example of how one calculates
W gauasi-eauil [41 (0 /9(@) ;) is worked out in Appendix B where it is shown that Wguasiauil [4] (4(a) /9(a); 1)
arises from the “flip-flop” terms of the secular part of the magnetic dipole-dipole interaction; from Eq. (B1) these
“flip-flop” terms are

Via=V gip-aipsecular flivflop=3 57 A4 [ T1 11 L1+ 1n-T1a+],
fra

4 = (—37*v*/77,*) (1—3 cos’0 1), (48)
1—1=(r;6,970:s0),
r;=R,+£2R; (rigid lattice),
whence Eqs. (B6), (B7) yield, with #(?=m =14, ¢(u(?)=—hyHqm,,
W gauasi-equil [41 (3, —1/m.; £) = e HrHO OLAIO T jauasi-equil [41 (3 /mg—1; £)

={I—mgt+1)([I+m)Wiq(t)/{X ematrHol 01410}
" (49)

™
W10 ()= O (A o VB LL (I+1) 5 ossonsl L1— () s 141,
P

and a spin temperature Op4) (£) exists if this W, avasieauil 14 (1 /5 £)>w( %9 (m4—1/m,). In a nuclear spin
I=1/2 insulating crystal with a normal concentration of paramagnetic impurities ;g% (m,—1/my) arises
ultimately from VigpPonsecwlar={V goqip of nuclear spin-impurity electronic spin} and this in general gives
Wi g (mg—1/m <KW g@02steauil 141 (45 —1/m,). In a normally impure crystal with nuclear spin I>1/2, e.g., NaCl
with I(Na22)=1I(CI3)=3/2, w4 ™! (m,—1/m,) is however dominated by Visp"onsecular—y . nonsecular of T
(I-125) [the corresponding w4 (m,—1/m,) are then given by Egs. (I-126)-(I-129)7; in this case it is not
difficult to set up situations where w;y°® i (mo—1/m,) is >> as well as <KW @uasteawil (4] (5 —1/m ;1) (see
below). As an illustration we shall in fact consider the case of NaCl and first suppose that the
Wguasieauil L4 (3 —1/m ;5 8) of Eq. (49) is much larger than the wp®% (m,—1/m,) of Eqs. (I-126)-(I-129).

9 A. Abragam and W. J. Proctor, Phys. Rev. 109, 1441 (1958). See also R. T. Schumacher, bid. 112, 837 (1958).
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Then a time-dependent spin temperature ©4;(#) exists and is determined by Egs. (36)—(40) and the

Pra (mq; 1) P, duasi-equil [A](mq; t)=emqh7Ho/9[A](t)/{Z quﬁvHolelA](c)}’
mq

indeed, return to equilibrium along a succession of Boltzmann distributions. The longitudinal magnetization

Ny

(W) e=(@ry/Via)[)i=X Prg(mg; oV—’”fwmq;
[Eq. (I-133)] is then given by ’ [A]
— equil
@—(u)—q—= —2 exp[ — (24/5) (w'+4w") (t—1*)], (50)

( 'u>equil

where %’ and w” are quantities defined in Eqgs. (I-126)-(I-129) as proportional to (4! (m,—1/m,) and
w1 W (m—2/m,), respectively,! and the conditions at time #* correspond to those existing immediately after a
180° pulse, i.e., (Wempr=—(w)*®!  On the other hand, if w4 (m,—1/m,) is much larger than
W guasieauil U4Y (g —1/m 45 ), no O41(f) can be defined and Eqs. (46) and (47) must be used to obtain the
Prg(mg; t). Along but straightforward calculation (see also, Appendix B of I) then yields these Ppq(m4; £) and the
corresponding (u); is

() e—{ppeauil
< l‘) equil

We now remark that the {u); of Eq. (50) and the {(u); of Eq. (51) are identical if 2'=w" so that an experimental
distinction between the case where a time-dependent spin temperature is present and one where no time-dependent
spin temperature exists depends on the magnitude of the parameter (w'—w'")/w’. This parameter can be obtained
from the explicit values of o™ (m,—1/m,), W™ (m,—2/my) (and hence of =/, w'’) given by
Van Kranendonk!? and is

=—2{(1/5) exp[— 24w’ (}—t*) ]+ (4/5) exp[— 24" (t—t*)]}. (51)

w—w"  78—390a2
W 723—312% (52)

o’=are’+arfes’+ar’as?,

where ay, as, a3 are the direction cosines between the magnetic field Hg and the three cubic axes, and 0=<a2<1/3,
so that (w'—w'")/w'=21/10. Thus, the difference between the {u), of Eq. (50) and the (u); of Eq. (51), while small,
should be measurable. A proposed experiment in NaCl designed to set up the conditions W ,duasiequil [4]
w8l and W esteauil [dleqy 1698l and so establish alternately the (u); of Eq. (50) and the (u), of Eq. (51)
may be attempted as follows.

We first study the Na resonance and produce the condition where W g duasi-eauil [4l gy cequil [ 0 (1) =0x4 (£)
does not exist; Eq. (51) applies] by reducing the 4 ,,(Na—Na) of Egs. (49), (48) to very small effective values.
This reduction is accomplished by rotating the NaCl crystal rapidly about one of its cubic axes, the axis of rotation
being set at an angle a;=1/V3 relative to the magnetic field.” On the other hand, the condition W) asi-eauil [4]
Swi ¢! [0y () exists; Eq. (50) applies] holds normally in the nonrotating crystal which, for simplicity, can be
oriented with a;=as=a3=1/V3.

A second method to pass from one of the two cases of interest to the other involves the study of the Cl resonance.
Since v (Na)>>y(Cl) the local magnetic field seen by a typical Cl nucleus is essentially due to the various Na nuclei,
and this local field varies rather rapidly from one Cl site to another.* As a result the secular character of
1350 Arg(Cl—=CD[I 11l 1—+I1-L1g1+] is destroyed [see Eqs. (48) and (49)], Wyqauesieauil [4] hecomes

10 The expression in Eq. (50) was first obtained by R. S. Meiher, Phys. Rev. Letters, 4, 57 (1960).

1 On the basis of E(}s. (34)-(45) it should be emphasized again that the time dependence of the O4(!) and so of the
Prgy(my; )P gquasi-equil [A]l(m,; ) is given solely by the wgequil((@ /(@) even in this case where wiqequil(x(@/y(®)
KW [gquasi-equil [4] (4@ /1(D; ),

2 J, Van Kranendonk, Physica 20, 781 (1954).

13 See for example J. Dreitlein and H. Kessemeir, Phys. Rev. 123, 835 (1961) ; I. J. Lowe, Phys. Rev. Letters 2, 285 (1959); E. Andrew
and R. Newing, Proc. Phys. Soc. (London) 72, 959 (1958).

14 A similar idea has been successfully exploited by R. V. Pound who measured the change in Ty (Li) ({t)¢— {u)equil~eg—(¢—t/T1) for
a LiF crystal [v(Li)<y(F)] as a function of o2. In this case T;(Li) is dominated by nuclear spin diffusion to paramagnetic impurities.
See R. V. I’;ound,sj. Phys. Chem. 57, 743 (1953), and A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, New
York, 1961), p..386.
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Kwi®® and Ocy (£) does not exist [Eq. (51) applies]. If contrariwise, the local magnetic field due to the various
Na nuclei is averaged out by application of an intense rf magnetic field at the Na resonance frequency,
V dip-gip>eciar flie-flor (C]— (1) is returned to its normal value, W g @2steatil 4] i again w9 and a Ocr (£) is
present [Eq. (50) applies .

We now proceed to a discussion of the transverse magnetization {u');=((#v/V 141)I z): from the point of view of
the existence of a time-dependent spin temperature in a frame rotating with angular velocity vH, relative to the
laboratory frame.'® Here the theory of Eqs. (7)-(47) cannot in general be immediately used, since as shown in I
[Egs. (I-162)-(1-190)], a master equation for the time evolution of the appropriate statistical configuration cannot
in this case always be defined.

To treat the problem we consider instead the transverse magnetization (u’); following a 90° pulse and assume
further that the rf magnetic field associated with the pulse, H; (), is not removed at time ¢ but rather hasa (—90°)
phase shift introduced into it. We then have

w/2
H,(t)=—H\{sin[wr({—to) Jt+cos[wr(t—1) 17}, to—Lét_S_to;

w1

(53)
H]_(t) = —Hﬂsin[w,:(t—to) —T/Z]QA?‘{‘COS[:COL(I:—):U)—71‘/2]:9}, th<t ;
wr=vHy; wi=vHi.
In addition, Egs. (I-146) and (I-147) yield
W) e={(Try/Vial o)s= (y/V1a)) Trace{p()I .}
= (Try/V 141) Trace{prot() 2:x0t(1)}, (54)
where
¢
o) = p)-+ (/) / [o(0),5e(0)
to
3@(!) =3Cra (0)+5C[B] (OFS V+3Crf(lf)53(3(°)+ Vsecular | Vnonsecular+gcrf(t)’
R[A](O)E —thIz; C‘Crf(t)E —hwll'ﬁl(t),
ehoLIzl8[4]—3[B)(V/0]B)
p(t))= 5 Br1=061s, (55)
Trace{ethIz/O[A]e—~JC[1}](0)/0[31}
pmt(t)'Ee(i/h)(t—to)SC[A](O)p(t)e—(i/h)(t—to)ﬂC[A](O)
= g0 L= t0) Lsp (f)gio L(t—t0) I2
£ rot (1) = W =0 [4] O o—(il 1) (1~ 103 (4]
= I;.; COS[wL(t—fo):H—Iy sin[wL(t— Ifo)],
so that

(W)= v/ Via){cos[wr(t—10)] Trace (prot (1)1 o )+sinlw 1 (.—10) ] Trace (oot (1))} (56)

identical with Eq. (I-154). In T it is also assumed on the basis of a physical argument that Trace (pro4(#)I,)=0; with
this argument Eq. (56) becomes

W)= v/ V 141) cos[wr(t—1t0)] Trace (pros ()1 ). (87)
We proceed to calculate pro+(£). Equations (55) and (53) yield

Prot (t) =p (tO) + (i/h)/ I:prot (t,), GC[B] :rot(o) (tl) + Vrot (t’) +3Cri:rot(t,>]dt,y (58)

with o o
3C1py:rot® () = gm0 L= 0TG50 g Dgio L= t0) L= 50 O,
scrf:rot(t’)E *"”L(""‘ﬂ)Iﬂﬂcrf(t’)ei“’lt("_"’)I== _hwllz’ (59)

V rot (") = g~ 0 L(¢'—t0) Is( I/ secular | [/nonsecular) giw L(#'~t0) Iz
= Jsecular L |/ nonsecular (l')’

15 See for example, A. Redfield, Phys. Rev. 98, 1787 (1955); W. 1. Goldburg, ibid. 122, 831 (1961); C. P. Slichter and W. C. Holton,
ibid. 122, 1701 (1961); M. Goldman, and A. Landesman, Compt. Rend. 252, 263 (1961).
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which is equivalent to

i rt
()= Iy (D 0r=p(1) / Lo (), (¢)Jar
to

‘ t J/ nonseculary 2
=p (t0)+_ [P (tO)) U(tl):ldt,_}_ terms~| ————— ), -+, (60)
7l 500
with
K= _hwllz_l-gcwl(o)_l_ V'secular = (0) | /'secular ;
(61)

U (l) = ol (t—to) erotnonsecular (t)e—(ilh) (t—to)x,

We are now ready to evaluate (u); by substitution of Eqgs. (60) and (61) into Eq. (57). We obtain, using also
Eq. (I-10) and the fact that [x©,7,]=0,

W= Gry/Viar) COSEwL(t—to)][Trace (e~ 108y (1) M= )

7 ¢ V/secular J/nonsecular J/nonseculary 2
+(%>,/¢o Trace([p(t0),U () ]I ,)dt +terms~< ey ), ( v ) R } (62)

and note that the second term on the right side of Eq. (62) vanishes since

Trace (Lo (ta),U (¢) 1 s)="Trace ([1 ,p(t) JU (¢')) (63)
for any three operators p(to), U(¥'), I, and since, on the basis of Eq. (55),
I:I %P (to)]= 0. . (64)

We therefore see from Eqs. (62)-(64), (57) that, apart from the there indicated higher order terms, the effective
Hamiltonian for the time evolution in the rotating frame of the statistical configuration of [A+ B] is the « of Eq.
(61) where, for subsequent discussion, we identify Vs°UlaT with Vqip-dip5ec™!e*, Further, if (V dip-dip 5127 /x®)3,
(V aip-aip %927 /k@)4 -+ and {Trans ™/ [w1+ (kT Debye/%) (Tatt/ TDebye)]} are all small compared to unity (Tirans
is a characteristic relaxation time for the transverse magnetization and T'jay is the lattice temperature) a master
equation holds for Ppay pirot (5 £) = (2| prot (£) | )= | e~ M (= t05p (45) il (- t00x | 44} [see Sec. G of T and Eqs. (I-22)—
(I-36)]. As a result we can introduce a time-dependent spin temperature in the rotating frame provided that
I/V[q]qum'equil LAY (4= 1/g5 )Dw ™ (ug—1/pg) Where po=1I1q, and where Wqg®2s-eamil L1y, —1/u,;4) and
w9 (u,—1/u,) arise, respectively, from V dip-aip*cc™1a* fipflop and {Vgip.aip of nuclear spin-impurity electronic
spin}, the last interaction being appropriately expressed in the rotating frame.
In concluding this section it is interesting to make a few further remarks about the (u'), of Eqs. (62)-(64):

)2/ V 4 cosior (1= 1] Trace e -0y ()t M- ],
K= ___hwlI x+3C[B] (0)+ Vdip-dip secular EK(o)_*_ Vdip-dip secular .
In the limit of a rigid lattice we have [5C(z @,V dip-dip***!3 ]=0 (see Sec. G of I) and Eq. (65) becomes

(W)= (hry/ Vi) cos[wr(t—to)] Trace{exp[iwi(t—to)] s— (/%) (t— to) V dip-aip ™2 Jp (£)
Xexp[ —iws (t—1to)] o+ (i/7) (¢—to) V dip-aip®**'3* 1.},  (66)

(65)

which in the limit of H;— 0 for £>4 is
W'y =2 @v/Via) cos[wr(i—to)] Trace{exp[— (i/%) (t—to) V dip-aip****3 Jp (to) exp[ (i/%) (t— o) V aip-aip**'* ]I .} (67)

identical with Eq. (I-175). Equation (67) predicts an oscillatory approach of {{u)./cos[wz(t—1t5)]} to equilib-
rium—Lowe-Norberg beats—which is presumably absent when H; is introduced to the extent: ZyH127%2v%/ (7 £ ) min®
so that Eq. (66) applies. In this connection an explicit evaluation of the trace in Eq. (66) and performance of the
corresponding (u'), vs ¢ measurement would be of great interest since we believe that no Lowe-Norberg beats will
be present even for a rigid lattice if AyH1 2/ (7 1g)min®. In fact, this last condition is necessary when the lattice
is rigid for the validity of a master equation for Pratm)rt(#; ) (and hence for the absence of the beats) and is in
that case essentially equivalent to the condition (V dip-aip 52" /k@)3, (V gip-dip 52T /x®)4, ... &K1,

16 Nuclear relaxation in the rotating frame due to spin diffusion to impurity electron spins is worked out in detail by I. Solomon and
J. Ezratty, Phys. Rev. 127, 78 (1962).
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V. THE LAW OF ENTROPY VARIATION AND TIME-DEPENDENT TEMPERATURES

We develop in this section equations for the evolution in time of the “individual particle entropy”:

Sta)=—k 322 Prg@?;8) InPry(u?;1). (68)

w(@)

Comparison of Eq. (I-67) with Eq. (68) indicates that the entropy of the system of interest [4]:

S@=—k 2 Pra({u};0) InPray({u9}; )=NaSiq (), (69)
()
if
Pray({u®}; ) =TT P (u®; ) =[P ('@ ; 1) ]V14), (70)
»

the last relation being consistent with the definition of Pjq(#(?;¢) in Eq. (18) or Egs. (5) and (6), for individual
particles which are identical and effectively independent. Equation (69) shows that in statistical configurations
of [4] in which Si4;(?) is extensive, S (¢) is independent of N 4.

Equations (68), (17), and (18) yield

dSia(t) &
== 2 A[Wia@D/vD; ) Fwy (u®/v(?; )P (v9; 1)
dt 2 @,y

Py (v'?; 1)
—[Wiq (@ 2/uD; ) w09/ u'D; 1) 1P (D 1)} lnl:——:l, (71)
Prg (w95 1)

which is to be compared with Eq. (I-68). Defining further the net heat flow from [B] to [4] per particle as

(@-
dQtq (i)E - e(u<4>)dp[q] (ute ,t), )
dt @ dt

[see the analogous Eq. (I-70)] and using Egs. (27) and (28) we obtain

4014 ()
Q:] —3 T [e(w®)— (@) o (/005 ) Pry (0095 ) —1w1 (0D /D )Prg (@5 )] (73)
¢ (@, (@

It is to be noted that our dQ;q (¢)/dt is to be identified with the d{e{):/dt of Eqs. (27) and (28) and differs from the
time rate of change of the internal energy per particle:

dU[q] (l) d
== % )P (s )
dt dt

=2 () (dPqg (u'?;0)/d)— 2

e w0

—pra ) (74)

( ae(u“")\dV[A] dQrq () aVia
aV[A]/ dt dt dat

by a term which represents the work per particle per unit time by [4] on [B] [see the analogous Egs. (I-69),
(I-70)]. Introducing the quantities ;g (#(?; 8), A1 (U9 /(?), Arg (w95 1), At (' ?9/v(?; t) and referring to Egs.
(26), (34), and (30) we have

Py (ul?; 1) — Prgeavil (u(9)

S (u(®; )=
[q]( ) ) P[qlequi](u(q)) ]
>\[q] (u(q)/v(q))Ew[q]equil (u(Q)/v(q))P[q]equil (v(!l)) :w[q]equil (v(q)/u< q))P[qlequil (u( Q))E}\[q] (7)(‘1)/14(‘1)),
P (w95 1) — Prgavasi-equil [4] (30 7) Dy (u'?5 1) (75)

A (w95 f)= — = o ,
P[q]quasx-equxl [4] (u(q); t) Py, jauasi-cquil [4] (u( 2, t)

Arg (u(q)/v(q) ; t)E W[q]quasi-equil [41 (M(Q)/T)('D ; lj)P[q]quasLequil [41 (v(q) ; t)

=W[q]quasi-equil [4] (1)(‘1)/14(‘1); t)P[q]quasi-equil [A](u(q); If)EA[q] (v(q)/u(q) ; t)’
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so that, replacing Wy (u(?/v(9;1), wiq @' ?/v?;4) in Egs. (71) and (73) by W g uasieauil (41 (o) /y(a); 1),
w1 °0 (40 /9(D) [see Eq. (32) and associated discussion] and combining Egs. (75), (73), and (71) we finally
obtain

dSia(t) k 14+Arg (@25 5)
T 8 A (/095 )[A (w95 1)~ Ay (1695 4)] IHI:———_—q ]
dat 2 4@ @ 1440 (0025 8)

1481 (@507 1 dOy,
l:*l‘[](u t)}+“ Q[](i)’ 76)

146002, 1 T
Q14
Q1 ](t): —1 T N @2 v D)6 (4D )~ (02 ; 1) (D) — e(2(P)], (77)

dt (0, (@

k
+= 2 Ma@ /)b (uD; )= (v?; )] In

w(@, (@

which is to be compared with Egs. (I-74) and (I-72). Equation (76) describes the evolution in time of the individual
particle entropy and may be analyzed as follows: The first and second terms on the right side of Eq. (76) are each
always =0 and represent time rates of change of the individual particle entropy associated with the tendency of
the system of interest [4] to attain quasi-equilibrium and equilibrium, respectively—these two terms are second
order in the deviations from quasi-equilibrium and equilibrium, A4 (#(?; {) and 814 (#(? ; £). The third term on the
right side of Eq. (76) represents the time rate of change in the individual particle entropy associated with the net
heat flow from [B] to [4] and may be >0 or <0—this third term is first order in the ;4 (#?; £) [Eq. (77)] and
hence dominates the first two terms for sufficiently small deviations from quasi-equilibrium and equilibrium and
for sufficiently low temperature.

We proceed to discuss several cases of physical interest on the basis of Eq. (76). Consider in particular the situa-
tion where Wgauasi-eauil [41 (3(0) /y(D ; 1)>>101 499 (45(0 /9(D) 50 that the system of interest [4 ] is properly charac-
terized for —1£02 T quasi-equil [4] by @ time-dependent temperature ©p4)(!) [Eqgs. (33)-(45)]. Under these circum-
stances. and confining ourselves to times such that i—#y2 Tquasi-equil 147, Eq. (76) becomes

dSiq(t) &
——== 3 Ag@@/v Q5 )[Arg (D5 )= A (095 1) ]
dt 2 4@y

k 1 1 1 dQq (¢
> xm<u<«>/v<q>>[a[q]<u<a>;t)—am(wnt)][a(uw»—e(wv)][ ———]+— G

w(@ (@ Or41(8) Or4] T dt
k 1 dQia()
== X AW/ )[Arg (V5 )= Arg (095 7) P+ (78)
2 y@ @ Tt dt
where we have also used Eqs. (77), (34), and (26).
We can now distinguish two cases depending on whether

k 1 dQa()
= 2 AR/ O[A (P 1) — Arg (095 1) P<Kor~ ) (79)
2 4@ @ T dt

which, using Egs. (75), (77), and the estimate for D4 (#(?; £) given after Eqs. (36) and (37), is roughly equivalent
to

qwequil (M(Q)/v(q)) P[q]quasi-equil [A](u(q) ; t) G(M(Q))
I . 80
TV quasi-equil [A](u(q)/v(q); t) (P[q]quasi~equil [4] (u(q); t)_.P[q]equil (u(q)>>(e[A] (l)) ( )
Thus, in the case of the < sign, Eq. (78) becomes the intuitively expected and often used
dSia(®) 1 dQia(®)
q _ Q : (81)

di - T dt

while, in the case of the = sign, the terms ~ (Arg (#(?; ) — A (2 £))? on the right side of Eq. (78) contribute
appreciably to dSq(f)/dt. In view of Eq. (80) and the assumed Wauasi-eauil [41(y(a) /o0 s £)>>qpequil (4y(0) /9(D) this
last case can hold only if [ Prgauasi-eauil Ll (y(o ;) — ppeauil (4 (0)]/ Py 199 (4(@) is not too small (ie., if Tequil
Dt—102 T quasi-equit [4]) and if e(@9)<KO4; ().
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APPENDIX A
There is a third case where Egs. (36) and (37) simplify sufficiently so that an explicit solution can be found for

O14)(2). This is the case characterized by e(#(?)—e(0(9)<KO4;(f), Ora; for all important states #(?. In this ap-
proximation Eqgs. (36) and (37) reduce to the expression

B (t)
= & 01 (002 /1(D)[1 — =B /¢80, (A1)
where
ﬁ(t)EEE(l‘“’)—e(O(“’)][ - ] (A2)
O () O

The solution of Eq. (Al) is
e PO=1—[1—e "] exp[ —wiq(012/19) (t—1%)]; t—t2 t*— =T quasi-equil [1- (A3)

We note that for times ¢ for which the system has almost returned to equilibrium, i.e., for O4; (£)=204; and so
8«1, Eq. (A3) reduces to Eq. (43).
The average value of the energy of the gth individual particle, {e;q):, is here given by

(era)e= 3 e(u(@) [/ 01a)(0) / T~ ge((@)/04)(0)]

w(@® oD
2 e(09)+[e(19) — (09)] exp{[e(1(2) — (0®)]/Ouar}e ™,
whence, substituting from Eq. (A3),

era)i—€(09)=[e(1(?)—¢(0¢?) J exp{—[e(1¢2)—€(0'?) J/Ora1}
X{1—[1—e# ] exp[—w(002/1@) (¢:—¢) 1} (A4)

APPENDIX B

We wish to calculate Wguasieauil [41(3() /90D ;) arising from a secular dipole-dipole interaction. We take
3 a1 @=—hyHol ;.= — ¢ iyHol ;1. and 4P =m =1 g, v'?=m 1. We also suppose that the temperature is so
low that r;, =R+ £,,~R;,, i.e., assume the rigid lattice approximation [see Eq. (I-168) et seg.]. Equation (I-168)

then becomes
V dip-aipsecular=§ ; Ao 3Uindia-+TinT g 1— 211121102}
g
=V gip-aipsectlar flip-flop-3 5% A ;of —21 (1.1 (1}, (B1)
FaY]

A 7 =—3 @/ R;,*) (13 cos®y,),
(Bl fZ,E]Afalm,ﬁv)=5(nu,m)<ﬁu| %Afnlﬁu,)=5(77u;"70)5(:3u76u,)EAIU’ (B2)
while Eq. (18) yields
W gauasi-equil [41(3(D = /2D =m ,—1; {)

_[ 5 Wiars ({#?} ; E—eu, Bu/{v?} ; E— €, B)
{

and

WD}@ {5} @ 5,6, Mg (E—e)

XP[A]quasi-equil [4] ({y(i)} ; t)a(eu,ev)]/P[q]quasi-equil [41 (vu(q) ; ;)

|: Wiarn ({u(i)} ; E— ey, Bu/{'”(i)} s E—eu, B4)
{(u®}@ {5} @ g,,6.7 Nip (E—€u)

XP[A]quasi-equil [A]({f,)(z')} ; t)(;(eu’ev)]/P[dquasi-equil [A]‘(rv(q) ; t). (B3)
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The nonvanishing

Wiar s ({#P}; E— ey, Bu/{v 7} ; E—ey; Bu")=08(BuB4 )W ars ({#'?}; E— ey, Bu/{v?}; E— €u, Bu)

contributing to Eq. (B3) arise from V gip-qip*sc*2" #iPfloP which is here identical with V4 and we have, using Eqgs. (8)

and (B1),

W[A+B] ({mi}(q)(p)a Mg, Mps E— €uy Bu/{mi’}(q)(p): mq_l, mP—l—l 5 E_eu; Bu)

2
=—h—5(€u" &) [{({m:} QD mg, mp; E—eu, Bult fZ Aol ig-+IinAtiae)
' g
X ! {mzl}(@(p)7 Mq— 17 mp+1 5 E— €u, 6u>l z
T
=8_f;5 (eu—e) T —mgt+1)(I+mg)3 A gp*(I—mp) (I+mp+1)5({mi/}(q)(p):{mi}(Q)(p))a (my', mpt1),
)

where 6(es—€,)=0(_;m:—_;mi)/fyH, is a Dirac delta function. Equations (B4) and (B3) yield
Wit 4 (/g1 1)
(r/80) (I —mo+1) (I +m,)
= : T Ay 2 {6 mi—2im)/iyH,]
exp[—e(m,— 1)/614 (0] » {mi} @ {mi} @
X3((m YO YD) (', w1 P ssseasit AN ((m Y ) (L) (T},

and inserting the approximation

P[A]quasi-equil [A]({mi/} ; t)gn P[i]quasi-equil [A](.mi'; t)=H e—e(mi’)/O[A](l)/{Z e—e(mi)/G[A](t)}
i i mi
into Eq. (B5), we obtain
P YHo/O[4]()
W gavasi-equil L) (mo/mo—1; 8)= (I —mq+1) (I +m,) Wia(t
[d] ( q/ q ’ ) ( ot )( + q/{Z equHO/e[A](t)} [q]():

mq

where

T Agp \?
Wia (t)E~('yHo)z( i ) LI (1) —(m ) cauasiequil 141 — () auasi-equil (A1,
8 » \firyH,
e—€(mp)/014](D)
m. ") quasi-equil [A]1=Y" 4 7~ )
(mp™) mz,, ? {3 gemaNioualn}y ’

mp’

n=1,2, [SPEN

(B4)

(BS)

(BO6)

B7)
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