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A theory of ferromagnetism for general spin, approximately valid through the entire temperature range, 
is given. At low temperatures the magnetization agrees with the Dyson results, having no term in T3 and 
having a term in T* equal to that found by Dyson in first Born approximation; terms arising from the ap
proximations of the theory first appear in order T3^s+1>12, so that a spurious T3 term does appear for S= 1/2, 
but for no other spin. Curie temperatures are within a few percent of the Brown and Luttinger estimates 
for spins greater than unity, and agree within 1% of the Domb and Sykes estimate of the large-spin limit. 
The susceptibility at high temperatures agrees with the Opechowski expansion to terms in 1/T2. The quasi-
particle energies are renormalized by the energy at low temperature and by the magnetization at higher 
temperature. The Green function is decoupled by a physical criterion involving self-consistency of the de
coupling at all temperatures. The Green function method is extended to higher spin by a technique of 
parametrizing the Green function and explicitly finding the functional dependence on this parameter by 
solution of an auxiliary differential equation. 

1. INTRODUCTION 

THE Heisenberg model of a ferromagnet has been 
theoretically analyzed by Dyson1 by series 

expansion in powers of T, valid at low temperatures, 
and by Opechowski2 by series expansion in 1/T, valid 
at very high temperatures. We here develop an approxi
mate theory which covers the entire temperature 
range, including the particularly interesting inter
mediate region in the neighborhood of the Curie 
temperature, and which agrees satisfactorily with the 
rigorous results at both very low and very high temper
atures. 

At low temperatures the magnetization has terms of 
order T3/2, T5/2, T7/2 which agree with the Dyson 
results, it properly has no term in T3, and the term in 
JT4 is equal to that found by Dyson in first Born ap
proximation. Terms arising from the approximation in 
the theory first arise in order TZ(-2S+1)I2, so that the case 
of 5 = 1 / 2 is an exception to the above statements, 
having a spurious Tz term. Curie temperatures are 
quite close (f^3% for spin 2) to the values estimated 
by Brown and Luttinger3 by extrapolation of the high-
temperature series expansion, except for very small 
values of spin (again the case of spin 1/2 is particularly 
unsatisfactory). The Curie temperatures agree within 
1% with the estimate of Domb and Sykes4 for the 
high-spin limit. The susceptibility at high temperatures 
for all spin values agrees with the Opechowski2 expan
sion to terms in 1/T2. 

The quasiparticle energies are equivalent to simple 
spin-wave energies "renormalized" by a factor which is 
proportional to the thermodynamic energy at low 
temperatures, but which becomes proportional to the 
magnetization at higher temperatures. 

An heuristic interpretation of the renormalization of 
quasiparticle energies has been given by Keffer and 

* Supported by the U. S. Office of Naval Research. 
i F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
2 W. Opechowski, Phys ica l 181 (1937); 6, 1112 (1938). 
3 H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955). 
* C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 

Loudon.5 They point out that, at low temperatures 
where only long-wavelength spin waves are excited, 
the local magnetization direction varies slowly through 
the crystal. Excitation of an additional spin wave is 
analogous to excitation of a ripple relative to this 
slowly varying local magnetization. The effective 
exchange integral determining the energy of this ripple 
is influenced by the angle between neighboring spins in 
the slowly varying background medium. This angle 
also determines the thermodynamic energy; hence, the 
renormalization of the spin-wave energy by the thermo
dynamic energy. However, at higher temperatures, the 
thermally excited excitations have wavelengths com
parable to the interspin distance, and the correlation 
distance in the background medium is as short, or 
shorter, than the wavelength of the particular excitation 
being considered. In this region our results indicate 
that the effective exchange integral is influenced by the 
angle relative to the average magnetization; that is, 
the spin-wave energies are renormalized by the average 
magnetization. 

The Heisenberg ferromagnet with spin 1/2 was 
analyzed by Tyablikov6 using the technique of double-
time temperature-dependent Green functions.7,8 Ex
tension of the theory to higher spin has been achieved 
recently by Tahir-Kheli and ter Haar.9 The present 
theory differs from those applications of the Green 
function method in two respects. First, the decoupling 
of the higher order Green functions is guided by a 
plausible physical criterion. Second, the method of 
employing Green functions for general spin is simplified; 
the Green function is parametrized and the functional 
dependence on this parameter is found explicitly by 

6 F. Keffer and R. Loudon, J. Appl. Phys. 32, 25 (1961). 
6 S. V. Tyablikov, Ukr. Mat. Zh. 11, 287 (1959). 
7 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk 

SSSR 126, 63 (1959) [translation: Soviet Phys.—Doklady 4, 604 
(1959)]. 

8 A convenient review of Green functions and of Tyablikov's 
application of them to ferromagnetism is given by D. N.-Zubarev, 
Usp. Fiz. Nauk 71, 71 (1960) [translation: Soviet Phys.—Usp. 
3, 320 (I960)]. 

9 R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962). 
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solution of an auxiliary differential equation. This 
single differential equation replaces the 2S simultaneous 
Green function equations in the method of Tahir-Kheli 
and ter Haar.9 

2. THE GREEN FUNCTION 

The problem to be considered is the statistical 
mechanics of the system described by the Hamiltonian 

3C= -M#ES/-E/(g--/)S,.s / (i) 
oJ 

where yS is the magnetic moment per ion; H is the 
applied magnetic field (in the negative z direction); Sg 

is the spin operator (in units of ft) for the ion at site g; 
and J{jg—f) is the exchange integral between ions at 
sites g and / . The exchange integral is assumed to be a 
function only of the distance between ions; it is not 
restricted to nearest neighbors or to only positive 
values, but it is assumed that the ground state of the 
system is a ferromagnetically aligned state. 

The temperature-dependent retarded Green function 
involving the two operators A and B, ((A (t); B))f is 
defined by8 

((A(t);B))=-i6(t)(tA(t),Bj>, (2) 

where A (t) is the Heisenberg operator at time t; 6 (t) is 
unity for positive t and zero for negative t; square 
brackets denote a commutator; and single angular 
brackets denote an average with respect to the canonical 
density matrix of the system at temperature T. The 
Fourier transform of the Green function is a function 
of co (or of E=hco), and is denoted by ((A;B))E. I t 
satisfies the equation of motion8 

E((A; B)),= ( 1 / 2 T ) < [ 4 ,Bj)+((iA (0,3e]; B))E. (3) 

If this equation can be solved for ({A; B))E one then 
extracts knowledge of the correlation function (BA (t)) 
from the relation8 

(BA{t)) = limi / 
J —c 

((A ; B))h„+u-((A; B))Ku-u 

, exp(fiio/kT) — l 
•e-'v'du. 

(4) 

Equations (3) and (4) are the only equations required 
for the application of the Green function method. 

For reasons which will become evident subsequently, 
we consider the Green function 

G*«(g,0=«^+(0;eflfll'5r», (5) 

where a is a parameter. The Fourier transform of this 
Green function, GEa(g,l), satisfies the equation of 
motion [Eq. (3)] 

1 

^•(g,0=-eW8f l li+(([VW,3c]; ^ n - ) ) ^ (6) 
where 

0 ( a ) = < [ S V < ^ - ] > . (7) 

The commutator of Sa+ with the Hamiltonian, 
required in the last term of Eq. (6), is easily computed, 
giving 

©(a) 
EGE

a(g,l)= 8g>l+tJiHGE«(g,l) 
2TT 

- 2 £ / ( g - / ) ( ( W - 5 / 5 , + ; Ss*'Si-))E. (8) 
/ 

The remaining problem is to express the higher order 
Green function on the right in terms of lower order 
Green functions, so that Eq. (8) can be explicitly 
solved ior GEa(g,l). 

3. A DECOUPLING APPROXIMATION 

The essential approximation in the methods of 
Tyablikov and of Tahir-Kheli and ter Haar consists of 
ignoring the fluctuations of Sg

z, replacing this operator 
by its average value: 

((S/Sf+; S » -> (S'X(Sf+; £ » . (Tyablikov) (9) 

This approximation results in the magnetization 
renormalization of quasiparticle energies, in disagree
ment with the low-temperature theory. 

The decoupling approximation to be used here is 
most clearly described for the special case of spin 1/2. 
In that case we can write Sg

z in either of the following 
forms 

St'=S-Sa-S,+, ( 5 = 1 / 2 ) , (10) 

O 0 — 2W9 ^Q ^9 ^9 )y (11) 

or, multiplying the first of these equations by an 
arbitrary parameter a and the second by (1—a) and 
adding, 

Sg'=aS+$(l-a)Sg+Sg-

- i a + « ) S „ - S , + ( 5 = 1 / 2 ) (12) 

The Green function ((Sg~Sg+S/+; B)) is reasonably 
decoupled in the symmetric form10 

((SgS+Sf+; B)) -> (SgSg+)({Sf+; B)) 

+{SgS/+)((Sll
+;B)), (13) 

and similarly for the Green function ((Sg+Sg~~S/+; B)}. 
Thus, the identity (12) leads to 

({St>Sf+;B))-+(S'){(Sf+;B)) 

-a(Sg-Sf+)((Sg
+;B)). (14) 

If a is chosen as unity, the result corresponds to de
coupling on the basis of identity (10); a = 0 corresponds 
to decoupling on the basis of identity (11); a= — 1 
corresponds to decoupling on the basis of the identity 

10 The remaining "contraction," (Sg+Sf+){{Sg~; B)) vanishes 
because the operator Sg

+S/+ is not diagonal in the total z compo
nent of spin. 
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Sgz——S+Sg+Sg~. Thus, we are faced with the possi
bility of obtaining a correction to the Tyablikov 
decoupling with either a positive or negative sign, or 
no correction at all, or any intermediate value, depend
ing on the choice of a. Clearly, a physical criterion is 
required at this point. 

The operator S~S+ in Eq. (10) represents the 
deviation of Sz from + 5 . I t is this operator S~S+ 

which is treated approximately when decoupling on the 
basis of Eq. (10). It, therefore, seems reasonable to use 
Eq. (10) when the deviation from SZ=S is small; 
that is, when (Sz)c^S. 

Similarly, the operator i(S+S--SS+) in Eq. (11) 
represents the deviation of Sz from zero, and it, therefore, 
is reasonable to use Eq. (11) as the basis of decoupling 
when ( 5 2 ) ^ 0 . 

Both of the above observations are contained in the 
choice 

a = (Sz)/Sy ( 5=1 /2 ) (15) 

for then Eq. (12) becomes 

rS-(Sz) S+(SZ) -l 
S,«=<S*>+ Sa+Sa- SgS+ L (16) 

L 25 25 J 

The operator in brackets, which is to be decoupled, 
represents the deviation of Sz from (Sz) and should be 
self-consistently small in all temperature regions. 

Inserting the above value of a into the decoupling 
equation (19) gives 

((Sg°Sf+;B))^m((Sf+;B)) 

_ ^ < S r 5 / > < < 5 / ; 3 > > , ( 5 = 1 / 2 ) . (17) 
5 

This is the basic decoupling approximation for spin 1/2; 
we now generalize it for higher spin. 

The analog of Eq. (10), for general spin, is 

5 / = 5 ( 5 + l ) ~ ( 5 / ) 2 - 5 r 5 , + (18) 

whereas, Eq. (11) remains true. Decoupling as before, 
and neglecting11 the fluctuations of (5Z)2, we find in 
this case as well 

«S,'S/+;2?»-»<S«>«S,+;2*» 

-a(SgSf+)((S+;B)}y (19) 

where a, is the fractional contribution of the identity 
(18), and (1—a) is the contribution of the identity 
(11), to this result. Unfortunately, Sg~Sg

+ is no longer 
the only operator treated approximately in decoupling 
equation (18), and the interpretation of the decoupled 
operator as being the deviation from Sz=+S is no 

11 The Green function ({(Sg
K)2Sf+; B)) also can be symmetrically 

decoupled, but the results are of the same form as those obtained 
by the simpler procedure above. 

longer true. Hence, the choice of a is no longer quite 
so evident. However, we determine it by the following 
requirements: 

(a) For 5 = 1 / 2 , a should reduce to our previous 
result, or to a = (Sz)/S. 

(b) F o r ( 5 3 ) = 0 , a should vanish. This requirement 
follows from the fact that identity (11) retains its 
interpretation for arbitrary 5 . 

(c) For (SZ)~S we expect that Sz should have the 
form Szc^S—n, where n is a deviation which is of order 
unity rather than of order 5 . 

Requirement (c) implies that a(Sg~Sf
+) should be of 

order unity, rather than of order 5, at low temperatures. 
Now (l/2S)(Sg~Sg

+) is the spin deviation in lowest 
order12; similarly (Sg~Sf

+) will be of order 25 if / and 
g are closely coupled. Hence, we take 

a = (l/25)<5*>/5 (20) 

and it is clear that this satisfies all of the physical 
requirements above. Equations (19) and (20) character
ize the basic decoupling approximation of the theory. 

4. SOLUTION OF THE GREEN FUNCTION 
EQUATION 

Inserting the decoupling approximation into the 
equation of motion (8) gives 

0 ( a ) 
EGB*(g,t)= Ba.i+nHGE

a(g,t) 
2TT 

-2<5*>Z J(g-f)LGBa(ff)-GB*(g,t)l 

<5*> 
+ — E J(g-f)L<S.-Sf+)GB*(g,t) 

-(Sf-S+)GE(fM (21) 

These equations are a set of coupled equations for 
various pairs of sites (g,Z), (/,Q. Translational invari-
ance dictates consideration of the spatial Fourier 
transforms 

GE
a(k)^ E e-^-»'*GE

a(g,l), (22) 
9-1 

J(k)=T,<r«*-»*J(g-t), (23) 
Q-l 

* ( M = Z e-i^-»'k(eaSi*SrS+). (24) 
Q-l 

Here g-k denotes the vector product Re-k, where Rg 

is the position vector of the g site. Equation (21) then 
implies 

12 The appearance of 2S here corresponds to the identification 
of S+ and S~, respectively, as (2S)ll2a+ and (2S)1/2ar in the 
leading terms both of the Dyson and the Holstein-Primakoff 
transformations. Here a+ and a~ are destruction and creation 
operators of elementary boson-type excitations. 
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0 (a ) 
EGE

a(k)= + M H G B « ( k ) - 2 ( ^ ) [ / ( k ) - / ( 0 ) ] G B < ' ( k ) 
2x 

+ — S [ / ( k ' ) - / ( k ' - k ) X k ' , 0 ) G a - ( k ) (25) 
MS2 *' 

or 

GB"(k) = 
©(a) 

2 i r [ £ - £ ( k ) ] 
(26) 

where 

£ (k )= / i f f+2<5«>[ J (0 ) - / (k ) ] 

+ — E [ / ( k ' ) - / ( k ' - k ) > ( k ' , 0 ) . (27) 
TVS2 k' 

The correlation function which can be obtained from 
G#a(k) by Eq. (4) is the quantity ^(k,a), defined in 
Eq. (24). Inserting Eq. (26) in (4), and taking / = 0 , 
we thereby obtain 

* ( M = 0(a)/(«*<k>'*r--l). (28) 

Equation (28), together with Eq. (27) defining E(k), 
Eq. (24) defining \p(k,a), and Eq. (7) defining ©(a), 
is the basic equation of the theory. I t must, however, 
be augmented by an explicit relationship between \f/ 
and ©, and it is this step which complicates the problem 
for spin > 1/2. 

The problem which distinguishes the simple case of 
spin 1/2 from the more complicated case of higher spin 
becomes evident if we particularize our solution 
temporarily to S= 1/2. We also take a = 0 , and we note 
from Eqs. (24) and (10) that 

* ( 0 ) ^ - E * ( k , 0 ) = <5r5 .+>=i-<5->, ( S = J ) . (29) 
N 

Thus, $(0) is simply related to the magnetization. 
N\p(0) is the total number of spin reversals in the 
crystal, and ^(k,0) is the occupation number of the 
basic excitation of wave vector k. Similarly, from Eq. 
(7) 

©(0) = 2<5'>. (30) 

Hence, Eqs. (28) and (30) determine ^(k,0) as a 
function of (Sz), and Eq. (29) provides a requirement 
of self-consistency which determines (Sz). 

For higher spin values Eq. (29) is replaced by 

*(o)^- E*(k,o)=<srs,+> 
N * 

=S(S+l)-((S*)2)-(Sz). (31) 

This introduces the new quantity ((Sz)2}, which is not 
determined by Eq. (29). Tahir-Kheli and ter Haar,9 

therefore, introduce the Green function ((Sg*; (Sr)2Si+)) 
to evaluate this quantity, but its solution introduces 
((Szy). By introducing 2S such Green functions, and 

by recalling that (SZ)2S+1 is related by an identity to 
lower powers of Sz, they are thereby able to obtain a 
solution. That method gets laborious very quickly, 
but they have given explicit solutions to 5 = 3 . 

By exploiting the functional dependence of ®(a) 
and '$ on the parameter a, which was inserted in 
Eq. (5) for just this purpose, both © and $ can be 
explicitly related to (Sz) for arbitrary spin, in close 
analogy with the case of spin 1/2. 

5. RELATIONSHIP OF 0 TO (S*) 

Calculation of the commutator defining &(a) [Eq. 
(7)] is facilitated by the identity 

C 5 L f , ( 5 - ) n ] = { ( 5 , ' - l ) n - (Sz)n}S+ (32) 

which is easily corroborated for n=l, 2 and extended 
to higher n by mathematical induction. I t follows that 

[ S + , ^ ] = (f-o-1)^*5+ (33) 

and thence, 

© (a) = 2(eaS*Sz)+ (e~"- l)(eaS*S+S~). (34) 

Expressing S+S~ in terms of Sz by the identity (18), 

© (a) = S (S+1) (*-• - l)(eaSZ)+ (e~a+ l)(eaS*Sz) 

-(e-a-l)(eaSS(Sz)2). (36) 

Finally, it is convenient to introduce the quantity 

V(a)^(eaSZ) (36) 
and the notation 

D=d/da. (37) 

Then the two quantities of interest can be written 

®(a) = S(S+l)(e-a-l)tt 

+ (e~a+ 1)ZK2- (e~a- 1)D2Q (38) 
and 

4>(a) = (eaSZS-$+)=S(S+l)Q-DQ-D2Q. (39) 

The relationship (28) between ^(k,a) and ©(a) can 
be recast in a more convenient form as well, by defining 

0(k) = l / ( ^ w / * r - l ) , (40) 
whence, 

* ( k , a ) = * ( k ) 0 ( a ) . (41) 

The self-consistency requirement on the Green 
function is now contained in the condition 

where 
0(a) = $0(a), 

^ 7 l 0 ( k ) . 
N k 

(42) 

(43) 

This condition should determine ©(a), and thence (Sz), 
which is just |©(0 ) , as we see from Eq. (25). I t is 
more convenient to determine 0(a), and thence to 
find ©(a) by Eq. (38), In fact, inserting Eqs. (38) and 
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(39) into (42) gives a differential equation for 0 (a ) : 

D2U-
( l + $ ) e ° - $ 

• Z » - 5 ( 5 + l ) Q = 0 . (44) 

This differential equation is the analog of the set of 2S 
coupled equations of Tahir-Kheli and ter Haar. 

To completely determine the solution we require two 
boundary conditions. From the definition (36) we 
observe 

12(0) = 1. (45) 

The second condition is provided by the operator 
identity 

n (S°-p) = 0. (46) 
p=— S 

Taking the average of this equation it can be written 
in the form 

I I ( D - ^ ) O ( a = 0 ) s » i 8 O ( 0 ) = 0. (47) 

In the Appendix it is shown that the solution of the 
differential Eq. (44) satisfying the boundary conditions 
(45) and (47) is 

0 ( a ) = , (48) 

from which (Sz) or 0 (a) can be found by differentiation. 

6. THE FORMAL SOLUTION 

For convenience and clarity we recapitulate the final 
form of the equations, preparatory to analyzing their 
low-temperature and high-temperature behavior, Curie 
temperature, etc. 

Given a spin magnitude 5 , a temperature T, a 
magnetic field H, and an exchange interaction with 
Fourier components 7(k) , the quasiboson occupation 
number 0(k) is 

0 (k )= l / ( e*< k > '* T - l ) , 

where 

£ ( k ) = M H + 2 < 5 ' > ( [ / ( 0 ) - J ( k ) ] 

(49) 

+ — E [ / ( k O ~ / ( k ' - k ) > ( k o l . (50) 
NS2 k' J 

This is an implicit equation for 0(k), involving the 
unknown quantity (Sz). However, (Sz) is given in 
terms of 

* = - E * ( k ) (51) 
N 

by 

( 5 - $ ) (1+$) 2 S + 1 + ( 5 + l + $ ) $ 2 ' s + 1 

<S«> = .DB(0) = . (52) 
(l_j_$)SS+l_$2S+l 

Thus, Eqs. (49) and (50) constitute a set of coupled 
equations which must be solved self-consistently for 

7. NEAREST-NEIGHBOR INTERACTION 

For simple lattices with nearest-neighbor interaction, 
the formalism simplifies markedly. In this case the 
exchange 7(k) is 

/ ( k ) = / E « e x p ( * k - 5 ) , (53) 

where S goes over the nearest neighbors of a represen
tative ion; we assume all magnetic ions are crystalo-
graphically equivalent. Consider the sum 

3 C - I > [ / ( k ' ) - / ( k ' - k ) ] 0 ( k ' ) , (54) 

which appears in Eq. (50) for E(k). Then 

K=JEs [ l - e x p ( - * k - 5 ) ] E k > exp(ik'-5)0(k'). (55) 

The sum over k' is clearly independent of 5, by sym
metry, so that it can be replaced by J - 1 £ $ ' £ k / 
Xexp(ik'-S)0(k /), where J is the number of nearest 
neighbors. We thus obtain 

3 C = 7 - 1 ( 0 ) [ / ( 0 ) « / ( k ) ] E k ' / (kO0(k ' ) , (56) 

where 7(0) = J / is the &=0 Fourier component of the 
exchange interaction. This equation was first pointed 
out by Michelene Bloch.13 The sum £ 7(k')<£(k') is a 
function only of the temperature, (Sz), and H (and, 
of course, of 7 and the lattice structure). 

and 

— — Z / (k)*(k)3 / ( r ,<S '> , f l ) (57) 
NJ(0) k 

£ (k )=Mff+2<5«>[ / (0 ) -7 (k ) ] [ l+ ((S*)/S2m (58) 

Thus, for simple lattices (including simple cubic, 
body-centered cubic, and face-centered cubic lattices 
in particular) and for nearest-neighbor interaction the 
simple spin-wave energies are renormalized by a factor 
depending only on the temperature (for zero field), 
independent of the wave vector k. Equations (57) and 
(58), together with the definition of 0(k) in terms of 
£ (k ) , constitute a pair of coupled equations for the 
renormalization function / . For these lattices and 
nearest neighbor interaction the complete solution 
would be obtained explicitly by solving Eqs. (57) and 
(58) for / , thereby obtaining <£(k) or $ in terms of T, 
(Sz) and H. Then eliminating $ between this equation 
and Eq. (52) would give (Sz) as a function of T and H. 

13 M. Bloch, Phys. Rev. Letters 9, 286 (1962). 



G R E E N F U N C T I O N T H E O 

8. THE LOW-TEMPERATURE REGION 

The summation (or integral) over k' involved in the 
calculation of <£ for # = 0 occurs in simple spin wave 
theory and has been carried out by Dyson1 and others 
by standard series expansion procedures appropriate 
to low temperatures. Thus, if 

E(k) = 2 S £ [ / ( 0 ) - / ( k ) ] (59) 

and if a reduced temperature is defined by 

T=3kT/4TiJSv, (60) 
then1 

*=r (f) (r/#)3/2+i7r,r (f) (T/R)^ 

+7rW 2 f ( l ) ( r / i e )7 /2+ . . . . (61) 
Similarly 

/ « E/(k)* (k) = f(f)(r/-R)3/2-ix,f(!)(r/JR)^« 

+ ( « - i V ^ ( i ) ( r / 2 i ) ^ + - - . . (62) 

The constants v and co depend upon the lattice structure 
and are defined by 

v=l, co=33/32, for simple cubic; (63) 

P = | X 2 2 ' 8 , co=281/288, for body-centered cubic; (64) 

v—2llZj oo= 15/16, for face-centered cubic. (65) 

To apply these results to our case we take [compare 
Eqs. (59) and (58)] 

R=—\l+—f[ (66) 
SL S2 J 

The remaining equation is Eq. (52) for {Se) in terms 
of <£; expanding it in powers of <£ (which is small at 
low temperature), we find 

(S*)=S-Q+ (2S+1)$2S+1 

- (2S+l)2$2S+2+0($2S+*). (67) 

To disentangle the coupled equations we first 
substitute Eq. (66) for R into Eq. (62), solving for / 
as a series in T : 

/ = f ( l ) ( 5 r / < 5 ' » l « - i T J » r ( t ) ( 5 r / ( 5 ' » « « 

+ ( w _ f ^ V f d ) (Sr/{S°)y<*+---

-§r2(!)W*>v-f™n§)r(i)(sv<s2>V+- •.. (68) 
Inserting this series into Eq. (61) for <£, we find 

* « J" (I) (Sr/(S*)yi2+frvt (f) (Sr/<S*»5/2 

+ ^ v 2 r ( | ) ( 5 r / < ^ ) ) 7 / 2 + - " 

- | f 2 ( f W ( ^ ) V ~ f 7 r , r ( f ) f ( f ) ( 5 2 / ( 5 ^ ) r 4 + . . . . (69) 
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Finally, inserting this equation into Eq. (67), we find 

(^)-5~r(f ) r 3 / 2 - !7r . f ( f ) r 5 / 2 ~-7r 2 co. 2 f ( l ) r 7 / 2 +. • • 

- (3/25)7r,f (f )f (f ) r 4 + • • • + ( 2 5 + 1 ) ^ ( 1 )r3*+3/2 

+ ( 2 S + l ) 2 f 7 r ^ ( f )f (f )r3*+5/2+ . . . . (70) 

Neglecting, for the moment, the terms in r
3's"f3/2, 

T3£-f5/2 w e s e e ^hat the coefficients of r3/2, r5/2, r7/2 are 
in exact agreement with the Dyson result. The term 
in r3 is absent, as required by Dyson. The term in
volving r4 is given by Dyson1 as 

-(3/2s)w^m(mA (7i) 
where Q, the ratio of this term to our r4 term, is 

0 = l + t [ G 5 - l J - 1 + a / 3 5 (72) 

with 

G= 10, 16, 24 for sc, bcc, fee, (73) 

a = 0.52, 0.39, 0.34 for sc, bcc, fee. (74) 

Thus, our r4 term corresponds to the leading term 
(Q= 1) of the Dyson result; that is, to the result which 
Dyson finds in the first Born approximation. 

The terms T
zs+Zl2, T

zs+512- • • in Eq. (70) seem to be 
spurious results of the Green function approximation. 
For 5 = 1 / 2 they give incorrect contributions to the r3 

and r4 terms. For spin unity the first spurious contri
bution appears in the r9/2 term, and for spin 3/2 it 
appears first in the r6 term; thereafter it moves rapidly 
to higher order in r. Consequently the spurious terms 
are of consequence in the low-temperature region only 
for spin 1/2. 

Finally, it is of interest to substitute Eq. (70) into 
Eqs. (69), (68), and (66), to obtain <f>, / , and the 
renormalization factor R explicitly as series in r. We 
thus find 

* = S - f (f)r3/2-|7r^(f)7-5/2-7r2co,2f ( f )r7 /2+. • • 

- ( 3 / 2 5 ) 7 r , f ( | ) f ( f ) r 4 + . . . , (75) 

/=f(f)T3 / 2-i7rvf(f)T5 /2+(co~5/4)7r2 .2f( | )r7 /2+. • • 

~ ( l / 8 5 ) 7 r , f ( f ) f ( | ) r 4 + . . . , (76) 
and 

J R = l - O T / 5 f ( § ) r 5 ' 2 - 5 / 4 S ^ V K i ) r 7 / 2 + - • • 

-2 /S 2 f ( f ) r 3 -21/8SW(! ) f ( f ) r 4 +. • • 

2 5 + 1 
-] f2S+l(3/2)r3(2S+l)/2 

O 

3(2S+1) 2 

+ ™^(3/2)f(5/2)r 3 S+B ' 2 . (77) 
4S 

I t will be recalled that R is the "renormalization 
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factor"; the ratio of the actual quasiparticle energies 
to the simple spin-wave energies. At low temperatures 
the leading temperature dependence of R arises in the 
r5/2 term. Hence, the spin-wave energies are renormal-
ized by a factor proportional to the thermodynamic 
energy rather than the magnetization in this tempera
ture region. 

9. THE CURIE TEMPERATURES, AND THE 
HIGH-TEMPERATURE REGION 

Just below the Curie temperature (assuming H=0) 
the average magnetization (Sz) is small, and the mean 
number of excited quasiparticles is large. In fact, 
expanding Eq. (52) in powers of $ _ 1 we find 

($*)=±S(S+l)^+0(<f>->). (78) 

Furthermore, since E(H) is proportional to (S") the 
exponential in the Bose distribution can be expanded, 
giving 

1 

N k 

2<S'), 

kT 
[/(0)-/(k)] 1+ [»T']} (79) 

Multiplying Eq. (79) by (Sz), and replacing (5*}$ by 
S(S+l)/3 [from Eq. (78)] we then have, in the limit 

5 ( 5 + 1 ) kT 

3 2 / ( 0 ) [ l + « 5 * > / 5 2 ) / ] 

where F(—l) denotes the summation 

•F(-l), (80) 

F ( - l ) s 
/(0) 

N k / ( 0 ) - / ( k ) 
(81) 

This summation has been evaluated by Watson;14 it 
has the values 

F ( - l ) = 1.51638(sc); 1.39320(bcc); 1.34466(fcc). (82) 

Equation (80) determines the Curie temperature. 
However we must evaluate the limiting value of the 
quantity ((Ss)/S2)f which appears in that equation. 
From Eq. (57) defining / , again expanding the Bose 
factor, 

<^> <-s"> 

5 2 ~NSiJ(G)~ 

(2(5*) 
E/(k){—[/(0)-/(k)] 

kT 

K̂ F' (83) 

14 G. N. Watson, Quart. J. Math. 10, 266 (1939). See also, 
M. Tikson, J. Res. Natl. Bur. Std. 50, 177 (1953). 

TABLE I. Curie temperatures (kTc/J) for cubic lattices, 
nearest neighbor interaction. 

s 
1 
2 

1 
i 
2 
5 
2 

3 

Simple cubic 
T-

Kheli 
Brown t. 
Lutt. Haar 

1.9 2.0 
5.4 5.3 

10.6 9.4 
17.5 15.8 
25.8 23.1 
35.7 31.6 

Cal-
len 

2.7 
6.5 

11.7 
18.5 
26.8 
36.4 

Body-centered 
cubic 

T-
Kheli 

Brown t. Cal-
Lutt. Haar len 

2.39 2.9 3.7 
7.82 7.7 9.1 

15.42 14.4 16.6 
25.17 23.0 26.2 
37.10 33.5 37.9 
51.19 45.9 51.6 

Face-centered 
cubica 

T-
Kheli 

Brown t. Cal-
Lutt. Haar len 

4.2 4.5 5.6 
12.7 11.9 13.9 
24.7 22.3 25.5 
40.0 35.7 40.1 
58.7 52.1 58.3 
80.9 71.4 79.5 

1 For the face-centered cubic, Domb and Sykes (reference 4) give 

lim [kTc/JS(S +1)3 =6.38 (Domb and Sykes), 

=5.95 (Tahir-Kheli and ter Haar), 
=6.45 (Callen). 

or 

52"L 52 J 252/(0) •A!+—/ kT. (84) 

Eliminating ({Sz)/S2)f between this equation and Eq. 
(80), we finally find the equation determining the Curie 
temperature. 

kTc_2l{S+\) 

J ~9F2(-1) 
• [ ( 4 S + 1 ) F ( - 1 ) - G S + 1 ) ] . (85) 

In Table I we give the values of kTc/J as estimated by 
Brown and Luttinger3 by extrapolation of the series 
expansion for the susceptibility in powers of 1/T. We 
also list the values obtained by Tahir-Kheli and ter 
Haar,9 and the values calculated from Eq. (85). I t 
will be noted that our values are higher than those of 
Brown and Luttinger, whereas those of Tahir-Kheli 
and ter Haar are lower. For spin 2 the deviation of our 
results from the Brown and Luttinger values is of the 
order of 3 % , and the agreement improves with in
creasing spin. In fact, Domb and Sykes have recently 
published4 an estimate of the limiting value kTc/ 
JS(S+1) for large 5, for the face-centered cubic lattice. 
This estimate was obtained by a painstaking exami
nation of the systematics of the extrapolation of high-
temperature series. They obtain the value of 6.384, 
with which our value of 6.45 agrees within 1%. 

Domb and Sykes4 also give estimates of kTc/J for 
5 = 1 / 2 and 5 = 1 only, for the face-centered-cubic 
lattice; their values are 4.07 and 11.95, respectively. 
These are lower than the Brown and Luttinger results, 
and further aggravate the disparity between our values 
and the estimated values for these small spins. I t is 
apparent, both from the Curie temperatures and from 
the low-temperature results, that our approximations 
are more reliable for large spin, being particularly bad 
for spin 1/2. Fortunately, most cases of practical 
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(93) 
interest are associated with spins greater than 1/2, for 
which the results appear to be quite reliable. 

I t should, perhaps, be noted that the Curie tempera
tures are quite sensitive to the decoupling parameter a, 
of Eq. (20). If the chosen value of a were to be multi
plied by ((Sz)/S)% where e is any positive constant no 
matter how small, the Curie temperatures would 
become identical to those obtained by Tahir-Kheli and 
ter Haar, whereas the low-temperature and the high-
temperature behavior of the theory would remain 
unaltered. 

Finally, the high-temperature expansion of the 
susceptibility % is of interest. We assume (Sz) small, and 
maintain only terms proportional to the applied mag
netic field. Equation (78) remains valid, Eq. (79) 
contains the additional Zeeman term, and the analog 
of Eq. (80) becomes 

S(S+1) XkT 1 f 2X 
- = — - £ 1 + _ [ / ( 0 ) - J ( k ) ] 

3 M2 N k I M2 

Similarly, the analog of Eq. (S3) is 

1 

IP (86) 

1 ( 2X 

Z 7 ( k ) 1 + -
S2 ~ v? SU(0)NT 

X[7(0)-7(k)j 1+—/ 

L s2 J 
I t is convenient to denote 

[ 1 + ((S°)/S*)f>X 

and to define a quantity Xi by 

Xs l im-
H-.0 # ZkT 

(1+X,). 

(87) 

(88) 

(89) 

Then, multiplying Eq. (86) by [ 1 + ( 2 X / M 2 ) / ( 0 ) X ] and 

Eq. (87) by - ( 2 X / M 2 ) 5 2 / ( 0 ) X and adding, we find 

X2-
4 5 + 1 kT 

35 2527(0) 1+Xj 
-=0 . (90) 

Furthermore, expanding the summand in Eq. (86) we 
find 

l = ( l + X i ) [-
27(0) 472(0) j + 1 

XX-\ -X2X2 

•} (91) 
M2 M4 3 

In this summation we have employed the identities9 

F ( l ) = l , F ( 2 ) = ( i + l ) / i , (92) 

where 

1 / 7 ( 0 ) - 7 ( k ) \ » 
F(n)=-Z( TM ) • 

N k \ 7(0) 

The quantity X can now be eliminated between Eqs. 
(90) and (91), enabling X! to be evaluated in a series 
hi 1/T. In this way we find 

M 2 5(5+l ) r TM 

3kT 

+ 1-
2S-1\/TM 

SiS A T i«m (94) 

where TM is the Curie temperature of the molecular 
field theory: 

kTM^WS{S+\). (95) 

The two leading terms in this expansion are in agree
ment with the values found3 by a rigorous expansion of 
the susceptibility in powers of 1/T. 
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APPENDIX 

I t is easily corroborated that the solution of the 
differential equation (44), satisfying the boundary 
conditions (46) and (47), is 

0(a) = 
1+$ 

X-

where 

co(-S , a)£>5Co(S+l, 0 ) - c o ( S + l , a)£>sco(~S, 0) 

£>sco(S+l,0)-2Dsco(-S,0) 

u(x,a)= 
(l+$)ea—$ 

(Al) 

(A2) 

The evaluation of the derivatives 3D^co(x,0) is then 
required to reduce this result to Eq. (48). Consider 

©flw(*,a) = I I ( 0 - * > 
s (l+$)ea—$ 

s / d \ yx 

-s\ dy / ( 

(A3) 

(A4) 
dy / (l+&)y—<!> 

y=ea. (AS) 
where 

Expanding in powers of y, and noting that y(d/dy)yn 
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= nyn, we find 
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+ ! — />, we find 

1 oo / l + $ v » - * 8 ( l + $ ) 2 5 + 1 

£>scoO,a)= £ ) yn I I (n-p). (A6) © ^ ( - 5 , 0 )= 

We now take a = 0 (or ;y=l ) , let x=S+l, and change 
variables from w to m = n—S, and from ^ to r=S—p, 
Then 

X E ( ) . (A8) 
m=0 ml \ $ / 

3D W ( S + 1 O ) ^ " " 1 ^ (m+2S+1)l/1+^\m
 (M) From Eqs. (A7) and (A8), we note that the ratio of 

S <£ i o ml \ <£ / ^ e r e l e v a n t quantities is 

Similarly, taking # = 0 , letting x=—S and changing 
variables from n to m — n—S—1, and from ^ to r = 5 ' Finally, inserting this ratio into Eq. (Al) gives Eq. (48). 
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In order to obtain some information about the effective electron number of nitrogen in Mn4N, the x-ray 
atomic scattering factors of nitrogen and manganese were measured by Fe Ka radiation. The experimental 
values of the scattering factor of nitrogen determined within a resultant probable error of 5% were close 
to the theoretical curve for N° or N1 - . This result contradicts the donor theory in which a nitrogen atom 
is supposed to donate electrons to the neighboring manganese atoms. 

INTRODUCTION 

RECENTLY, Takei et al.1'2 have shown by a neutron 
diffraction study that the magnetic structure of 

Mn4N is ferrimagnetic and is explicable in terms both 
of the donor property of nitrogen and of the energy 
splittings of manganese atoms caused by their local 
environments. In the donor theory which was proposed 
by Guillaud,3 Wiener and Berger,4 and Juza and Puff,5 

a nitrogen atom is supposed to donate one electron to 
each of the three face-centered manganese atoms. 

In order to obtain some information about the ef
fective electron number of nitrogen, the x-ray atomic 
scattering factors of nitrogen and manganese in Mn4N 

* Research fellow from College of General Education, University 
of Tokyo, Tokyo, Japan. 

1W. J. Takei, G. Shirane, and B. C. Frazer, Phys. Rev. 119, 
122 (1960). 

2 W. J. Takei, R. R. Heikes and G. Shirane, Phys. Rev. 125, 
1893 (1962). 

s C. P. Guillaud, Rev. Mod. Phys. 25, 119 (1953). 
4 G. W. Wiener and J. A. Berger, Trans. AIME 203, 360 (1955). 
5 R. Juza and H. Puff, Z. Elektrochem. 61, 810 (1957). 

were measured by Fe Ka radiation for two samples 
supplied separately by Mekata and Takei, with the 
compositions Mn4No.98 and MiuNi.oo, respectively, the 
latter of which contained a very small amount of MnO. 

In Mn4N, manganese atoms occupy the sites of a 
face-centered cubic lattice with a nitrogen atom at the 
body-centered position of the unit cell. There are four 
types of structure factor as follows: 

4 /MI I+ . /N for all even indices, (i) 

4/kn — / N for all odd indices, (2) 

/ N for mixed indices with /z+&+Z=even, (3) 

— / N for mixed indices with h+k+l= odd. (4) 

The last two types of structure factor may be used 
for determining the values of the scattering factor of 
nitrogen in the range of small scattering angles, where 
the behavior of the scattering factor is more sensitively 
influenced by the total electron number of the relevant 
atom than in other angular ranges. 


