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Effect of Defect Fields on the Optical Absorption Edge 

DAVID REDITELD 
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The electric fields of charged defects in a solid broaden its fundamental optical absorption edge by a 
mechanism which is an internal analog of the Franz-Keldysh effect. Using this analogy, a semiquantitative 
calculation is made of such broadening due to impurities in semiconductors having direct absorption edges. 
Without the use of any adjustable parameters, reasonable agreement is found with published absorption 
tails of InAs, for both the magnitude of the effect and its dependence on impurity concentration. It is pro
posed that such effects account for the common Urbach's rule observations, and a qualitative discussion 
is given for the corresponding effects in insulators. 

I. INTRODUCTION 

T N recent years, it has become recognized that an 
*> applied electric field could shift the fundamental 
optical absorption edge of a solid to slightly lower 
energies. This effect, sometimes called the Franz-
Keldysh effect for the authors of the theoretical treat
ments,1 has been observed2 in several solids upon the 
application of fields of ^ 1 0 5 V/cm. Physically, the 
effect may be thought of as a consequence of the 
quantum mechanical penetration of the band states into 
the energy gap when a strong potential gradient exists. 
The result is that an ideally sharp, direct, band-band 
absorption edge acquires a nearly exponential tail at 
energies less than the gap energy EG. 

The purpose of this paper is to investigate the way 
in which an absorption edge may be influenced by the 
corresponding effect due to the electric fields of charged 
defects in a solid. I t will be shown that such effects are 
significant and can account for the previously un
explained Urbach's rule.3 This discussion will emphasize 
the effects in semiconductors; insulators will be dis
cussed qualitatively at the end. Among the possible 
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FIG. 1. Absorption edge of InAs of varying purity 
(from Dixon and Ellis). 

1 W. Franz, Z. Naturforsch. 13a, 484 (1958); L. V. Keldysh, 
Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958) [translation: Soviet 
Phys.—JETP 7, 788 (1958)]. 

2 Richard Williams, Phys. Rev. 126, 442 (1962). 
3 F . Urbach, Phys. Rev. 92, 1324 (1953); W. Martienssen, 

J. Phys. Chem. Solids 8, 294 (1959). 

types of defects which can be charged, only point defects 
will be treated in detail because they can be shown to 
be the most important type in ordinary semiconductor 
crystals. In thin films, however, surface effects warrant 
serious consideration although they will not be dis
cussed further here. Specifically, this paper attempts 
to account for the observations of Dixon and Ellis on 
InAs shown in Fig. 1, taken from their paper.4 At 
photon energy ftco, somewhat higher than shown in this 
figure, the absorption coefficient follows approximately 
the relation 

ac^^X10*(tiu)~0.35yi2 cm"1. (1) 

This is consistent with the accepted view of the direct 
nature of transitions across the gap, and leads to the 
value £«?=0.35 eV shown dashed in Fig. 1. The un
explained departure of the observed a from relation 
(1) near the gap energy and the absorption tails below 
it are typical of a number of materials.4 Previous at
tempts to relate such tails to impurity absorption 
processes5 have been unsuccessful apparently because 
the effect of the fields of the impurities on the wave 
functions was not considered. In fact, it should be pos
sible to treat this problem as an impurity absorption 
process—in the limit of noninteracting impurities— 
provided the proper wave functions are used. For 
reasons to be given below, that approach is not taken 
in this paper. 

II. COMPUTATION OF EFFECT OF 
DEFECT FIELDS 

An evaluation of this effect of the fields of charged 
impurities has been made by invoking the analogy with 
the Franz-Keldysh effect. This requires making the 
following two approximations: 

1. All transitions are treated as direct, band-to-band 
transitions to make the Franz-Keldysh relations ap
plicable. Transitions to exciton states are ignored 
because the exciton binding energies in materials like 
InAs are less than the amount by which the band edges 

4 J. R. Dixon and J. M. Ellis, Phys. Rev. 123, 1560 (1960). This 
was chosen because it is the most extensive data of this type 
available. 

5 D. M. Eagles, J. Phys. Chem. Solids 16, 76 (1960). 
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are blurred by the fields. More important, this approxi
mation implies that the "bound states' ' of the impurities 
are treated as states of the adjacent band. This can be 
partially justified by two facts: (a) These "bound 
states" are really derived from the adjacent band. 
(b) Overlap effects among adjacent impurities in semi
conductors like InAs are so great that none of the 
"bound states" (with the possible exception of the 
lowest one) is actually bound or discrete in energy. This 
latter is also one of the reasons that the impurity ab
sorption approach is not used for this problem. 

2. The electric field strength is regarded as uniform 
in every small—but macroscopic—volume element of 
the crystal. The validity of this assumption rests on the 
estimate that, for the most part, the relative field 
strength does not vary greatly over a distance of the 
order of the penetration distance of the wave functions 
into the gap (^10~7 cm). Aside from this question of 
the variation in magnitude of the fields, there remains 
the question of the variation in direction. This will be 
mentioned later. 

Using these approximations, the local absorption co
efficient due to any field value F is computed as in the 
Franz-Keldysh effect. The total absorption coefficient 
is then found by integrating over all field strengths, 
weighting each value by its probability of occurrence 
W(F): 

«(«) = f A{o>,F)W(F)dF, (2) 
Jo 

where A(a),F) is the expression describing the (local) 
absorption coefficient for frequency co in the presence 
of field F. The range of integration extends to infinity 
even though this formulation is not valid at very high 
fields, because the integral converges fairly rapidly in 
that range. That is, the very high-field regions con
tribute little to Eq. (2). Also, any choice of a maximum 
field would be subject to several uncertainties. 

The field distributions can be represented by moder
ately screened, Holtzmark distributions as described 
in the preceding paper.6 For the present purposes, how
ever, the "nearest ion distribution" is used instead 
because (a) it is the only one having a closed form; 
(b) it happens to be a good approximation to the correct 
distributions for impurity concentrations of most 
interest.6 Thus, the probability distribution function 
for fields of magnitude F is taken to be 

w{F)dF=~Ai) e x p r U r> (3) 

where the "normal field" is 

F0=2.6(e/e)N*f*, (4) 

e is the static dielectric constant, e the magnitude of the 

6 D. Redfield, preceding paper [Phys. Rev. 130, 914 (1963)]. 

electronic charge, and N the concentration of charged 
impurities. 

I t is convenient to consider this calculation in two 
parts: (a) the magnitude of the absorption at the gap 
energy ?IOOI=EG, the highest energy for which the ideal 
crystal should not absorb; (b) the slope of the (nearly) 
exponential tail away from the gap energy. At co=coi 
Franz' expression (25) for the relative absorption, 
A (CO,JP), becomes simply1 

A K F ) = [ r (3/2) /3r (7/6)] ( « , Y'\ (5) 
where 

a>F= (e2F2/I2fitn*y*, (6) 

and m* is twice the reduced effective mass of the 
valence and conduction bands. To convert the A (co,F) 
to absolute absorption coefficient for purposes of com
parison with experiment, all that is needed is to multiply 
it by the appropriate numerical factor found from the 
absorption at energies greater than EG. In the case of 
InAs this factor is obtained from Eq. (1) as ^VJXIO 4 . 
Thus, using (3) and (5) in Eq. (2) and including this 
factor, we find 

a (cox)=V5X104X [T (3/2)r (7/9) /3r (7/6)] (fi>FQ)W (7) 

where COF0 is just Q>F evaluated at F=F0. Using €=12 
and A r=2.4X1017 cm - 3 in Eq. (3) for comparison with 
the highest curve of Fig. 1, this leads to a(a>i) ~520 
cm - 1 compared to the observed value of ^ 7 0 0 cm -1. I t 
also follows from Eq. (7) that a(coi) should vary as 
N219 which is to be compared with the estimated Nlls 

dependence relating the experimental values of a(coi) 
in the upper two curves of Fig. 1. 

The computation of the absorption tail below the gap 
is considerably more difficult and must be performed 
numerically. Furthermore, the unlimited range of fields 
used in the integration precludes the use of any of the 
approximate formulae for the Franz-Keldysh effect. In 
fact, to obtain an expression for A(a>,F) usable in 
Eq. (4) it was found necessary to reformulate7 Franz' 
result, giving 

A (a>,F) = M 1 / 2 f | Ai (s) | Hz, (8) 
J (COI—05)/Wi? 

where Ai(z) is the Airy function.8 A value of A is found 
at each co by integrating Eq. (8) numerically and using 
the result in Eq. (2) which is then evaluated numeri
cally, also. The curve of a (co) so obtained is nearly ex
ponential over the range of frequencies comparable to 
those of Fig. 1. But the slope of the absorption tail 
calculated using the parameters appropriate to the 
highest curve of Fig. 1 was found to be too small by a 
factor of ^ 2 . 6 . 

This disagreement may be reduced greatly by the 
following qualitative considerations. The second as-

7 K. Tharmalingam (unpublished). 
8 Jeffreys and Jeffreys, Methods of Mathematical Physics 

(Cambridge University Press, New York, 1956). 
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sumption made at the beginning of this section was 
that the fields be considered locally uniform in magni
tude and direction. Such fields convert normal Bloch 
wave functions to Houston functions.9 If, however, the 
fields arise from potentials with spherical symmetry, 
Coulomb functions would result.10 These functions are 
attenuated more strongly in the gap—in fact, by an 
amount which would increase the calculated slope by a 
factor of 2.4 and, thus, nearly account for the dis
crepancy. This rough argument has some support from 
the fact that the absorption away from the gap (at 
lower energies) must be dominated by the relatively 
high-field regions. I t is just these regions, close to the 
charges, which should actually have the most nearly 
spherical potential symmetry.11 Furthermore, the use 
of Coulomb wTave functions would not be expected to 
alter the results obtained at coi. The reason, of course, 
that this entire calculation has not been attempted in 
a form utilizing the Coulomb functions, is their 
complexity. 

III. DISCUSSION 

In view of the fairly good results of this simple treat
ment and the fact that no adjustable parameters were 
needed, it is felt that this effect offers a satisfactory 
explanation for the Urbach rule absorption tails.12 I t 
is, therefore, in order to examine some further implica
tions of this model. First, it is obvious why attempts to 
assign "effective temperatures7 ' to such exponential 
tails in semiconductors led to erratic values.4 Further
more, it is now reasonable to expect that optical meas
urements of energy gaps and their temperature de-

9 W. V. Houston, Phys. Rev. 57, 184 (1940). 
10 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953). 
11 In spite of this reference to high-field regions, these considera

tions do not require the participation of the very close-in regions 
where use of the static dielectric constant is severely in error. 

12 A number of attempts to explain Urbach's rule in insulators 
are summarized in a forthcoming review: R. S. Knox, in Solid 
State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York), Vol. 15 (to be published). 

pendence can be interpreted more accurately. I t should 
be mentioned, however, that indirect absorption edges 
are probably less sensitive to the defect fields, although 
this remains to be shown. 

I t also follows from this model that at temperatures 
low enough to freeze out the free carriers of semicon
ductors, the absorption tails should vanish. If, however, 
both donor and acceptor impurities are present they 
remain charged at low temperatures and the tails 
should persist. Both of these expectations have re
cently been confirmed in work on GaSb.13 

In treating the related questions for insulators several 
changes must be made. First, there are no free carriers; 
charge compensation is maintained by defects with both 
signs of charge. Some of these may associate and pro
duce dipolar fields. More important is that the binding 
energy of excitons is no longer smaller than the band 
edge blurring. Thus, the edge shape should be con
sidered in terms of a field-perturbed exciton transition. 
I t is probable that the effect of defect fields will be 
qualitatively the same as for band-to-band transitions; 
this is being considered at present. 

The most important aspect of insulators is that vi
brations of their ionic lattices provide an additional 
source of electric fields.14 Such fields appear to offer an 
explanation for the strong temperature dependence of 
Urbach tails in ionic crystals. This expectation is con
sistent with the very weak temperature dependence in 
semiconductors. Further work on this subject is in 
progress. 
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13 E. J. Johnson and H. Y. Fan, Bull. Am. Phys. Soc. 7, 185 
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