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It is shown that the interaction between macroscopic, nondissipative media, and time-varying electro­
magnetic fields can be described by a time-averaged potential function. From this function it is possible 
to derive phenomenologically the tensors that describe any of the usual electro- and magneto-optic effects for 
electric and magnetic fields of any frequency. In addition, these same potential functions describe the various 
optical nonlinearities like harmonic generation in potassium dihydrogen phosphate, and harmonic generation 
by electric quadrupole and magnetic dipole nonlinearities. 

The symmetry relations first derived by Armstrong, Bloembergen, Ducuing, and Pershan for electric 
dipole nonlinearities follow directly from the methods presented here. In addition, one can derive analogous 
relations for electric quadrupole and magnetic dipole nonlinearities. These relations also demonstrate the 
reciprocal nature of the linear electro-optic effect and rectification of light. The Faraday effect and the 
production of a dc magnetization due to incident circularly polarized light are also reciprocal effects. 

I. INTRODUCTION 

THE nonlinear responses of macroscopic media to 
applied electric and magnetic fields at lower than 

optical frequencies are well known. Crystal rectifiers 
and harmonic generators, magnetic amplifiers, satur­
able reactors, etc., are just a few of many examples. 

Until recently, the only available electromagnetic 
(EM) fields at optical frequencies were so feeble that 
one could linearize the response of any material body 
to them with no appreciable error. With the develop­
ment of optical lasers, this is no longer true and recent 
experiments1-6 have clearly demonstrated nonlinear re­
sponses to optical frequency fields. 

Theoretically, these optical phenomena have been 
considered from both a quantum mechanical, or first 
principle, approach as well as phenomenologically.7-13 

It is the purpose of this paper to show that energy 
considerations first suggested by Armstrong, Bloem­
bergen, Ducuing, and Pershan (ABDP) can be general­
ized to include all nonlinear electromagnetic processes 
in which the medium is nonabsorptive. In particular, 
in addition to the ones first obtained by ABDP for 
electric dipole nonlinearities, it is possible to derive 
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dispersion symmetry relations, for electric quadrupole 
and magnetic dipole optical nonlinearities, solely from 
macroscopic arguments. The method to be presented 
is so general that it will be possible to use one form of 
tensor to describe all nonlinear effects of the same type 
regardless of the frequencies involved. For example, the 
dc magnetic Voigt effect, microwave modulation of 
light by magnetic techniques, and magnetic optical 
nonlinearities are all described by different Fourier 
components of the same tensor. With the aid of these 
dispersion symmetry relations, it will be possible to 
estimate the order of magnitude of some of the, as yet, 
unobserved optical nonlinearities. 

The thermodynamic, or energy, arguments will be de­
veloped in Sec. II. Sections III through V will be con­
cerned with the various specific types of nonlinearities. 

II. MAXWELL'S EQUATIONS-
CONSIDERATIONS 

-ENERGY 

The starting point from which one derives the EM 
wave equations for macroscopic media is Maxwell's 
equations in vacuum and a distribution of charges and 
currents.14,15 

VXe=-(lA)db/d*, 

VXb= (l/c)ae/d/+(4irA)j. 

Taking a suitably defined average, one obtains 

(2.1) 

where16 

VXE=-(l /c)dB/d/ , 

VX B= (l/c)dE/dH- (4x/e) J, 

3=dF/dt+cVXM-d(V-Q)/dt+-

(2.2) 

(2.3) 
14 H. A. Lorentz, The Theory of Electrons (B. G. Teubner, 

Leipzig, 1909). 
15 J. H. Van Vleck, The Theory of Electric and Magnetic Sus­

ceptibility (Clarendon Press, Oxford, 1932). 
16 L. Rosenfeld, Theory of Electrons (Interscience Publishers, 

Inc., New York, 1951). The partition of currents into terms origi­
nating in electric dipole, magnetic dipole and electric quadrupole 
moments is useful for the discussion of volume elements small 
compared to the wavelengths involved. It is by no means a neces­
sary step and for infinite media equivalent physical results are 
often obtained from different assignments of / to P , M, or Q. 
See L. D. Landau and E. M. Lifshitz, Electrodynamics of Con­
tinuous Media (Pergamon Press, Inc., New York, I960), p. 252. 
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P is the electric dipole moment per unit volume, M is 
the magnetic dipole moment per unit volume, and Q 
is the electric quadrupole moment per unit volume. I t is 
well known that the dipole moment per unit volume is 
uniquely defined only when the net charge density per 
unit volume is zero. Similarly, M and Q are not uniquely 
defined when dP/d/ and P, respectively, are nonzero. 
I t is possible, however, to define M and Q in a meaning­
ful manner. 

In the usual manner one obtains the following form 
of the energy conservation equation: 

(C/4TT)V- (ExB)+( l /47r )B-dB/d / 

+ ( l /47r )E-dE/dH-E-J=0 . (2.4) 

For a vacuum, i.e., J = 0, the first term is the power 
flow, and the second and third terms are the time 
derivative of the energy density per unit volume. The 
interaction between material and EM field is thus 
represented by the last term. I t is important to realize 
that the last term is not simply the contribution of the 
material to the energy density per unit volume. Only 
when M and Q vanish can we regard E- J = E - d P / d £ 
as the time derivative of an energy density. This was 
the case, for example, in ABDP where only the electric 
dipole nonlinearity was treated. In general, one must 
do a partial integration to obtain 

(C/4TT)V- (EXH-47rc; - 1 E^Q/a/) 

+ (1/4TT)H • dB/dt+ (1/4TT) E • dD/dt 

+ VE:dQ/d*=0, (2.5) 

where H = B - 4 T T M and D = E + 4 T T P . Note that the 
above definition of D implies 

V-D-47rVV:Q=47rp. 

For the purposes of this paper, it is not important 
whether this definition or one in which V-D=47rp is 
given. The terms - c V - ( E X M ) and - V - ( E - d Q / d / ) 
represent divergences of an energy flow through the 
material medium. This is demonstrated in Fig. 1 for 
the E X M term. The circular current corresponds to a 
magnetization out of the page. The charge gains energy 
from the E field at %i and gives it to the E field at Z\; 
there is a net transfer of energy from right to left 

M - O U T OF PAGE 

o 

FIG. 1. Schematic 
demonstration of power 
flow proportional to 
- (EXM). The counter­
clockwise current J is 
equivalent to a magne­
tization out of the page. 

opposite to the vector cross product E X M . Similar 
considerations will demonstrate the power flow for 
the quadrupole term. 

If the material energy density per unit volume is U, 

dU/dt=R-dM/dt+E-d?/dt+VE:(dQ/dt), (2.6) 

so that Eq. (2.5) becomes 

V • S + (1/4TT)H • dR/dt+ (1/4TT) E -dfydt 

+dU/dt=0, (2.7) 

where S is Poynting's vector generalized to include 
quadrupole effects. Equation (2.7) says that the rate 
at which energy flows out of a volume element is equal 
to the rate at which the energy stored in the EM field 
is decreasing {i.e., - ( l /4w)[H-dH/dH-E-dE/d/]} plus 
the rate at which the material is doing work on the EM 
field (i.e., —dU/dt). Equation (2.6) can be recognized 
as the usual expression for the work done on a system by 
the external fields.17 

Restricting our attention to nondissipative media, it 
is clear that in the steady state the average work done 
on (or by) the material must be zero. In the linear 
problem, for example, E and df/dt are 90 deg out of 
phase and the average of their products vanishes. This 
is not to say, however, that the average energy stored 
in the medium by virtue of its polarization is zero. 
When the fields are initially turned on, work is done on 
(or by) the material to establish what is eventually 
termed the "steady state" amplitudes of P, M, Q, etc. 
I t is most reasonable to assume that the net work done 
in producing the steady-state amplitudes is independent 
of the manner in which they were established. Equiva-
lently, the final "steady-state" energy density only de­
pends on the "steady-state" fields and polarizations, 
not on how they were produced. 

In order to make these statements more quantitative, 
consider 

£(w,0 = — / E(J) exp(-ia>t)dt, (2.8) 
Tj t-T/2 

where T is a time long enough so that COD>>1, but still 
short enough that 8(co,/) is independent of T. If we 
were only concerned with linear problems, this last 
point would mean that T is much less than the time in 
which the fields go from zero to their "steady-state" 
values. Actually, we are primarily interested in non­
linear problems so that T must be small compared to 
the time in which the nonlinear interactions will sig­
nificantly change the Fourier distribution of any of the 
field variables. This means that we are restricted to 
weak nonlinearities. Fortunately, this is not a serious 
restriction since the nonlinearities in which we will be 
interested are weak enough that there is no difficulty 
in picking a time T. The Fourier distribution of all 

I x \L 
17 Mark W. Zemansky, Heat and Thermodynamics (McGraw-

Hill Book Company, Inc., New York, 1961), pp. 60-65. 
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variables are defined similarly to Eq. (2.8) and will be 
indicated by script capitals. If there are n interacting 
waves, 

E(t) = 2 Re E 8(«„*) exp (io>vt) (2.9) 

and Eq. (2.6) becomes 

dU/dt=2 Re E \JK*(a),,,t)-dm(o>9,t)/dt 

+ 2 Re E [8*(«„0-d?P(«r ,0 /^ 

+ 2 Re E CV8*(« r ,0:dD(w„0/d/ 

+iw„V£*(w„0:Cl(wy,0] 

+high-frequency terms. (2.10) 

The physical statements we have been able to make 
about the energy only pertained to the time average 
values. Averaging over T causes the high-frequency 
terms in Eq. (2.10) to vanish. 

Under steady-state conditions dffli(o)v,t)/dt—0, 
dy$(o)p,t)/dt=0, d£X(oov,t)/dt—0 and since one requires 
that (dU/dt)T=0 

0 = 2 R e E w,[ITC*(a>,,0-SW(«r,0 + fi*(^,0'*KO 

+V8*(«, ,0:D(a>, ,0] . (2.11) 

Equation (2.11) is one way of saying that the total 
power flow is a constant even though it can redistribute 
itself amongst the several frequencies. ABDP demon­
strated that for the 8* -5J5 term Eq. (2.11) followed from 
the symmetry relations. The argument cannot be re­
versed, however. 

The physical argument that the steady-state energy 
density only depends on the final state and not on the 
path by which it was attained is equivalent to requiring 
(dU/dt)T be an exact differential; i.e., (dU/dt)T= d$/dt, 
or 

d$=2 Re E [tt*(«,,0-$W(w,,0 
v=l 

+ € * ( « „ 0 - ^ P ( « F , 0 + V f i * : d D ( « „ 0 ] . (2.12) 

One can define a second potential 

F = # - 2 R e E CflfC*(o>„0-a»(«r,0 
v=l 

+ 8*(«„/)-*(a>F,0 + V£*(co„0:Cl(«„0], (2.13) 

so that 

¥ («„*)= -dF/d8*(a»t), (2.14a). 

SR(«„0= -dF/dK*(p»t), (2.14b) 

O ( « „ 0 = - d F / d [ V € * ( « , , 0 ] . (2.14c) 
From the existence of a "time-averaged free energy" 

and the relations (2.14a, b, c) one can describe all of the 
conventional electro- and magneto-optical effects as 
well as all of the phenomena by which one obtains 
parametric amplification with nondissipative media. 
Many of the dispersive effects in magnetic double 
resonance experiments also follow. In the subsequent 
sections we will consider several forms for F and the 
phenomena which they lead to. 

For weak nonlinearities, by the methods of ABDP, 
macroscopic current density J in Eq. (2.2) and Eq. 
(2.3) can be partitioned into linear and nonlinear parts. 
At the frequency co„ one can write 

VX8(co„) = -i(a>p/c)K(a>v), 

VX^C(co,) = i(covA)£(co,)-8(co,) (2.15) 
+ (4TTA)3K)NLS, 

where it has been assumed that the linear material is 
nonmagnetic: i.e., p(co„) = 1 so that 3C(a>„) = 23(co„), and 
S(c°v)NLS is given by the co„th Fourier component of the 
nonlinear part of Eq. (2.3) where the superscript NLS 
means nonlinear source. The linear dielectric constant 
at co„ is given by e(co„). An equivalent form of Eq. 
(2.15) would be 

VX8(«0 = - i (« .A)C^(«0+4iHK(co , ) N L S ] , 
VX5C(co,) = z(co,A)C£(co,;)-8K)+47r5lJ(co,)NLS (2.16) 

-47rV-£L(co,)NLS]; 

where 
5C(o),) = a5(co,)-47rS»l(co,)NLS. 

The difference between Eqs. (2.15) and (2.16) is the 
difference in the meaning of 3C(a>„). The two different 
definitions of 3C(co„) will lead to different boundary 
conditions and slightly different, although equivalent, 
forms for the energy density and power flow. Equation 
(2.15) with correct boundary conditions proves most 
straightforward to use in the approximation that 
|SNLS(W»') I is a constant. This is the approach used by 
Bloembergen and Pershan12 in the treatment of bound­
ary harmonics. The interpretation of the exact nonlinear 
coupled amplitude equations of ABDP will be some­
what more direct for magnetic nonlinearities when 
Eq. (2.16) is used. 

III. ELECTRIC DIPOLE EFFECTS 

We will consider all effects that can be derived from 
a free energy of the form 2C:&£, %:&S8, etc., as electric 
dipole effects. The first term is, of course, the free 
energy for a linear medium, but it proves illustrative to 
treat it by the methods we use for the more complicated 
phenomena. 
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Consider the free energy 

F= - i [X^(^)^*(co)^(co)+X 4 / ( co)^( W )^ (co) ] , (3.1) 

where it is understood that repeated indices are to be 
summed over. Since there are only nine independent 
products 8i*(o})8j(<x>), there can be only nine inde­
pendent tensor components, i.e., &(co) is Hermitian: 

Xtf(w) = X**(a>). (3.2) 

From Eq. (2.14a) 

%(a>)=-dF/d8i*(a>) = Xij(a>)8j(a>), 

and the dielectric tensor e 

€*•(«)= l+4irXtf(a>) (3.3) 

is also Hermitian. If the crystal is nonmagnetic, it is 
invariant under time reversal and the tensor & must 
also be invariant under time reversal. From Eq. (A7) 
of the Appendix one obtains 

*</(«) = Xtf*(a>), (3.4) 

so that 2C a n d £ are real symmetric tensors, as is well 
known. Note, however, that for magnetic crystals the 
off-diagonal elements are imaginary and one obtains 
the well-known Faraday rotation. This is discussed at 
greater length in Sec. V when magnetic nonlinearities 
are considered. A second point worth noting, however, 
is that optical activity is not an electric dipole effect, 
since this requires imaginary off-diagonal elements of E 
for a crystal invariant under time reversal.18 In Sec. V 
it is shown that optical activity follows from a free 
energy of the form x:£3C. 

The linear electro-optic,19 or Pockels, effect and the 
largest of the optical nonlinearities can be obtained 
from a free energy of the form 

F=— [X^(co3,co2,coi) 8i*(a)z) Sj((a2) <§A(<OI) 

+ X<ifc*(«8,«2,C0l)«i(«8)«i*(«2)5ib*(o)l)], (3.5) 

where co3=a>i+co2. 
Since there is only one way to form the product of 

the ith. component of £*(co3), the yth component of 
£(«2), and the kih component of £(coi), there is only 
one quantity X#fc(«3,a>2,coi) and any permutation of fre­
quencies and indices must be equal, i.e., X (̂co3,co2,a>i) 
= X#fc(co2,w3,coi), etc. This is not yet the symmetry ob­
tained by ABDP which are relations between the non­
linear polarizability tensors. 

From Eq. (2.14a) we have 

^3i(c03) = XtfA.(a>3,C02,Wi) 8j(<*>2) Skfal), 

%M = X»y**(tt8,«2,«i) Sifa) Sk* (0>i), (3.6) 

$fc(«i) = X#fc*(co3,a>2,coi) 8i(aiz) <§/(co2). 

18 E. U. Condon, Rev. Mod. Phys. 9, 432 (1937). 
19 American Institute of Physics Handbook, edited by Dwight 

E. Gray (McGraw-Hill Book Company, Inc., New York, 1957). 

The tensors of ABDP, °%, were defined initially from 
the following relations: 

^ifa) = °X#fc(a>3,«2,Wi) 8j(0)2) 8k(0>l), 

^ W = % r t ( « ^ 8 ^ i ) 8 . ' W & * ( « i ) , (3.7) 

tyk (wi) = °Xkij> (coi,co3,w2) Si (co3) <§/* (co2). 

From Eqs. (3.6) and (3.7) we have 

Xijk (co3,a>2,coi) = °Xijk (co3,co2,a>i) = \}Xjik (co2,co3,^i)]* 

= C°XJb</(co1,a)8,«2)]*. ( } 

For crystals invariant under time reversal, Eq. (A7) 
of the Appendix shows 

Xtffc(a>3,W2,COi) = X#fc*(c03,C02,COi), 

and Eq. (3.S) is equivalent to the relations obtained by 
ABDP. For crystals which lack time-inversion sym­
metry, Eq. (3.8) is a generalization of those relations. 

For the particular case of second-harmonic genera­
tion it is simplest to start from the free energy rather 
than to take the limits of Eqs. (3.6) as coi —> co2. In the 
limiting procedure it is difficult to keep track of factors 
of 2. 

The physical effects resulting from these types of 
nonlinearities at optical frequencies have been thor­
oughly treated by ABDP and others.12 

To obtain the low-frequency linear electro-optic 
effect, one must take the limit as coi —» 0. The free 
energy, Eq. (3.5), must be extended to include the case 
when a>3=a>2—coi. If a>i is small, one should expect 

Xtfft(«2+Wi, C02, Wl) = X#fc(«2, «2 —0>i, « i ) , 

so that 

F=—2 ReXtffc(&>2+Wi, 6)2, C0l)ZSf(o)2+^l)8j(o)2)8k(o)l) 

+ «<*(«2)«i(co2-o>1)5Jb(a)i)]. (3.9) 

If the nonlinearity is large enough so that the ampli­
tudes of the side bands, i.e., co2±wi, become comparable 
to the amplitude at co2, the free energy must be extended 
further to include the other side bands; i.e., co2±2wi, 
co2±3coi, • • •, etc. 

IV. ELECTRIC QUADRUPOLE EFFECTS 

All effects that are derivable from a free energy of 
the form 2C«£V£, & j££V£, etc., will be considered elec­
tric quadrupole effects. This does not imply neglecting 
electric dipole moments of the form 2C :V£ a n d 2C*£V£ 
but rather that these effects have their origin in a 
quadrupole-type interaction. Restricting attention, at 
this time, to tensors & symmetric in the last two in­
dices; i.e., if 

2c(co3,co2,o?i) j£*(a>3)£(co2)V£(coi) 

it is assumed that 

Xijki (o?3,w2,coi) = Xijik (co3,co2,Wi). (4.1) 
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That part of x antisymmetric in the last two indices 
will multiply dkSifaij — diSkfai) and this is equal to 
— i(4:Tra)i/c)ekln3Q,n(o)i), where ekln is the unit antisym­
metric tensor of the third rank. If kin is a cyclic per­
mutation of x, y, z, ekln= + 1; if it is an antisymmetric 
permutation, ekln= — l. Thus, the part of 2C antisym­
metric in the last two indices can be written as 2C:&JC, 
2C:££0C, etc. Terms of this type will be discussed in 
detail in Sec. V. 

A free energy of the form 2C:.£V8, symmetric in the 
last two indices, corresponds to a quadrupole correction 
to the linear dielectric constant. The third rank tensor 
X reverses sign on inversion of the spatial coordinates: 
i.e., x —* —x,y—> — y,z—> —z, and thus vanishes for 
all crystals invariant under spatial inversion. For the 
remaining crystals this correction has been treated in 
detail by Satten20 and will not be discussed here. Terms 
of the form F= — & j(V€)(V8) are of higher order and 
are neglected here. 

The lowest order nonlinear quadrupole term has a 
free energy of the form 

F = — 2 Re[X f̂ci(co3,W2,coi)<Si*(co3)Sy(w2)5fcSz(coi) 

+^iikj((ai,(az}(a2)Si((a1)Si*((az)dkSj(o)2) 

+ XJiki(oi2^hO)d)Sj(o)2)Si(o)i)dkSf(o)z)2 (4.2) 

for a>3=coi+a;2. 
In addition to the symmetry of Eq. (4.1), one requires 

the dispersion, or permutation symmetry relations be­
tween the first two indices of the type 

Xyfci(c03,W2,C0i) = Xi*fcz(c02,C03,Wi), 

XKfci(«l,W3,W2) = X«fci(«3,«i,C02), ( 4 . 3 ) 

etc. 

The reasoning behind Eq. (4.3) is the same as was used 
to justify the symmetry of the tensor in Eq. (3.5). The 
importance of a free energy of this type derives from 
the fact that for crystals invariant under space inver­
sion it represents the largest nonmagnetic mechanism 
for producing second harmonic. 

From Eqs. (2.14a, c) and (4.2) one obtains 

tyi(wz) = Xijki(mJu2,ui)Sj(m)dk8i(<»>i) 
+ Xlikj(uh0)hU2)8l(0)i)dk8j(0)2), 

Qto(co3) = Xy^(co2,coi,w3) 8j(o)2) Sz(wi), (4.4a) 

$y(u2) = Xyfcl*(co3,a>2,w1) <§;(w3)dfc£j*(coi) 

+ X^fci*(c02,C0i,C08)5l*(c01)dfc5<(c03), 

Q * i ( « 2 ) = X K f c i *(« i , a>8 ,«2 )« i* (« i )« , - («8 ) , ( 4 . 4 b ) 

and 

%((*l) = XKjy*(<0i,C08,a>2) Si((Oz)dkSj*(<ti2) 

+ X,-tt<*(a>2,C0i,C08)5/(«2)djbS»(c08), 

Ow(coi) = Xw*(ctf8,co2,«05*(«8)«i*(«2). (4.4c) 

20 Robert A. Satten, J. Chem. Phys. 26, 766 (1956). 

I t is a rather trivial loss of generality to restrict atten­
tion here to crystals invariant under time reversal. 
From Eq. (A7) of the Appendix, all the x's are real and, 
henceforth, the stars can be neglected. The nonlinear 
source currents 3 N L S , to be inserted into Eqs. (2.15) 
are of the form 

3 i ( ^ , ) N L S = ^ , [ ^ K ^ , ) N L S - ^ ^ O „ ( c 0 , ) N L S 1 (4,5) 

S i ( ^ 3 ) N L S = ^3[X^z(c03 ,C02,COi) 

— XyW(c02,C0i,O)3)](Sy(c02)^A!<Sz(wi) 

+ W3[XWy(cOi,C03,C02) — Xjlki(^2^h^z)2 

XSiMdkSjfa), (4.6a) 

3!i(w2)NLS=W2[X,7fci(co3,co2,a)i) — Xzay(a>i,co3,co2)] 

XS»(w3)dfcSi*(coi) 
+w2[X;W(co2,coi,co3) — Xw(coi,co3,a>2)] 

XSfMdkSifa), (4.6b) 

3 z ( c 0 l ) N L S = ic0i[XZay(cOi,C03,C02)--X,yA;Z(c03,C02,COl)] 

XSi(wz)dkSj*(<U2) 
+ W0i[XyZfc*(w2,C0i,C03) —X^jfcZ(c03,C02,COi)] 

XSy*(co2)d*S<(a>8). (4.6c) 

Defining tensors xeff such that 

3(co3)NLS = ico32Ceff(co3,co2,co1):8(co2)8(co1), 

3 ( W 2) N L S = «02Xe!fKo)i,co8):fi*(a)i)£(co8), (4.7) 
^ ( W l ) N L S = ^ l X e f f ( c 0 l j C 0 3 ) C 0 2 ) : £ ( c 0 3 ) g * ( w 2 ) j 

one can see that the permutation symmetry relations 
of ABDP [i.e., Eqs. (3.8)] do not hold exactly for xeff. 
For example, if k 3 = k i + k 2 + A k , from Eq. (4.3) 

CX4-yzeff(aj3,a)2Jcoi)]*-X^eff(co1,c02,co3) 

= CX^z(W3,C02,COi)--XyH(wi,C02,C03)](Ak)fc. (4.8) 

Only for the case of exact phase matching, i.e., A k = 0 , 
can one treat the current elements of Eqs. (4.6) as 
effective dipole moments per unit volume. The right-
hand side of Eq. (4.8) is related to the transport of 
energy by the quadrupole interactions as discussed in 
relation to Eq. (2.5). Since 2Ceff is imaginary, and 
C03=COi+C02, 

<E(0-J(0NLS> 
= 2 Re[«02{XyK°ff (co2,coi,co3)- [X<yi*«(w8,co2,&)i)]*} 

+ Wi{XKyeff(c0i,C03,C02)---[Xij7
eff(c03,C02,a>i)]*}] 

Applying Eqs. (4.3) and (4.8) 

<E(0-J(0NLS> 
= 2 Re{pCOiXiyfcZ(c03,aj2,COi) + tC02XZifcy(cOi,C03,W2) 

— tC03XyZfci(c02,C0i,C03)] 

X[(~iAk)^,*(a;1)^*(co2)^(co3)]}, (4.9) 

and this can be recognized as the time average of 
V-[E(0-dCL/d*]. 

The coupled amplitude equations developed by 
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ABDP [i.e., Eqs. (4.9) of ABDP] can be generalized 
to include quadrupole nonlinearities by replacing 
&>„?P(<oJ,)

NLS with 3(co,)NLS . The exact solutions will 
follow in the same manner as the dipole nonlinearity 
except that the integration constant corresponding to 
the time average Poynting's vector will not be simply 
(EXH)?*, but it will have an additional term corre­
sponding to the transport of energy by the quadrupole 
interaction shown in Eq. (4.9). 

The currents given by Eqs. (4.6) can be seen to be 
invariant if one adds to the free energy [Eq. (4.2)] a 
term that would correspond to a surface-energy density, 
F'=F+V.G 

V- G=afc[
<y^z(a)3,co2,co1)^(a)3)(Si(co2)^(co1)]. (4.10) 

If X# fci(w3,«2,wi) = X;ZH(W2,COI,CO3) = X w(coi,a>3,cd2), Eq. 
(4.2) reduces to a surface-energy density, and Eqs. 
(4.6) all yield zero currents. I t may often prove con­
venient to define new tensors %' by a suitable definition 
of y such that F' is given by Eq. (4.2) with x ' replac­
ing x and 

Xtfft*'(a>3,W2,Wi) + Xyffc/(w2,C0i,C03) 

+Xit-fc/(wi,coa,co2) = 0. (4.11) 

Alternatively, one could set one of the tensors, for ex­
ample, x'C603,̂ 2,601) = 0, with no loss of generality. 

For second harmonic generation there are only two 
tensors, x(co,co,2co) and 2C(2CO,CO,OJ). With no loss of 
generality one could set x(2w,co,w) = 0 and obtain 

F = - 2 Re2c(co,w,2co) :£(co)£(co)V£*(2co), (4.12) 

so that 
d 

3NLB(2W) = V.O(2«) 
dt 

= —2icoV-[x(a>,co,2a>):fi(co)£(co)]. (4.13) 

For an isotropic material, the form of x(co,co,2co) is given 
by Table I. I t is straightforward to demonstrate that 
for a plane wave at frequency co moving with wave 
vector k(a>) such that k (co) • £ (oo) = 0 the current given 
by Eq. (4.13) is parallel to k(co). Neglecting surface 

T A B L E I . T h e form of the tensor % (co,w,2co) to be used in 
Eqs . (4.12) and (4.13) for isotropic materials . a 

V 
Jd 

XX yy zz 

Xi/M(w,<*>,2co) 

yz zy zx xz xy yx 

XX Xl.l Xl,2 Xl,2 
yy xi,2 xi , i xi,2 
ZZ Xl,2 Xl,2 X l , l 
yZ X6,6 X6.6 
Zy X6,6 X6,6 
ZX X6,6 X6,6 
XZ X6,6 X6,6 
xy xe, 6 Xe, 6 
yX X6,6 X6,6 

aX6,6=KXl,l-Xl,2). 

F I G . 2. A possible geometry for generating second harmonic radia­
tion in an isotropic material with anomalous dispersion. 

harmonics12 this current cannot generate a second 
harmonic. 

If the field &(u>) is not a simple plane wave, but two 
plane waves as shown in Fig. 2, it is possible to match 
phase velocities in the z direction, if the isotropic ma­
terial exhibits anomalous dispersion. The sum of £(co) 
and £'(co) has components 

8x(u>) = [(<§n+ S\\) cos<£ cos&x# 

— i{&u— &u) cos^ $>mkxx~] exp(—ikzz), 

^ ( w ) = [(£jL+£i/) coskxx—i(&x— Sx) sin&zx] 

X e x p ( - ^ ) , (4.14) 

Sz(o)) = \2(Sn
f— Su) sin</> c o s & ^ + i ^ i i ' + ^ n ) 

X sin<£ $mkxx~] exp (— ik zz). 

The quadrupole moments and the currents can be ob­
tained by direct substitution of Eqs. (4.14) into Eq. 
(4.13) where x is given in Table I. The only terms that 
will couple to a plane wave at 2o> propagating in the z 
direction are the parts of O** and $dyz that do not 
have an ^-spatial dependence. The term !Q,xe(2a)) van­
ishes identically, however, 

0^(2a) ) = X6>6(^1,/^j.— SiiSx
f) sin<£ exp(—i2kzz), 

3 f y
N L S ( 2 c o ) = - 4 « * ^ « i 6 ( 5 , I

, 5 J l - « I I « / ) 
Xsin0 exp(—i2kzz). (4.15) 

Observe that if there is symmetry between £ and £' 
such that &\\=&u and Sx— $x', there is no second 
harmonic generation. This effect can be large only for 
large anomalous dispersion since 

sin</> = {l-[n(2a>)/n(a))J}l'\ 

Second harmonic generation by means of a quadru­
pole nonlinearity will thus be a very weak effect in all 
isotropic media. 

Anisotropic media, on the other hand, can have 
observable second harmonic generation by a quadru­
pole nonlinearity. Consider the tensor %(O),CO,2GO) for 
calcite given in Table II . There are several differ­
ences between this and the fourth rank elastic tensors. 
For example, Xa.a;w(co,co,2aj)^X^a.a.(a>,a),2co),Xa;a;!/a(co,co,2w) 
7^XyZXX{wyo)y2o}) because there are no operations that 
will transform z into x or y and leave the crystal in­
variant. The identity Xa;a;2/2/(aj,w,2co) = X2/2/j;;c(co,co,2co) fol­
lows from the operations of a trigonal axis in calcite. 
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TABLE II. The form of the tensor x(w,co,2w) to be used in 
Eqs. (4.12) and (4.13) for calcite.a 

\kl 
ij\ xx 
XX Xl . l 
yy xi,2 
zz xz, i 
yz X4, i 
zy X4, i 

yy zz 

Xl,2 Xl,3 
Xl . l Xl,3 
X3,1 X3, 3 

~ X4,l 
— X4.1 

yz 

Xl,4 
— Xl,4 

X4,4 
X4.4 

zy 

Xl,4 
— Xl,4 

X4.4 
X4.4 

XZ X4.4 X4.4 X4,l X4.1 
ZX X4.4 X4.4 X4.1 X4,l 
Xy Xl,4 Xl,4 X6,6 X6.6 
yX Xl,4 Xl,4 X6.6 X6,6 

a X 6 . 6 = | C X l , l - X i , 2 ] . 

One can match the phase velocity of an ordinary ray 
at the fundamental frequency to an extraordinary ray 
at the second harmonic3,4 as shown in Fig. 3. As dis­
cussed in ABDP [Eq. (4.8)], harmonic generation is 
due to the component of £$NLS(2co) parallel to e2; i.e., 

I S N L S (2co) | u seful= - (MeW(a>)/c)8*(co) 

+ (e2)P<WsV(w,co,2aO]. (4.16) 

Although the linear optical properties of a uniaxial 
crystal are constant for all rays on a cone forming a 
given angle 6 with the crystal axis, this is not true for 
the nonlinear properties. The most general form of the 
tensor components in Eq. (4.16) can be obtained from 
Table I I by a rotation through an angle 4> about the z 
axis (i.e., crystal axis) so that the new y' axis is parallel 
to E(w) and then a rotation by 6 about E(co) so that %' 
is the direction of k(co). 

^•3NLS(2") 
= -2a)2e1/2(a;)c-1<§2(^) 

X[(X l f 2+X l t 3) sina:+(Xi i3-X1,2) sin(20+aO 

+ 2Xlf4 sin3<£ COS(20-GO] . (4.17) 

The fact that Eq. (4.17) is nonzero is due to the crystal 
anisotropy since for isotropic crystals the primary wave 
is a transverse wave and a = 0 . From Table I isotropic 
crystals have X1>2=X1>3 and Xi,4=0. 

The experiments of Terhune et al.,5 detected quadru-
pole second harmonic in calcite for one particular 
geometry. They calculate for their orientation of crystal, 
the bracketed term in Eq. (4.17) was of the order of 
10~~18 esu units. This sets a lower limit on the three 
constants Xi>2, XltZ} and X M since </> might have been 
set near 0, w/3, 2w/3, etc.; the real %'s may be larger 
by approximately ( l / s ina )«20 . I t would be interesting 
to see if an angular dependence corresponding to the 
last term is observable. This would give a direct meas­
ure of Xi,4 independent of Xi)2 and Xi,8. 

Although in isotropic material there is no second 
harmonic generation per unit volume, due to the quad­
r u p l e nonlinearity there can be generation at the 
surface.12 The quadrupole term in the current density, 

i.e., Eq. (4.5) changes the boundary condition that the 
tangential component of 3C is continuous across the 
surface of a nonlinear dielectric. One can show from 
Eq. (2.15) that if $i,2 is a unit vector, normal to the 
surface between medium 1 and medium 2, directed from 
1 into 2; and if a is a unit vector parallel to the surface, 
such that ni,2-&=0, the boundary condition on 3C(co) 
can be written as 

(%(a>)-&Ci ( « ) ) • * 

= - (4iricoA)[Ct2(«)-Cli(«)]: A I . J C ^ I . J X ^ ) . (4.18) 

If the fundamental is polarized perpendicular to the 
plane formed by the normal to the interface and the 
direction of wave propagation, Eq. (4.18) reduces to 
the usual condition that the tangential component of 3C 
is continuous. In this case, the quadrupole surface har­
monic is obtained by substituting for <i|}NLS(co) of Eq. 
(4.12) of reference 12, the quantity («o)-13NLS(a>) as 
given by Eq. (4.13) of this paper. The tensor & is 
given in Table I. 

For other polarizations of the fundamental, the right-
hand side of Eq. (4.18) does not reduce to zero and to 
calculate the boundary harmonics it must be used 
instead of Eq. (4.11) of reference 12. 

V. MAGNETIC DIPOLE EFFECTS 

All effects which can be derived from a free-energy 
proportional to one or more powers of the magnetic 
field will be considered magnetic dipole effects. Higher 
magnetic multipoles are explicitly neglected since free 
energies proportional to gradients of the magnetic field 
are not treated. The simplest magnetic free energy 
describes the linear phenomena of optical activity,18 

F = -{X4V(a;)(S,n^)^i(co)+X/(co)(S,(co)5C/(co)}. (5.1) 

Assuming a crystal invariant under time reversal, Eq. 
(A7) of the Appendix requires X#(co) = — X#*(co); i.e., 
X is pure imaginary. The forms of x f ° r quartz and 
NaC103, both optically active, are given in Table I I I . 
The dielectric currents are obtained from 3(co)=d$P 

FIG. 3. Geometry for matching an ordinary wave at co to an 
extraordinary wave at 2a> in a uniaxial crystal. The second har­
monic S field is directed along the unit vector 22. 
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TABLE III . The form of the pseudotensor 2C(̂ ) to be used in 
Eq. (5.1) to describe optical activity in quartz and NaC103. For 
NaClOs Xi,i=X3,3. The symbol |xi,i | should be taken to mean the 
imaginary part of xi, 1 and is thus a real number that can be either 
positive or negative. 

X 

y 
z 

X 

*'|xi,i| 

y 

*|Xi.i | 

% 

*'|X8,s| 

X (o))/dt+cVXffli(o>) and one can write the part of the 
dielectric constant due to Eq. (5.1) in the form 

Aei^tewickn/^dXul + lXuDe1™, (5.2) 

where k is the propagation vector for the wave and elin 

is the antisymmetric third rank tensor introduced in 
Sec. IV. The second rank pseudotensor % will vanish 
if the crystal has inversion symmetry since the second 
index transforms like 3C and keeps its sign under in­
version. The somewhat weaker condition of the presence 
of a mirror plane, however, can make individual terms 
in 2C vanish. For example, if the crystal is invariant 
under reflection in the %-y plane, the only nonvanishing 
elements of 2C are Xxe, Xyz, Xsx, and Xzy. This has the 
physical significance that if light is propagating parallel 
to a crystal mirror plane, the crystal must have the 
same effect on right and left circular polarization and 
there can be no optical activity. Note that the sign of 
the effective dielectric constant in Eq. (5.2) depends on 
the sign of kn> This has the important consequence that 
light going forward and backward through an optically 
active material will emerge with no net rotation of the 
plane of polarization. This should be distinguished from 
the Faraday effect which doubles the rotation on pass­
ing the same crystal backward and forward. 

The form of free energy leading to the Faraday effect 
represents the simplest type of magnetic nonlinearity, 

F= -2 Re[XfyJb(co3,co2,co1)S>(co8)Si(c«>2)5Cjb(coi) 

+ Xyfci(co2,coi,co3)5j(aj2)5fc(coi)5Ci*(co3) 

+Xjwy (coi,a>3,co2) S*(wi) &*(tt8)3Ci(«2)], (5-3) 

where co3=coi+co2. Considering, for the moment, only 
crystals invariant under time reversal, Eq. (A7) of the 
Appendix requires these x's to be pure imaginary. 
From arguments used in both Sees. I l l and IV, there 
is a permutation symmetry between the first two indices 

Xijk (co3,co2,o)i) = Xjik (co2,co3,a>i), etc. (5.4) 

If co!<<Ca)2, C03, one must also include the free energy for 
co3' = a)2—a>i in the same manner as was discussed in 
Sec. I l l for the linear electro-optic effect. Let o>i corre­
spond to a low frequency (i.e., coi/27r<109 cps) while 
co2 and co3 are optical frequencies. From the normal dis­
persion of magnetic phenomena,21 it follows that 

21L. D. Landau and E. M. Lifshitz, Electrodynamics of Con-
tinuous Media (Pergamon Press, Inc., New York, I960). 

X(G>2±<OI, co2, coi) is much larger than the other four 
tensors and one can simplify the free energy by taking 
X#fc(o>2+coi, C02, Wi)«X#fc(a>2, o)2~a>i, coi) = X ^ , 

F= -2 ReX^[^*(co2+co1)^(co2)^(co1) 

+ «<*(co2)«i(«2"«1)3C*(«1)]. (5.5) 
One obtains 

y$i(o>2+o>i) =Xtf*Si(co2)aCjb(coi), (5.6a) 

^<(«2-«i)=X i r t*5 i(«2)3ejb*(«i) l (5.6b) 

2Kfc(«i) = Xfyib*[«t.(a)2+«i)«y*(co2) 

+ &(«2)Si*(«2-a>1)]. (5.6c) 

In the limit that coi—» 0, Eqs. (5.6a) and (5.6b) will 
describe the dc Faraday effect. One must use caution 
in taking the limit as coi —-> 0 to combine the upper and 
lower sidebands, Eqs. (5.6a) and (5.6b), in the proper 
way. The correct results are most easily obtained if 
one starts from the free energy for a dc magnetic field, 
but it is possible to obtain them from the limit of Eq. 
(5.5) as coi—»0, if one is careful to keep track of 
X#jfc(co2+a>i, o;2, coi) and X^(co2—o?i, C02, a?i) in the limit­
ing processes. 

For an isotropic material, invariant under time re­
versal, one can show the only nonzero elements of & are 

"•xyz s^yzx "-zxy ^xzy ^-zyx X-yxz 

= * | X I . M | , (5.7) 
and one can write Eqs. (5.6a, b) as 

5P(w2) = f|Xli2f8|fi(«2)X[flfC(«0+3C*(fi>i)]. (5.8) 

The change in the effective dielectric constant, thus, has 
the usual form 

Ae<y=f4ir|Xii2i8|€^A*(0, (5.9) 

where hk(t) is the real value of the £th component of 
the magnetic field at coi. The form of Eq. (5.9) is identi­
cal to the form of Eq. (5.2) except that the latter changes 
sign with reversal of the direction of propagation. 

If one initially has a circularly polarized optical 8 
field propagating in the z direction, Eq. (5.6c) shows 
there will be a z component of magnetization at zero 
frequency.22 

SK,(0) = ± 2 | X l i 2 l 8 | | S | 2 . (5.10) 

In concentrated neodymium ethylsulfate ]X 1,2,3! is 
known from Faraday measurements to be approxi­
mately 10-9 cgs unit at 4.2°K.23 A 1-MW laser pulse 
will thus produce a total flux </>=t^4xiW-^A= 10~4 cgs 
unit. If the optical pulse is 10~6 sec long and is de­
tected by a 1000 turn coil, the pickup voltage should 
be 1 mV. This is independent of the cross-section area 

22 R. W. Terhune, in Proceedings of the Ohio State Symposium on 
Lasers and Applications, Columbus, Ohio, November 1962 (to be 
published). 

23 J. Becquerel, W. J. de Haas, and J. van den Handel, Physica 
5, 753 (1938). 
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T A B L E IV. T h e form of the pseudotensor 2C (w3,co2,o>i) to be used 
in E q . (5.3) for a cubic crystal t ha t lacks time-reversal symmetry 
because of a dc magnetization in the [ 0 0 1 ] direction.* 

V 
i j \ 

XX 

yy 
zz 
yz 
zy 
zx 
xz 
xy 
yx 

X 

i 1X4, I I 

*1X4, l ' | 

1X4. . ' | 

|X4.2| 

X;;&(w3,C02,COi) 

y 

lX4.2| 

|X4. l ' | 

- * | X 4 , l ' | 

-2 lX4. i l 

Z 

IXMI 

IXLSI 

|X3, 3 | 

2*|X6,3| 

—* 1X8,31 

a Note that the \Xi,j\ can be either positive or negative. 

of the laser pulse so long as the volume over which M 
is produced is large enough that the flux does not close 
on itself completely within the pickup coil. 

When all frequencies are optical frequencies, for 
media invariant under time reversal, the nonlinearity 
described by Eq. (5.3) is equivalent to the quadrupole 
nonlinearity described by Eq. (4.2),16 The order of 
magnitude of this term corresponds to the Faraday 
rotation of a diamagnet and might possibly be de­
tectable only because the dispersion of this effect takes 
place at optical frequencies. 

Materials which lack time-reversal symmetry, either 
because they are subjected to an external dc magnetic 
field or because they are ferromagnetic, can have de­
tectable nonlinear effects even when coi is an optical 
frequency. Consider a cubic crystal, class Oh, that lacks 
time-inversion symmetry because it has a dc magnetiza­
tion in the [001] direction. The point group operations 
under which this crystal is invariant are shown in 

FIG. 4. The point-group sym­
metries of a cubic crystal, Oh, 
which has a dc magnetization along 
the [001] axis. Figure 4(a) shows 
the pure spatial operations under 
which the crystal is invariant. 
Figure 4(b) shows those spatial 
operations which when coupled 
with time reversal will leave the 
crystal invariant. 

(a) 

Fig. 4. The form of 2c(w3,W2,wi) is given in Table IV. 
If the crystal were invariant under time-reversal sym­
metry, the real parts of the tensor given by Table IV 
would vanish and |X4,i| would equal |X6>3| as for the 
dc Faraday effect described by Eq. (5.7). The real 
terms can be seen to come from the dc magnetization 
in the [001] direction by considering a cubic crystal, 
invariant under time reversal, but subjected to a dc 
magnetic field in the [001] direction. The free energy 
will have terms of the form 

F= -2 ReX^fc(co8,co2,coi)Si*(co8)Si(co2)3e*(coi) 

— 2 ReXim (co8,co2,coi,0) S»* (co8) 8j(<o2) 
X3e*(«i)3ei(0). (5.11) 

Since the crystal is invariant under time reversal, Eq. 
(A7) of the Appendix requires X^(co3,W2,coi) to be pure 
imaginary and of the form of Eq. (5.7). The com­
ponents Xijki(a>3}o>2,<*ifi) are real and have the same 
form as the tensor given by Table I except that due to 
dispersion xyzzy—xzyyz—X6,6 ^xzyzy—%y <-6,6 Simi­
lar relations hold for the other terms. The free energy 
in Eq. (5.11) can be put in the form of Eq. (5.3) by 
contracting on the index I. The third rank tensor will 
thus have the form in Table V. If | x 4 t l | = |x6>3 | 
= - | X 4 f i ' | =Xif2,8(8) Tables IV and V have identical 
forms. The Voigt effect,24 microwave modulation by the 
Faraday effect,25,26 and the nonlinear optical effects 
correspond to the tensors in Tables IV and V for coi=0, 
a>i near a microwave resonance frequency, and coi an 
optical frequency, respectively. 

Consider the case where 5C(0) is a dc field along the 
2 axis, 3C/b(coi) is a circularly polarized microwave field 
in the x-y plane, a>i is near a magnetic resonance, and 
light is propagating in the x direction. Analogous to 
Eq. (5.9) one obtains 

Ae2 / 2=47ri|X1 ,2 ,3
( 3 ) |^(0+47r|X6 ,6^)|jc2(0)^(0. (5.12) 

TABLE V. The form of the pseudotensor that results from con­
tracting the free energy of Eq. (5.11) on the index /. The super­
scripts 3 and 4 refer to terms that originate from the third rank 
tensor and fourth rank tensor, respectively.a 

V 
v\ 
XX 

yy 
zz 
yz 
zy 
ZX 

xz 
xy 
yx 

X 

fl'|Xl,2,3(3)| 

- * | X l , 2 , 3 < 3 ) | 

[X6,6<4 ) ' |3C2(0) 

1X6.6^1^(0) 

* Note that |X<,*<*>| and \xi 

y 

|X6,6(4)|5C,(0) 
lx6.6(4),|3e*(0) 

*|Xl,2,3<3 ) | 

- * ' lXl.2, 8<«| 

Z 

|X1.2 ( 4 ) |3C*(0) 

|x1/*>|3e,(0) 
lxi/4>|3e,(0) 

* | X l , 2 , 3 ( 3 ) | 

- * | X i , 2 ( 3
( 3 ) | 

2,3(3)| can be either positive or negative. 

(b) 

24 Francis A. Jenkins and Harvey E. White, Fundamentals of 
Optics (McGraw-Hill Book Company, Inc., New York, 1960). 

25 N. Bloembergen, P. S. Pershan, and L. R. Wilcox, Phys. Rev. 
120, 2014 (1960). 

26 L. K. Anderson, Appl. Phys. Letters 1, 44 (1962). 

-2lX4.il
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Bloembergen, Pershan, and Wilcox25 have shown that 
for light propagating parallel to the magnetization of a 
sample there is a Faraday rotation proportional to the 
instantaneous magnetization, even if that magnetiza­
tion is rotating at a microwave frequency. Mathe­
matically, a magnetization in the x direction will pro­
duce a change in Aeyz=iKMx where K is a function 
of the material and the wavelength of the light. Neg­
lecting damping, the Bloch equations can be solved for 

and 
Aeyx=KyWlo(o)o2—u?)~1[udhx

Jruihy~]. (5.13) 

Comparing Eqs. (5.12) and (5.13), we have 

4ir|Xli2i8<» | =2T729Ko3C.(0)(a)fl8-«i2)-1
J (5.14a) 

4TT|X6,6(4) I -iTTXdcCo^coo^co!2)-1, (5.14b) 

where Sfto is the steady-state dc magnetization, coo is 
the microwave resonance frequency 73Cz(0), and Xdc is 
the static susceptibility 2fto/3Cg(0). 

In the limit coi —•» 0, Eq. (5.14a) approaches 47r 
X |Xi,2,3(3) | =i<rXdc~ 1.3X 10~8 cgs unit in concentrated 
neodymium ethylsulfate at 4.2°K, this being known 
from Faraday effect measurements. Forcoi^coo, |XI J 2 )3

( 3 ) | 
~ |X6,6(4)| and the discussions of Bloembergen et at. on 
modulation of light follow. The nonlinear optical prob­
lem is obtained for coî >co0, 47r|Xi>2f3

(3) | «:w~2«0, 4x 
X |X6,6(4)| -yKXdcOor1. At the ruby laser line Y/COI«7 
X10-'9 cgs unit and 47r|x6ffl<

4> | «9X10- 1 7 cgs unit. In 
an external dc field of 104 G, the nonlinear polarization 
at co3 will be given by 

where Xeff~0.7X10~~13 cgs units in concentrated neo­
dymium ethylsulfate at 4.2°K. This should be compared 
with x ' ~ 3 X 1 0 ~ n in potassium dihydrogen phosphate5 

(KDP) for the electric dipole nonlinearity at room 
temperature. Neodymium ethylsulfate is not an iso­
tropic crystal, but the essential features of the non­
linear effect and the estimate of its size are not affected 
by this. 

The coupled amplitude equations of ABDP can be 
obtained by replacing ico4$NLS(co„) with 3NLS(co„) 
= ^^ N L S (co , )+cVXa« N L S (co , ) , $ N L S and S0iNLS fol­
lowing directly from Eqs. (2.14) and the assumed form 
of the free energy. In this case, the boundary condi­
tions12 at the surface of the nonlinear dielectric are 
changed to the tangential component of 3C—47r9JJNLS 

is continuous rather than just the tangential component 
of 5C. 

An alternative, but completely equivalent, procedure 
would be to redefine the quantities in Eq. (2.15) so 
that.JJC' (co„) = 3C (co,) - 4TT501NLS (co,). Neglecting the quad-
rupole terms, Eq. (2.15) becomes 

VX€(co,)=-i(co,A)a5C^co,)-47r(ico,A)S^NLS(co,), 

VX3C' (co,) = i (a)v/c)z(uy) • £ (co„) 
+47r(icovA)$NLS(co,). (5.15) 

In this form the tangential component of 3C'(co„) is 
continuous. 

For the exact solutions to the nonlinear coupled 
amplitude equations, one of the integration constants 
corresponds to the power flow being constant. The 
proper form of this term will automatically follow from 
the equations; however, one should note that this con­
stant will correspond to 2 Re 2Z„ £*(co,)X5C/(co,) using 
3C' rather than £C. This has been pointed out in Sec. I I 
and is analogous to the considerations in Sec. IV for 
the power flow by means of a quadrupole nonlinearity. 

VI. CONCLUSION 

The main purpose of this paper has been to show that 
for nondissipative media, there exists a function F, the 
time-average free energy, from which one can derive 
all the constitutive equations involved in the electro­
magnetic theory of macroscopic media. This includes 
linear as well as nonlinear relations. Linear and quad­
ratic electro-optic effects, Faraday and magnetic Kerr 
effects, optical activity, as well as the new nonlinear 
optical phenomena of harmonic generation, mixing, 
electric rectification and magnetic rectification have all 
been derived phenomenologically from several of the 
simplest possible forms for F. In addition, several of 
the phenomena in different frequency ranges have been 
shown to be related. I t has, thus, been possible to predict 
the order of magnitude of several, as yet, unobserved 
effects. 

In principle, there is no reason why these methods 
cannot also be used to define free energies that are 
functions of acoustic fields as well as the products of 
acoustic fields and electromagnetic fields. In this way, 
one can also obtain the linear and nonlinear electro-
elastic and magneto-elastic effects. One should also be 
able to obtain information on dissipative effects by 
introducing several general types of phenomenological 
loss terms. 

APPENDIX: TIME-REVERSAL TRANSFORMATION 

Consider a vector or pseudovector quantity A(/) and 
its Fourier transform 21 (co): 

r 
A(/)= / 21 (co) exp(io)t)do), 

J —00 

(Al) 

2t(o>) = J 21(0 exp(-iwt)dt/2v. 
J —oo 

If A(0 is real, 2l(co) = 2l*(—co). Under time reversal, 
/ goes into — / and co goes into — co so that, if TR is the 
time-reversal operator, 

r * « ( « ) = f [ r B A ( / ) ] e x p ( - & ) 0 * / 2 i r . (A2) 
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If r « A ( 0 = A(— t) as it does for E(t), then where each of the quantities A, B, C is either a vector 
or a pseudovector. Under time reversal A will trans-

-r vtf \ fW \( A ( • A*/** w*/ >> ^i\ f o r m l i k e r * ^ ( w « ) < = ^ a * (««)•, where tA is either + 1 
! * « ( « ) = j ^ A( -* ) exp(-«o0*/2i r=«*(a) ) . (A3) i f A t r a n s f o r m s l i k e E o r _ j i f A transforms like H. 

~°° Similar transformations hold for B, C, etc. Then, under 

If r*A(0 = - A ( - 0 as it does for H ( 0 , then t i m e r e v e r s a l 

TR$=$= ( -1 )»2 Re[rBx(o)a,«6,«c,- • •)**.» 

r,*(a,) = - f A( -J ) erp(-&rf)*/2x Xa*(«.)«*(«0yC*(«.)*- • • ] , (A6) 
^-°° where w is the number of quantities A, B, C, etc., that 

= —4 {o>). (A4) transform like H. If <£> is to be a real scalar, % must 
_, . . transform as 
Consider a real scalar quantity <P: 

TRK(a)a,o)b,o>c,- ")= (-l)n2C*(^a,co&,wc,*..), (A7) 
$ = 2 Re[xK,co6,coc, • • • ) i j k . . . w h e r e t h e t e n s o r ^ h a g ^ i n d k e s t h a t t ransform uk e JJ 

X2l(ooa)i33(^6)i©(wc)fc- • • ] , (A5) on time reversal. 
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Influence of the Spin of the Electron on the Quantum Magnetoacoustic 
Effect in Metals* 

SERGIO RODRIGUEZ 
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A discussion is given of the influence of the orientation of the electron spins on the quantum oscillations 
of the ultrasonic attenuation in metals. This effect occurs for the situation in which a longitudinal acoustic 
wave propagates along the direction of an applied magnetic field in a sufficiently pure crystal and at low 
temperatures. It is shown that the attenuation consists of two series of spikes which occur periodically as 
a function of the reciprocal of the intensity of the magnetic field. The period of either series is related to an 
extremal cross-sectional area of the Fermi surface of the material and the shift between the two series is 
proportional to the cyclotron effective mass of the electrons. 

w ITHIN the framework of the semiclassical theory electron in the magnetic field Bo are described by the 
of ultrasonic absorption by metals,1 the attenua- wave functions4 

tion of a longitudinal acoustic wave propagating parallel 
to the direction of an applied dc magnetic field B0 is \nkykz)=LQ~lex$(ikyy+ik£)un(x+bky/m*<tic), (1) 
independent of the magnitude B0 of B0. However, , ,, . ,. , 
« ^ . , , , « , i . 4.-U 4. -£ 4. ^ * a n d their corresponding eigenvalues 
Gurevich et at. have shown that, if quantum effects are r . 
taken into account, the coefficient of ultrasonic attenua- j?n ^ ) = fi0)c (̂ _|_ i ) - j -#^2/2 m *. (2) 
tion y experiences large oscillations as a function of Bo. 
These oscillations have been observed by Korolyuk and Here we have taken B0 parallel to the % axis of a 
Prushack3 in Zn at liquid-helium temperatures. Cartesian coordinate system (x,y,z). The length L0 is 

The mechanism responsible for ultrasonic attenuation the dimension of a cubic box of volume F = X 0
3 which 

is absorption of phonons by the conduction electrons of contains the electrons, o)c=eBo/m^c is the cyclotron 
the metal. In the simplest model of electrons having a frequency, e is the charge on a proton, and c is the speed 
spherical effective mass m*, the stationary states of an of light in empty space. The wave numbers ky and kz 

can take any values consistent with periodic boundary 
t , , , JT1 I _ T I - . A conditions with the fundamental period taken as the 

* Supported in part by the Advanced Research Projects Agency. . T , _ , £ , . * ,. , . 
1 M . H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. vo lume V. T h e functions un (x) a re normal ized h a r m o n i c 

117, 937 (1960). 
2 V. L. Gurevich, V. G. Skobov, and Yu. A. Firsov, Soviet 

Phys.—JETP 13, 552 (1961). 4 L. D. Landau, Z. Physik 64, 629 (1930). The energy levels 
3 A. P. Korolyuk and T. A. Prushack, Soviet Phys.—JETP defined by the different values of n in Eq. (2) are called Landau 

14, 1201 (1962). levels. 


