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The second anisotropy constant, Ki, is evaluated at 0°K for cubic, ferromagnetic crystals using two-
particle dipole- and quadrupole-like interactions as perturbations on a molecular field Hamiltonian. In 
second- and third-order perturbation, the energy denominators are modified to take into account the effect on 
the molecular field of the exchange interaction of consecutively reversed spins. The expression for iT2(0) is 
used in conjunction with that for K\ (0) to calculate the values of the pseudodipolar and pseudoquadrupolar 
coupling constants for iron, cobalt, and nickel. For bcc Fe, D/J = 0.0793 and Q/J — 0.00157, where JS 
= 2.87X10-14 erg; for fee Co, D/J = 0.113 and Q / / = 0.000865, where JS = 2.0X10~U erg; and for fee Ni, 
D/J = —0.0768 and Q = Q, where JS = 2.5X10~14 erg, although the application of the model to nickel is not 
entirely satisfactory. These values are used to predict the size of the third anisotropy constant and the 
paramagnetic resonance linewidth. 

I. INTRODUCTION 

PART of the free energy of ferromagnetic crystals is 
dependent on the direction of the magnetization 

vector relative to the crystal axes, i.e., is anisotropic. 
In crystals with cubic symmetry, the deviation from 
complete isotropy is at least quartic in the direction 
cosines of the magnetization vector taken with respect 
to the cubic axes. This anisotropy energy is usually 
written as 

FA (T) = K1{T) (CHW+CHW+CLM 

+K2(TWa2W+---, (1) 
or 

FA
/(T) = K,(T)TA(aha2,ad)+K6(T)T6(aha2ja,)+' • ., (2) 

where FA and FA differ only by the inclusion of some 
isotropic terms in the latter. The K's are known as 
anisotropy constants and the K'S as anisotropy coeffi
cients.1'2 In Eq. (2) the angular functions are unnormal-
ized surface harmonics having cubic symmetry: 

Y^=ai2a2
2+a1

2a^+a2
das

2—1/5, (3) 

-a2W)+2/231. (4) 

Neglecting surface harmonics beyond the sixth, the 
K's and K'S are related by 

«4=2t i+( l / l l ) i£ : 2 ; Ke = K2. (5) 

Classical, macroscopic considerations1 give the tem
perature dependence of the anisotropy coefficients as 

Kn(T)/Kn{Q>) = [M{T)/M(mn{n+l)l\ (6) 
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where M(T) is the spontaneous magnetization and n is 
the order of the surface harmonic. In particular, K4 

(and thus Ki if K{5>K2) is predicted to follow a "10th 
power law," and K% (or K2) a "21st power law." Micro
scopic calculations of Ki, using molecular field theory3 

and the method of spin waves,4 have been shown to 
agree with the 10th power law; no similar calculations 
have provided an explicit temperature dependence 
for K2. 

The statistical fluctuations underlying Eq. (6) 
always lead to a 10th power law for Kh at least at low 
temperatures, if the local anisotropy or atomic coupling 
constants are assumed independent of temperature. 
Since the magnetocrystalline anisotropy of iron and 
nickel as determined experimentally shows wide vari
ation from the statistical 10th power law, there have 
been many attempts either to redetermine Ki(T) from 
first principles or to derive a modifying temperature-
dependent factor, k\ocai\(T). 

Among the former type are the calculations of 
Brooks5 and Fletcher6 using the collective electron 
model. Both authors conclude, however, that their 
functional temperature dependence is far too weak to 
explain the rapid decrease with increasing temperature 
of Ki in Ni, which falls off approximately as the 50th 
power of M{T). Merkle7 has calculated a local ani
sotropy factor for nickel which is proportional to T2, 
but the over-all agreement of his Ki(T) with experi
ment is still poor. Recently, Slonczewski8 pointed out 
that a term representing the changes in occupation of 
states caused by spin-orbit perturbation was neglected 
in these band theory calculations.5-7 The neglected 
term has a cancelling effect such that the magnitude of 
the calculated anisotropy is greatly reduced. What 
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78, 145 (1961). 
7 K. Merkle, Z. Naturforsch. 14a, 938 (1959). 
8 J. C. Slonczewski, Suppl. J. Phys. Soc. Japan B-I, 17, 34 
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effect this cancellation has on the temperature de
pendence of the anisotropy was not determined. 

Again for Ni and also for Fe, where Ki(T)ccM(T)4 

at low temperatures,9 Brenner,10 and Carr11 have pro
posed a strain-dependent &iOCai proportional to T. How
ever, Kouvel and Wilson12 have demonstrated that 
this term cannot modify the 10th power law sufficiently 
to provide agreement with experimental data. The 
anisotropy constants of face-centered cubic cobalt 
appear to follow the statistical laws with only a slight 
modification for thermal expansion.13 In general, how
ever, the temperature dependence of ferromagnetic 
anisotropy is not well understood. The present paper 
is concerned only with K(0) which is a measure of the 
intrinsic anisotropic coupling between magnetic atoms. 

Van Vleck's molecular field theory of ferromagnetic 
anisotropy3 is the basis of this investigation. In his 
theory Van Vleck reasoned that, since single-ion ani
sotropy in cubic crystals only exists for S> 2 (24 pole), 
the origin of anisotropy in cubic crystals of lower atomic 
spin would probably be in two-particle interactions. 
Further, the magnetic dipole interaction being too 
small to account for the observed magnitude of FA> 
he introduced the pseudodipolar and pseudoquadru-
polar interactions. These interactions have exactly the 
same form as the usual multipole interactions, but 
have a much larger constant of proportionality: 

^D = Zi>jDi£Si'Sj-3rir
2(Srrij)(Sj'tij)^ (7) 

^Q=Zi>j e ^ - r 4 ( S r r , y ) 2 ( S r r{jy. (8) 

Despite their simple form, 3CD and 3CQ actually arise 
from coupling between spin-orbit and orbit-crystalline 
field interactions. Since 3Cz> is only quadratic in the 
direction cosines, it cannot contribute to i t i(0) in first 
order, i.e., in a classical sense. Similarly 3CQ cannot 
contribute to 1̂ 2 (0) in a classical sense. By carrying 
the calculation through the third order of perturbation, 
an expression for iC2(0) is derived which, in conjunction 
with the expression for i^i(0), determines the values of 
the phenomenological atomic coupling constants, D 
and Q. 

The Hamiltonians (7) and (8) are discussed further 
in Sec. I I and are evaluated as perturbations on the 
energy levels of the unperturbed Hamiltonian, 

Ko=gMHE+H0)i:iSi*, (9) 

where HE is the Weiss molecular field and Ho is the 
applied field. In Eq. (9), MB is positive and the z axis 
is in the direction of H0. One of the principal approxi
mations of the Van Vleck theory is the replacement of 
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Appl. Phys. 30, 317 (1959); ibid. 31, 150 (1960). 
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12 J. S. Kouvel and R. H. Wilson, Suppl. J. Appl. Phys. 32, 

276 (1961). 
13 D. S. Rodbell, Suppl. J. Appl. Phys. 33, 1126 (1962); Suppl. 

J. Phys. Soc. Japan B-I, 17, 313 (1962). 

an isotropic exchange Hamiltonian by a molecular field 
Hamiltonian. However, the methods of molecular field 
theory and spin wave theory (neglecting exchange 
interaction of spin waves) have been shown4 to give 
equivalent results when the spin wave energy denomi
nators of second and higher order perturbation terms 
are assumed independent of k, and the calculations of 
Charap and Weiss have shown this constant denomi
nator approximation to be quite good £see Eq. (26)]. 

The expression for the first anisotropy constant, 
i£i(0), is given in Sec. I l l , and that for the second 
anisotropy constant, -£2(0), in Sec. IV. Using measured 
values of Kh K2, and / , this pair of equations can be 
solved for the values of the pseudodipolar and pseudo-
quadrupolar coupling constants, D and Q. This is done 
for cubic iron, cobalt, and nickel in Sec. V. 

II. FREE ENERGY AND PERTURBING 
HAMILTONIAN 

The free energy, F, is given by 

exp(-/3F) = Tr[exp(-#*C)] , (10) 

where exp(—/33C) is sometimes called the density 
operator, and 

5 C = 3 C 0 + 5 C ' = J C 0 + 3 C D + 3 C Q . (11) 

For low temperatures a perturbative expansion in 
integral form14 of the right-hand side of Eq. (10) yields 
an explicit expression for the wth-order contribution of 
3Cf to the free energy. For example, the second-order 
contribution is 

-Z<rlZn,m\Wmn'\*[ ) , (12) 

where 
/?(1) = Zo-1EnOe l>n /6r-^; Z 0 = X > - ^ . (13) 

Here one sees explicitly that if the system is degenerate, 
i.e., if Em—En for m^n, the vanishing energy denomi
nators are cancelled exactly by the vanishing Boltzmann 
factors in the numerators. In the limit of p —* oo, it 
can be shown that 

\nn / j 2 

F(0)=Eg+3Cag'+Z' 
m Eg-Em 

rtn trrn fnn / I nn / 12 
uV/arn v v m i " W o K>v/mo 

+L'E / sea/E' : , (14) 
1 ™ (Eg-Em){Eg-Ei) ™ (Eg-Emy 

where Eg is the ground-state eigenvalue of Eq. (9) and 
the prime on the summation sign indicates omission of 
the term for which the summation index equals g. 
Equation (14) is formally equivalent to the standard 

14 M. L. Goldberger and E. N. Adams, II , J. Chem. Phys. 20, 
240 (1952); S. Nakajima, Suppl. Phil. Mag. 4, 363 (1955); M. 
Dresden, Rev. Mod. Phys. 33, 265 (1961). 
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result through third order of nondegenerate pertur
bation theory in quantum mechanics. 

The perturbing Hamiltonian is rewritten in terms of 
the spin raising and lowering operators, S^ using the 
very convenient notation introduced by Cooper and 
Keffer.15 These authors defined the following symbols: 

i±=±SVfc; i*==Sie; izz=iziz\ 

i00=i*z-i+i--i-i+=USiz)2-±($i)2', (15) 

Wlij= f^ji==f^ij iPijl Pij== pji==&ij~~T~1'Pij' 

In the last pair of equations a^ ft,-, and jij are the 
direction cosines of r# with respect to the axes of 
quantization. An example of the use of these symbols is 

fi/^S* • Tij=i+mij+i-pij+i*yij. 

The expansion of the dipolar Hamiltonian is 

WD=WD2+WD1+3Q,D°, (16) 
where 

X D 1 ^ — 3 £ t w Diji+j*mijyij+c.c., (17) 

and c.c. means complex conjugate. Similarly the expan
sion of the quadrupolar Hamiltonian is 

X Q = 5CQ 4 +5C Q
3 +5C Q

2 +5CQ 1 +5CQ°, (18) 
where 

&V= 2£ t W @»^++j+*wt/yi;+c.c., 

3 c ^ i w g « { ^ [ i » - f ( i - 7 i / ) ] 
+2i+^+*yi-/}f»f-/+c.c, (19) 

x Q
0 - L ^ y f e { ^ + i - - ( i - 7 . / ) 2 + 4 ^ r ^ i 2 ( i - 7 . / ) 

+ l P " - ^ ( i - 7 < / ) X i " - i 0 0 ( i - 7 < / ) ] } . 

Before proceeding to the evaluation of the anisotropy 
constants, it is worth mentioning that 3CD is zero in 
the ground state of a cubic crystal. In other words, 
the energy of a classical array of aligned dipoles is 
independent of the direction of alignment. The energy 
of a classical array of parallel quadrupoles, however, 
does depend on the direction of alignment. Note that 
5CQ has meaning only if 5 > 1 . The major contributions 
to K\ are from 3CQ in first order and 5CD in second order. 
The largest contributions to iT2 are from 3CQ and 3CD3CQ 
in second order and from 3Cz> in third order. These 
last three terms, of course, also make small contributions 
to K\. First-order terms are essentially classical in 
nature and correspond to the long-wavelength limit of 

15 B. R. Cooper and F. Keffer, Phys, Rev. 125, 896 (1962). 

spin-wave theory. Higher order perturbation terms are 
quantum effects and correspond to the contributions 
of (virtual) spin waves of large k. The coupling con
stants JH, Da, and Qa are considered to be independent 
of temperature and of very short range; they are taken 
as / , D, and Q for nearest neighbors and zero otherwise. 
The pseudodipolar coupling will be understood to 
include the effect of the magnetic dipole interaction. 
Although this latter interaction is proportional to r#~3, 
it is relatively small and falls off sufficiently fast when 
squared to be included with the very short range D. 

III. THE ANISOTROPY CONSTANT Xi(0) 

A. Van Vleck's Result 

The principal contributions to K± at 0°K are 

K1(0) = K1D(0)+K1Q(0), (20) 
where 

K1D(0)= - (9/8)NS*(D*/2gnBHE)tiu, (21) 

K1Q(0) = W(S-h)2S*Qttu. (22) 

Here OH is the lattice sum, 

ft14^ ( l 0 / 3 ) i : / , ( ^ 2 f t 2 + ^ 2 T / , 2 + f t 2 7 / , 2 - i ) , (23) 

with an, ft, 7h being the direction cosines of the nearest 
neighbor vector, rh, relative to the cubic axes. The 
values of 12 u are 

O i 4 = - 4 , 3 2 / 9 , 2 , (24) 

for simple cube, body-centered cube, and face-centered 
cube, respectively; the subscripts indicate that &np 
represents the contribution of £& jhp to the anisotropy 
constant Kn. This notation differs slightly from that of 
Van Vleck and later authors, but is more convenient 
when the calculations are carried to higher order. 

I t was noted by Van Vleck that Km is intrinsically 
negative for bcc and fee crystals, while KiQ takes the 
sign of Q. In iron, since K\ is positive, K1Q must be 
positive and greater than | Km |. No further knowledge 
of the relative size or sign of D and Q is available from 
this one equation, but as Nagamiya16 has suggested, 
evaluation of K^ in terms of D and Q will provide a 
second equation to be solved in conjunction with 
Eq. (20). 

A spin wave analysis4 corrects Km so that Eq. (21) 
becomes 

K1D(0)=- (9/S)rj(l+0.222A)NS2 

X[Z>2/2/(25Z-77)]fi14, (25) 
where 

77=1.111, 1.071,0.9793, (26) 
and 

A=0 , 0, 1, (27) 

for sc, bcc, and fee, respectively.17 The energy denomi
nator in Eq. (25) may be interpreted in the following 

16 T. Nagamiya (private communication to F. Keffer). 
17 The coefficient of A in Eq. (25) and the values of r\ in Eq. 

(26) are corrected values of the corresponding quantities in 
references 4 and 15. 
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manner. First, the molecular field energy denominator, 
2gfxnHE as in Eq. (21), is replaced by the equivalent 
spin wave value, 4JSZ (constant denominator approxi
mation). This is the energy required to reverse two 
noninteracting spins. Next, allowing for the exchange 
interaction of spin waves, one sees that while the energy 
needed to reverse the first spin is 2JSZ, the energy to 
reverse the second spin (on a different atom) in the 
presence of the first is, on the average, only 2J(SZ— 1). 
The energy denominator is the sum of these two partial 
energies, or 2J(2SZ—1). Finally, the rj correction in 
Eq. (25) is the result of performing a numerical inte
gration in k space while allowing the energy denomi
nator to be a function of k (in the constant denomi
nator or molecular field approximation rj=l). The A 
correction indicates that there are additional terms in 
the fee case only, since two nearest neighbors of a given 
atom may also be mutually nearest neighbors. 

B. Higher Order Terms 

The following additional terms in Ki(0) are the 
byproduct of the higher order calculations required for 
K2(0); they are at least an order of magnitude smaller 
than the terms considered in the previous section. The 
energy denominators have been corrected to include 
the effect of spin wave interactions in the constant 
denominator approximation. The higher order terms are 

K1DQ'(0) = 3N(S-±)2S*IDQ/2J(2SZ-1)1 

X(Oi6-20iO, (28) 

K1Q'(0)=-2N(S-iyS2lQ2/2J(2SZ-l)2 

X(^i8-20i6+121 4) 

+N(S-%yS2tQ2/2J(3SZ-2)1 

X(Oi8-30i6+3Gi4) 
-%N(s-hys2LQ2/8J(sz-i)l 

X(018-4016+6014), (29) 

X12)'(0) = - (9/8)NS2{D*/t2J(2SZ-l)J} 

X(3fi16-71214-425A), (30) 

where £2u and A are the same as previously defined, and 

Oie= ( 2 1 / 2 ) E ^ . W 7 . 2 - (H/21) (aSh2 

+ a . 2 7 ^ 2 + ^ 2 7 . 2 ) + 2 / 2 1 ] , (31) 

+ (17/6)ah%
2yk2~ (5/6)(ahW+ah*yh* 

+ f t W ) + l / 9 ] . (32) 

Note that the A correction does not appear in second-
order terms when the constant denominator approxi
mation is used. The values of all tinp for sc, bec, and 
fee are given in Table I. 

IV. THE ANISOTROPY CONSTANT K2(0) 

The second anisotropy constant in cubic, ferro
magnetic crystals is found to have the following value 
a tO°K: 

K2(0) = K2DQ(0)+K2Q(0)+K2D(0), (33) 

TABLE I. Values of the lattice sums Qnp in cubic crystals. 

*&np 

12i4 
QlQ 

&1& 

^ 2 6 

Ĵ 28 
O38 

SC 

- 4 
- 6 
- 8 

6 
16 
4 

bec 

32/9 
32/9 
64/27 

128/9 
256/9 
128/81 

fee 

2 
9/2 
5 

- 3 9 / 2 
- 3 1 

9/2 

where 

K2DQ(0) = 3N(S-iYS2lDQ/2J(2SZ-l)2^ (34) 

K2Q(0)=~2N(S-hYS2lQ2/2J(2SZ-l)']^28~222e) 
+N(S-%yS2[Q2/2J(3SZ-2)~](ti28-3Q2Q) 
-iN(S-iYSW8J(SZ-l)-] 

X (028-4026), (35) 

K2D(0)=- (27/S)NS2{D*/[_2J(2SZ-l)J} 

X(0 2 6+545A). (36) 

Here again A denotes the fee only terms, and 

Q2Q^ ( 2 3 1 / 2 ) E , [ a , W 7 . 2 - (1/11) ( S * W 
+ ^ 2 7 / . 2 +^ 2 7 / , 2 )+2 /231] , (37) 

^2s^S2ZhL(dSh4+^h4yh
A+^yh

4) 
+ (139/26)ah%*yt?- (17/26) (stffa* 

+ a . 2 T/ . 2 +f t 2 T^)+2/39] ; (38) 

the numerical values of ^26 and 02g are given in Table I. 
All contributions to K2(0) arising in second order 
perturbation are included in (34) and (35). Equation 
(36) is third order and is expected to be at least an 
order of magnitude larger than the other third-order 
terms such as 3CD3CD3CQ which have been neglected. 
The only useful comment on the sign of K2(0) is that, 
for S=^, K2(0) = K2D(0) which is positive (negative) 
when D is negative (positive). 

V. THE COUPLING CONSTANTS D AND Q 

Since there are now two equations relating the 
pseudodipolar and pseudoquadrupolar coupling con
stants to the anisotropy constants and exchange 
integral, it should be possible to infer the values of D 
and Q using measured values of Ki, K2, and / . While 
this is true in principle, it is not always so in practice. 
The anisotropy constants, particularly K2, are very 
difficult to determine experimentally, not only in 
magnitude, but also in sign. For nickel, for example, 
there are reported values of K2 which are roughly equal 
in magnitude but opposite in sign. A further compli
cation in the case of nickel, which effectively has a 
magnetic moment of 0.6JAB per atom, is that the calcu-
lational model is based on an integral number of spins 
per atom. This latter condition is better suited to iron 
with 2.2/JB per atom or to cobalt with 1.7MS per atom. 
To minimize the error in assuming S = | for Ni and 
5 = 1 for Fe and Co, the product JS is used wherever 



936 R . J . J O E N K 

TABLE II . Coupling constants (D/J,Q/J) for Fe using K^O) =5.23X105 ergs/cm3. 

K2(0) \ JS 
(105 ergs/cm3)\(10-14 erg) 3.60 2.87 1.88 

1.5 0.0877,0.00171 0.0939,0.00200 0.106,0.00269 
1.0 0.0743,0.00134 0.0793,0.00157 0.0893, 0.00212 
0.5 0.0544,0.000896 0.0577,0.00106 0.0640,0.00145 

possible in the K\ and K2 equations. This product, 
rather than J or S alone, is determined by spin wave 
resonance experiments and measurement of the Tm 

coefficient of the spontaneous magnetization. In like 
manner an 5 is affixed to D and Q. 

A. Iron: bcc, S = l 

Sato and Chandrasekhar18 have made a very careful 
measurement of the second anisotropy constant of Fe. 
They found iT2(300) = 0.714X105 ergs/cm3 and K2(77) 
= 0.904X105 ergs/cm3. Graham9 has estimated that 
K2= (0±0.50)X105 ergs/cm3 at these temperatures. 
For the present calculations the value of ^ ( 0 ) is taken 
to be 1.0X 105 ergs/cm3. The value of Ki(0) is 5.23X 105 

ergs/cm3.9 A best value of JS is determined from the 
Tm coefficient measured by Budnick et al.19: JS—2.87 
X10~14 erg. Also considered are a maximum JS—3.60 
X10~14 erg from the exchange constant measured by 
Rodbell20 and a minimum JS= 1.88X10~14 erg from 
the mnemonic formula of Rushbrooke and Wood21 

using Tc= 1043°K and S= 1. 
The two polynomial equations in D and Q were 

solved for the ratios D/J and Q/J (more precisely 
DS/JS and QS/JS) using the numerical coefficients 
appropriate to bcc and 5 = 1 . The best values are 
D/J= 0.0793, Z)5=2.28X10-15 erg, and (3/7=0.00157, 
<2S=4.50X10~17 erg. The ratio of D to the purely 
magnetic dipole coupling constant for nearest neighbors 
in Fe is about 93. Values corresponding to extremes of 
JS and K2(0) are given in Table II . Both D and Q are 
positive. Even substitution of K2(0) = 0 in the equations 
yields small, but positive, coupling constants. 

When the quadrupole interaction exists, i.e., when 
S> 1 as in the case of iron, the lowest order contribution 
to the third anisotropy constant, i£3, arises from 5CQ in 
second-order perturbation and is probably represent
ative of the magnitude of K%. In this case 

K,Q(0)^-N(S~iYS2(Q2/2J)L2(S-iy/(2SZ-l) 

- ( 5 - i ) / ( 3 5 Z - 2 ) + l / 3 2 ( 5 Z - l ) ] 0 8 8 , (39) 
where 

038=- ( 1 3 0 / 3 ) E A [ ( ^ 4 ^ 4 + ^ 4 7 ^ 4 + ^ 4 7 . 4 ) 

+ (6/5)aSh27h2- (18/65) (ah%* 
+ « / W + / W ) + l / 6 5 ] . (40) 

18 H. Sato and B. S. Chandrasekhar, J. Phys. Chem. Solids 1, 
228 (1957). 

19 J. I. Budnick, L. J. Bruner, R. J. Blume, and E. L. Boyd, 
Suppl. J. Appl. Phys. 32, 120 (1961). 

20 D. S. Rodbell, in Growth and Perfection in Crystals (John 
Wiley & Sons, Inc., New York, 1958), p. 247. 

21 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 

Values of £238 for the three lattices are given in Table I. 
The third anisotropy constant is the coefficient of 
(Q:I4Q:24+Q;I4Q:34+«24«34) in the anisotropic free energy, 
Eq. (1). Using QS= 4.50X 10~17 erg and JS= 2.87X 10~14 

erg, the predicted value of K%Q(0) forFe is —18 ergs/cm3, 
about four orders of magnitude smaller than K2(0). 

In reference 15 Cooper and Keffer have related the 
unusually large paramagnetic resonance linewidths in 
ferromagnets to the theoretical coupling constants / , 
D, and Q, and thereby to the measured anisotropy 
constant, K±. Presuming these constants to be temper
ature insensitive, the relation between linewidth and 
anisotropy is 

A f f « / ( S , * ) [ 2 T i ( 0 ) / ^ (41) 

where f(S,s) is a function of atomic spin and crystal 
structure, and 

6 = 1 ^ ( 0 ) 1 / ^ ( 0 ) . (42) 

The pseudoquadrupolar portion of the anisotropy makes 
a negligible contribution to the linewidth. For iron, 
taking the value of f(S,s) from Cooper and Keffer, we 
find A # ^ l . l X 1 0 4 e Oe. The value of e from the present 
paper is 4.6, while Buslik22 has calculated the depend
ence of the linewidth on temperature in the neighbor
hood of the Curie point and deduces a value of e~2.5. 
The predicted linewidth is thus of the order of 40 kOe 
for iron. 

B. Cobalt: fee, S = l 

Using ferromagnetic resonance techniques Rodbell13 

recently measured the equivalent anisotropy fields, 
K/M, of cobalt stabilized in the face-centered cubic 
structure. From his data at 4.2°K the derived values 
of the anisotropy constants are Ki(0)— — 9.0X105 

ergs/cm3 and iT2(0)== — 2.0X105 ergs/cm3. In contrast 
with iron and nickel, the temperature dependence of 
Ki for cobalt apparently follows the 10th power law 
quite well with only a slight modification for thermal 
expansion. In the case of a thin film sample, K2(T) 
anomalously followed a 10th power law, but K2{T) of 
a second sample consisting of precipitate particles 
followed the theoretical 21st power law. The tempera
ture dependence was determined by comparison with 
Jaccarino's measurements23 of the nuclear magnetic 
resonance frequency which is proportional to the 
magnetization. From the coefficient of the Tm term in 

22 A. J. Buslik, thesis, University of Pittsburgh, 1962 (unpub
lished). 

23 V. Jaccarino, Bull. Am. Phys. Soc. 4, 461 (1959). 
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TABLE III. Coupling constants (D/J,Q/J) for Co using Z1(0) = -9.0X105 ergs/cm3. 

-£2(0) \ JS 
(105 ergs/cm3)\(10-14 erg) 3.0 2.0 1.6 

-3.0 0.107,0.00125 0.125,0.00148 0.136,0.00160 
-2.0 0.0969,0.000780 0.113,0.000865 0.124,0.000897 
-1.0 0.0828, 0.000219 0.0976, 0.000143 0.107, 0.0000645 

the magnetization expression fit to Jaccarino's data 
the product JS=2.0X10~1 4 erg is deduced. 

The atomic coupling constants were determined in 
the same manner as for iron. Both D and Q are positive 
over a wide range of values of Kh K2, and JS, with no 
indication of a change of sign. RodbelPs value of 
Ki(0) was adopted as standard while his ^2(0) was 
varied by ± 5 0 % . The value of JS from Jaccarino's 
experiment was taken as a best value with extremes of 
3.0X10 -14 and 1.6X10-14 erg also being considered. 
The latter number was calculated from the Rushbrooke 
and Wood formula using Tc= 1394°K and S=l. 

The best values of the Co coupling constants are 
D/J= 0.113, DS= 2.26X10-15 erg, and Q/J = 0.000865, 
QS= 1.73X1Q-17 erg. The ratio of D to the purely 
magnetic dipole coupling constant for nearest neighbors 
in cobalt is about 98. Additional values of D and Q 
are given in Table I I I . Substituting best values in Eq. 
(39), the predicted third anisotropy constant is KZQ(0) 
= —7.5 ergs/cm3, which is small enough relative to Ki 
and K2 to be ignored in practice. The value of e for 
Co is 1.4, so that the paramagnetic linewidth is pre
dicted to be about 80 kOe. 

C. Nickel : fee, S = i 

The quadrupolar terms in the equations for K\ and 
K2 are identically zero when the spin is set equal to 
one-half. Although S= J is not a good assumption for 
Ni, the calculational model insists on an integral 
number of spins per atom. Furthermore, Van Vleck24 

has estimated that the nickel atom, basically a mixture 
of 3d9 and 3d10 electronic states, spends less than 10% 
of its time in the 3ds configuration which would provide 
an intrinsic quadrupole moment. The quadrupole-
quadrupole interaction in nickel would, thus, be less 
than 1% of that in an atom which is normally in an 
S=l state. The possibility of a dipole-quadrupole 
interaction, i.e., an interaction linear in one spin and 
quadratic in another, is eliminated by the condition of 
time reversal invariance. Consequently, there is little 
choice in this model but to accept the K% and K2 

equations without the quadrupole terms. These equa
tions are 

JK"1(0)= - (9/8)NS2(D2/2J){j)(l+0.222A)Qu/ 
(2SZ-r))+D(3Qu-7ttu-4:2SA)/ 

27(2SZ-1 ) 2 ] , (43) 

24 J. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953). 

K2(0)=- (27/8)NS2D*(Q26+54SA)/ 
[ 2 / ( 2 S Z - l ) ] 2 , (44) 

where the values of rj and A are given in Eqs. (26) and 
(27), respectively, and the values of Q,nv in Table I. 
Obviously, D is overdetermined and, as will be shown, 
the two equations are inconsistent. 

The experimental values of K\ for Ni are K\{77) 
= - 6 . 4 X 1 0 5 ergs/cm3 and Z i ( 2 0 ) = - 7 . 5 X 1 0 5 ergs/ 
cm3 as given by Bozorth,25 and Kx{77) = - 5 . 4 X 1 0 5 

ergs/cm3 and i£i(4.2)= — 8.3X105 ergs/cm3 as meas
ured by Reich.26 The extrapolated value of i£i(0) is 
taken to be Ki(0) = — 8.5X105 ergs/cm3. Reich also 
found #2(4.2)= (1.4±0.5)X105 ergs/cm3. However, 
Sato and Chandrasekhar18 have pointed out that 
experimental measurements in the (110) plane, as were 
Reich's, would compound a 10% error in Ki into a 
100% error in K2. Sato and Chandrasekhar determined 
Ki from torque measurements in the (111) plane, the 
corresponding torque equation being independent of K\. 
Their results are i£2(300) = 0.234Xl05 ergs/cm3 and 
i^2(77) = 3.17X105 ergs/cm3, both positive in sign. 
The value of K2 at 0°K is assumed to be i£2(0) = 4.0 
X105 ergs/cm3. 

The temperature dependence of the spontaneous 
magnetization of Ni has been measured by Pugh and 
Argyle.27 Values of JS from their Tm coefficient are 
/,S ,= 2.82X10-14 erg (first report) and (2.16-2.66) 
X10 - 1 4 erg (second report), the last two values being 
essentially the average values for two methods of 
analysis. Spin wave resonance experiments of Nose28 

yield 7»S=2.5X10~~14 erg which is adopted here as a 
best value since it falls midway between the extremes 
of Pugh and Argyle. The Rushbrooke and Wood 
mnemonic formula gives a minimum JS= 1.05 X10~14 

erg using JTC= 631°K and S=§. 
A quick evaluation of Eq. (43) using the discussed 

physical parameters for Ni, S= \, and lattice sums 
appropriate to fee indicates that D/J is of the order 
of 0.1 with sign undetermined. A similar appraisal of 
Eq. (44) indicates D/J^l with sign opposite to that 
of i£2(0). I t is believed that the D2/J term will always 
be the leading term in an expression for Ki, so the 
sign of D is assumed to be opposite that of the experi-

25 R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company, 
Inc., New York, 1951), p. 569. 

26 K. H. Reich, Phys. Rev. 101, 1647 (1956). 
27 E. W. Pugh and B. E. Argyle, Suppl. J. Appl. Phys. 32, 334 

(1961); J. Appl. Phys. 33, 1178 (1962). 
28 H. Nose, J. Phys. Soc. Japan 16, 2475 (1961). 
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TABLE IV. Pseudodipolar coupling constant D/J and second anisotropy constant K2(0) (105 ergs/cm3), for Ni. 

KM \ JS 
(105 ergs/cm3)\(10-14 erg) 2.82 2.50 1.05 

- 9 . 5 -0.0766,0.304 -0.0810,0.319 -0.124,0.482 
- 8 . 5 -0.0723,0.256 -0.0768,0.271 -0.117,0.407 
- 7 . 5 -0.0680,0.213 -0.0721,0.225 -0.112,0.354 

mental value of K2, and then the magnitude of D is 
determined from Eq. (43). Finally, a value of ^ ( O ) is 
calculated from Eq. (44). 

The best value of D/J is -0 .0768 and DS= - 1 . 9 2 
X10 - 1 5 erg. This value of D is about 140 times larger 
than the nearest neighbor magnetic dipole coupling 
constant. The corresponding value of ^ ( O ) is 0.271 
X105 ergs/cm3. Additional values of D and K2 corre
sponding to extremes of JS and K± are given in Table 
IV. Although the calculated ratios of pseudodipolar 
to exchange coupling seem to be of the right size, the 
associated values of K2(0) are about a factor of 10 
smaller than the experimental value. This discrepancy 
was also noted by Hurwitz.29 (See further discussion 
in Sec. VI.) If <2=0 is presumed for Ni, the principal 
contribution to i£3(0) arises in fourth-order pertur
bation and has not been calculated. The value of e for 
nickel is unity and the paramagnetic linewidth as 
predicted by Cooper and Keffer is about 50 kOe. 

VI. SUMMARY AND DISCUSSION 

Van Vleck's molecular field theory of ferromagnetic 
anisotropy was extended to provide an evaluation of 
the second anisotropy constant in cubic crystals at the 
absolute zero of temperature. Corrections derived from 
spin wave theory were applied so that the third-order 
perturbation terms would be significant. Measured 
values of the anisotropy constants and the exchange 
integral were then used to calculate the magnitudes of 
the phenomenological pseudopolar coupling constants 
for cubic iron, cobalt, and nickel. The resulting D and 
Q appear satisfactory for Fe and Co, but not for Ni. 
In turn, these constants were used to predict the size 
of the third anisotropy constant and the value of the 
paramagnetic resonance linewidth. 

There has been one previous calculation of K2 using 
Van Vleck's theory. Hurwitz29 evaluated the second 
anisotropy constant using only the pseudodipolar term 

29 H. Hurwitz, Jr., thesis, Harvard University, 1941 (unpub
lished). 

for application to nickel. He found that if the dipolar 
coupling, D, were chosen to match theoretical and 
experimental values of K\, the theoretical K2 would be 
an order of magnitude too small. Conversely, if the two 
values of K2 were made to agree through choice of D, 
then the theoretical K\ would be too large. This 
conclusion was corroborated by the present work (see 
Sec. VC) and the inconsistency is unlikely to be resolved 
without a new approach to the mechanism responsible 
for the anisotropy in nickel. 

At the time of his work, Hurwitz did not consider 
the third-order corrections to Ki, which are incidental 
to the calculation of K2, as being significant because 
the uncertainties in the basic, second-order, molecular 
field calculation were of the same order of magnitude. 
Now that the molecular field approximation has been 
assessed and corrected by spin wave theory,4 the third-
order terms become significant. As Hurwitz expected, 
however, they are small [K1D'(0)~0.03K1D(0) in Ni ] 
and do not seriously affect any of the previous results. 
Hurwitz also concluded that the Van Vleck model 
could not predict the correct temperature dependence 
of the anisotropy, especially in nickel. 

Since the present calculations were limited to 0°K, 
the inability of this model to describe the effect of 
temperature on the anisotropy, except perhaps in cobalt, 
was not of primary concern. This shortcoming, however, 
may be allied to another difficulty, namely, that the 
calculational model is based on an integral number of 
spins per atom. It, thus, inherently assumes, for example, 
that all the atoms in nickel are in a 3d9 electronic 
configuration, whereas, to a first approximation, only 
60% are in this configuration and the rest in 3d10. An 
improved ground-state Hamiltonian which mixes the 
requisite amount of d9 and d10 configurations might 
reasonably be expected to help reconcile the nickel 
calculations with the physical situation. 
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