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A theoretical study of phonon-magnon interaction in antiferromagnets is made on the basis of a micro
scopic mechanism developed earlier. The mechanism, which in essence takes into account the mixing of 
excited orbital states with the ground orbital states of the magnetic ions owing to crystal field oscillations, is 
applied to a crystal which can be subdivided into two interpenetrating identical sublattices coupled anti-
f err omagnetically. 

The interaction terms for one-phonon direct processes are first derived following the methods of the pre
vious paper. The expressions for phonon-magnon relaxation times are then obtained for these processes in 
the low-temperature limit. It is found that the relaxation time rsp is inversely proportional to fifth power of 
temperature (Tb) in this region. Numerical estimate for MnF2 at 10°K gives the tentative value of rsp'^10~8sec. 

1. INTRODUCTION 

IN a previous paper,1 a microscopic theory of phonon-
magnon interactions in ferromagnetically coupled 

lattices was developed from first principles. The central 
theme of the theory consisted in taking into account 
the mixing of excited orbital states with the ground 
orbital states of the magnetic ions owing to crystal-field 
oscillations of appropriate symmetry. The relevant 
exchange Hamiltonian and interaction terms were 
obtained by making use of such one-electron perturbed 
states in the second quantization representation. This 
mechanism gave the right order of magnitude for 
phonon-magnon relaxation times in ferromagnetic 
systems. 

The purpose of the present paper is to develop a 
similar theory of phonon-magnon interactions in anti-
ferromagnetically coupled two-sublattice systems. Pin-
cus and Winter2 have phenomenologically discussed 
the effects of phonon-magnon interactions on nuclear 
spin-lattice relaxation rates of antiferromagnets. How
ever, experiments aimed at correlating the linewidth of 
antiferromagnetic resonance (AFMR) absorption with 
the spin-lattice relaxation times are lacking. Some 
preliminary suggestions to explain the AFMR linewidth 
owing to fluctuations of the effective molecular field at 
the site of an individual spin have been made by 
Townes.3 

Although the problem of the antiferromagnetic 
ground state of a three-dimensional network of spins 
has not been solved, the two-sublattice model, with 
spins in one pointing up and those of the other in the 
reverse direction can be regarded as representing the 
reality fairly closely.4 Spin-wave theories for such two-

* Communication No. 522 from the National Chemical Labo
ratory, Poona, India. 

1K. P. Sinha and U. N. Upadhyaya, Phys. Rev. 127, 432 
(1962); hereafter referred to as SU(I). 

2 P. Pincus and J. Winter, Phys. Rev. Letters 7, 269 (1961); 
see also V. N. Kashcheev, Fiz. Tverd. Tela 4, 755 (1962) [trans
lation: Soviet Phys.—Solid State 4, 556 (1962)]. 

3 F . M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 114, 
705 (1959). 

4 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys. 
30, 1 (1958). 

sub lattice antiferromagnets have been developed by 
several authors4-9 by taking proper cognizance of the 
anisotropy energy. Recently, the study of magnon-
magnon interactions in antiferromagnets has been 
carried out following the above two-sublattice spin-
wave theory by Genkin and Fain.10 

In what follows, we adopt a similar procedure in 
conjunction with the mechanism developed in SU(I) 
to study the phonon-magnon interaction in antiferro
magnets. After formulating the interaction terms, the 
relaxation time for the establishment of equilibrium at 
low temperatures between the phonon and magnon 
systems for the one-phonon direct process is calculated. 
Two-phonon Raman processes are not considered in 
view of their negligible contribution at low temperatures 
as expected from the calculations of SU(I). 

2. FORMULATION OF PHONON-MAGNON 
INTERACTION HAMILTONIAN 

We consider two interpenetrating simple cubic sub-
lattices of magnetic ions with one localized d electron. 
The spins on sublattice 1 point up, and those on sub-
lattice 2 point down. The two together form a body-
centered cubic structure of the magnetic system. Thus, 
the nearest neighbor of an ion belonging to sublattice 
1 is on sublattice 2 with z=& and vice versa. With the 
above model and following the procedure outlined in 
SU(I), we get the total Hamiltonian of the system 
including anisotropy terms as 

H=HL+Hel+H^+Hz+Han+Hint, (2.1) 

where the symbols, respectively, stand for contributions 
to the total Hamiltonian due to lattice, one-electron 
terms, isotropic exchange, Zeeman, anisotropy, and 

5 P. W. Anderson, Phys. Rev. 86, 694 (1952). 
6 R. Kubo, Phys. Rev. 87, 568 (1952). 
7 J. M. Ziman, Proc. Phys. Soc. (London) 65, 540, 548 (1952). 
8 T . Oguchi, Phys. Rev. 117, 117 (1960). 
9 J. Korringa, Phys. Rev. 125, 1972 (1962). 
10 V. N. Genkin and V. M. Fain, Zh. Eksperim. i Teor. Fiz. 41, 

1522 (1961) [translation: Soviet Phys.—JETP 14, 1086 (1962)]. 
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interaction terms. The explicit forms are given below: 

#L = E fa*>qp(fiqp*bqp+%), (2-2) 
qp 

H^ZaEa'Na, (2.3) 

En=hT,J&hn)Plm'- (2-4) 
l,m 

In Eq. (2.4) / runs over ions on sublattice 1 and m over 
sublattice 2 and Pim°—|+2Sr SOT. 

Hz^-Hgn^Sf. (2.5) 

# is the external magnetic field pointing in the z 
direction and the other symbols have their usual 
significance. 

#an= -HtgnCEl Sf-Zm S»'), (2.6) 

HA being the anisotropy field. 

# i n t = E 2 V(Rjm) -fiRa/VM-higher order terms. (2.7) 

In the above S»- represents the spin vector of the atom 
i, 5Rh is the vector representing the change in the 
nearest-neighbor distance, o)qP is the mode branch 
frequency of lattice vibration, and 6q2,

+, bqp are the 
corresponding phonon creation and annihilation oper
ators. Here J(Rim) represents the effective exchange 
integral. Although in SU(I) we expressed this in the 
Heisenberg formalism, it may be taken to include all 
other types of exchange or superexchange interaction 
terms.11-14 As defined in SU(I), 
aJ(Rlm) — J2a(<t>a(t>m\ Vn\(j>m<l>l) 

X(<l>a\V
h\<i>i)/(Ea-Ei), (2.8) 

with <f>a and <j>i,m standing for the excited- and ground-
state orbitals, respectively, and V^= (dV/dRh)o, V 
being the crystal field due to the nearest-neighbor ions. 
Further, as before, we express bRh in terms of bqp*, bqp as 

1 
8R*= E gqp' (6 q p t - i - q p ) (^- R ' ° -^- R « 0 ) , (2.9) 

with gqp= (—i)eqp(h/2a)(lPMy12, eqp being the polar
ization vector and M the mass of the ion. We now 
transform the spin-dependent parts of the Hamiltonian 
Eq. (2.1) in terms of the spin deviation operators of 

the two sublattices, which are expressed below: 

Sl
+=Si^+iSly=(2Sy^(l~nl/2Syl2ah 

Sc^Sf-iS?** {2Syi*a?(l-m/2Syi\ (2.10) 

S—Siz—aifai=ni(the spin deviation). 
1 1T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956). 
12 P. W. Anderson, Phys. Rev. 115, 2 (1959). 
13 S. Koide, K. P. Sinha, and Y. Tanabe, Progr. Theoret. Phys. 

(Kyoto) 22, 647 (1959); K. P. Sinha, Indian J. Phys. 35, 484 
(1961). 

14 See P. O. Lowdin, Rev. Mod. Phys. 34, 80 (1962), for other 
references. 
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Likewise, for the other sublattice 

Sm+={2SyiHJ(\-nm/2Syi\ 

Sm-= (2Sr2(l-nm/2S)^dm (2.11) 

These operators satisfy the commutation relations 

ad?—cfta=l and d$—dtd—\. 

Using Eqs. (2.10) and (2.11), the spin-dependent part 
of the Hamiltonian can be written as 

Ha = Hex+#Z + #an+#int 

= constant+E J(Rim)S{ (aidm+aWm+afdi 

I m 

I m 

45 
H E E ^'^(RindZaidm+aMJ+a^ai 

\/N l,m,qp 

+ •••. (2.12) 

In writing (2.12) we have neglected the terms of the 
type ni,m/2S and higher order terms in the expansion 
of (l — ni,m/2S)112 and the constant includes the terms 
independent of spin-deviation operators. 

The Hamiltonian Hs can be written in the spin-wave 
representation by making use of the Fourier transforms 
of the spin deviation operators given by 

ai= (2/Nyi* £ x exp(-tKX- Ri°)ax, 

a,t= (2/Ny* Ex exp(«cx- R i W , 

dm= (2/Ny* Ex exp(ficx- R»°)rfx, 

rf«f= {2/Ny* Ex exp(-ncx- R ^ W , 

where the propagation vector KX runs over N/2 points 
of the first Brillouin zone of the reciprocal space of the 
lattice. With the help of (2.13) we can express (2.12) as 

Hs= const+E tf(R»°)%Wx+axW) 
x 

+axfax+dxidx}+g^{(H+HA)T/ #x+0x 
x 

4Sz 
+ (HA-H)Z dxUx}+ HZ gq„-a/(R,°) 

X A/iV X qp 

X [ ( 7 x - q - 7x)axdx~q+ ( 7 x + q ~ Tx)^x+4+q t 

+ (1-Y q )ax+0X+q+ ( 7 q - l ) 4 + 4 - q ] 

x[V-*-«>! (2-14) 
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where 

Tx^GEAexpCizKx-R/,0)] /^ R,°=R/>-R w
0 . (2.15) 

In the above, J(Rh°) and aJ(Rh°) are assumed to be 
the same for all nearest-neighbor interactions; the 
summation over h extends to nearest neighbors. Further, 
in deriving (2.14) from (2.12) we have carried out the 
summation over I or m utilizing the following inter
ference conditions, for the terms in the square brackets: 

Kx'-KX=±q, (2.16) 

with the plus sign before q being used for the first and 
the last terms and the minus sign for the second and 
the third terms in the first square bracket of (2.14). 
I t can be seen from (2.14) that the pure spin part of 
Hs, i.e., terms in the curly brackets, is not diagonal. 
To diagonalize the pure spin part as well as to write the 
interaction terms in the same representation, we make 
use of the following canonical transformation15: 

a\=a\ coshflx+A* sinhflx, 

a x
t =ax t cosh0x+/?x sinhflx, ( ^ 

d\=a\f sinh0x+0x cosh0x, 

dxf=ax sinh0x+/3xt cosh0x, 
and 

tanh20x= — (CO6YX/CO«+COA), (2.18) 

and the symbols o)e—2zSJ(Rh0)/^ and WA^gnpHA/h-
Using the magnon operators a, /3, the pure magnon and 
interaction Hamiltonian in (2.14) take the forms given 
below. 

# m = E x fex+(ax+ax+i)+£x fcax-GSxtfx+J), (2.19) 

where 
cox±= C(co^+coe)

2-coe
27x2]1/2±^, (2.19a) 

Q)H = g(lfiH/h. 

The above for K X = 0 gives the well-known relation for 
AFMR frequency.16 Likewise, the phonon-magnon 
interaction terms reduce to 

# i n t = 2Z [^Xq2)(axQ:X-qt^qp+ — a\*a\-qbqp) 
Xqp 

+5xqp(«X/3x-q^qpf —0:x+/5x-q+^qp) 

+ ^Xqp(^X-q t ^qp-/3x t /3x-q^qp t ) ] , (2.20) 
where 

4S 2 « / (R , ° ) .g q p 

Axqp= C(Tx-q—Yx) smh(0x-q—0x) 
y/N 

+ (l-Yq)cOSh(0X-q-0x)], t ^ 
(2.21) 

15 T. Nagamiya, K. Yoshida, and R. Kubo, in Advances in Physics, 
edited by N. F. Mott (Taylor and Francis, Ltd., London, 1955), 
Vol. 4, p. 1. 

16 C. Battel, Phys. Rev. 82, 565 (1951). 
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4S2*/(R»°)-gqp 
£xqp = [(7X-q — Yx) COSh(0X-q—0x) 

y/N 

+ ( l -Yq)s inh(0 X -q-0x)] . 

In deriving (2.20) from the interaction part of (2.14), 
we have omitted the terms which represent processes 
involving simultaneous creation or annihilation of two 
magnons and one phonon as they will not conserve 
energy.17 

3. PHONON-MAGNON RELAXATION PROCESSES 

Noting the properties of the boson creation and 
annihilation operators pertaining to transitions between 
different states in the occupation number representation 
[see SU(I)] , the transition probabilities of the various 
processes contained in Eq. (2.20) can be easily written 
as 

W(nx, nx_q, Nqp -> (nx-1) (»x- q+1) (Nqp+1)) 

= (2ir/h)\Axqp\
2(nx)(fix-q+l)(Nqp+l) 

X S ( £ X - q + £ q - £ x ) , (3.1a) 

W(flx, »X-q, Nqp -> (»X+1) (»X-q- 1) (N qp~ 1)) 

= (27rA)Mxq?,|
2(^X+l)(^X-q)(^q1,) 

X 6 ( E x _ q + £ q - £ x ) , (3.1b) 

W(nx, nx- q', Nqp - » (nx-1) (nx- q ' - 1) (Nqp+1)) 

= (2ir/fi) | Bxqp |2 (nx) (fix- / ) (Nqp+1) 

X 5 ( £ x + £ x - q ' - £ q ) , (3.2a) 

W(nx, nx-q\ Nqp -> (» x +1) (nx- q ' + 1 ) (Nqp-1)) 

= (2ir/K) \Bxqp\* (nx+1) (fix- q ' + 1 ) (Nqp) 

Xd(Ex+Ex-q'-Eq), (3.2b) 

WW, fix-q
f, Nqp -> (nxf-1) (nx-q'+1) (Nqp-1)) 

= (2Tr/h)\AxqP\'(nx')(nx^+\)(Nqp) 

Xd(Ex'+Eq-Ex-q'), (3.3a) 

W(nx', nx-q', Nqp^ (nx'+l)(fix-q'-l)(Nqp+l)) 

= (2*/h) \Axqp\
2 (nx'+1) (nx-q

f) (Nqp+1) 

X5(Ex'+Eq-Ex-q'), (3.3b) 

where fix, fix, Nqp, respectively, represent the occu
pation numbers of magnon associated with energies 
hccx^, hcox~ and phonons of energy ha)qp. The 5 functions 
ensure the conservation of energy. The rate of transfer 
of energy between the magnon and phonon systems is 

17 It may be remarked that in the processes involving /3 and (3^ 
[see Eq. (2.20)] the momentum conservation law for particles 
is not apparently satisfied. However, we are dealing with quasi-
particles and the momentum of the particle should not be taken 
identically equal to hK\. See J. M. Ziman, Electrons and Phonons 
(Clarendon Press, Oxford, 1960); G. H. Wannier, Elements of 
Solid-State Theory (Cambridge University Press, New York, 1959). 
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given by 

Q=Qa+Qa?+Q0 

= E[<#qj>>«+<#W>«0+<#M.>/d^M» 
qp 

= (2x/ft) £ *« q JH^x,» |»{(»x)(«v-q+l)(JV„+l) 

- ( ^ + l ) ( ^ x - q ) ( i V q p ) } 5 ( E x - q + £ q - £ x ) 

- (nx+1) (**x-q'+ 1) ( ^qp)}5(Ex+£x- q ' - £ q ) 

+ M Xqp | 2{ (»x'+ 1) (»X-q') (Nqp+ 1) 

- (^x , ) (^_ q
, + l ) ( iV q p )}5(Ex , +£ q -£x-q , ) ] . (3.4) 

In proceeding further, we neglect the Zeeman energy 
contribution to the magnon energy, i.e., co\+=cox~=cox. 
Hence, (n\) and (n\) may be expressed by the same 
Bose distribution function l/[mexp(E\/kT) — l']. 

As in SU(I), we define AT=TS~T1=T-T1 and 
making use of the Taylor expansion of terms containing 
(T—AT) in powers of AT and keeping only the first-
order terms, we get 

. 2TT AT (fio)qp)
2 

ft T2 x ^ k 

X{\AXqp\
2e^kT8(E^q+Eq~Ex) 

+ | BHp | *eW8 ( £ x - q + ^ x - Eq) 

+ \AMp\
2e^kT8(Ex+Eq-E^q)}, (3.5) 

where if we use 

tanh20x= - (coe7x)/(coe+o>A)« - 7 x , (3.9) 

cosh2(0x-q—#x) 

= ( l - 7 x ^ q 7 x ) / [ ( l - 7 x - q
2 ) ( l - 7 x 2 ) ] 1 / 2 , (3.10) 

sinh2(0x_q-0x) 

= ( 7 x - 7 x - q ) / [ ( l - 7 x - q
2 ) ( l - 7 x 2 ) ] 1 / 2 . 

Substituting (3.10) into (3.8) and using the approxima
tion y\ttl — K\2a2/z for Kx-a<<Cl, we get after making 
use of the relations E\=kdcaK\ and Eq=kdDaq, etc., 

16/ * \ 1 

E^E^-E^E^+E^) 

1 2 
(£q

2£x4 

+EfE^-2EfEtE%-f) 

1 

/ 4 £ x _ , £ x 

+-
ir£q

4 

-(£x4+£x_(1
4-2JEx2£x_q

2) (3.11) 

where 

F ( X q ^ 
1 

(eE\-q/kT__ j[) (eE\lkT__ 1) (eEq/kT_ ]_) 
. (3.6) 

We change the summation into integration, and use 
the Debye approximation for phonons, namely, coqp 

= kdDqa/h, a being the lattice constant and for magnons 
neglecting O)A compared to ooe 

h^x=ho)e(l-yx2)1I2^2JSKxa(2zy^=kdcKxa, 

where we have used the approximation (KX-RA0)<$C1. 
The above defines the parameter 6C. Let us now con
sider the forms of the coefficients |^4xqp|2 and [$xqj>|2 

under the approximation (KX* R °̂)<$C1. We get £with 
gq„= (h/2o)qpM)^2 as explained in SU(I ) ] : 

16S2z2 

\AXqp\
2=- (V2coq pM)[«/(R,0)]2 

N 

XCi{(Tx- q -7x) 2 +( l -7 q ) 2 }cosh2(^x- q -0x) 

+ { (7x - q -7x ) ( l~7 q ) } sinh2(0x-q~-0x) 

+ H ( l - T q ) 2 - ( 7 x _ q - 7 x ) 2 } ] , (3.8) 

We get a similar expression for \BXqp\
2 except that the 

sign before the second square bracket in (3.11) is minus. 
I t is interesting to recall that as in the case of ferro-
magnets [SU(I) ] , the dependence of Mxq? |2 is of the 
fourth order in propagation vectors. However, the 
present expression [cf. Eq. (3.11)] is more involved 
than the corresponding expression for ferromagnets. 

We discuss the integration of the three terms in 
(3.5), i.e., Qaj Qap, and Qp separately. Thus, we have 

Qa 
2TTAT1 

fi T2 k\ 

•Na*"i 

. 8 T T 3 . 
'/i AMp\

2Eq
2F(\qp) 

Xe^kT8(Ex^q+Eq-Ex)drxdrq, (3.12) 
where 

dr\ = K\2dK\ sm6\dd\d(p\, drq — q2dq sind qd6qd<pq. 

Integrating over angle variables with the help of the 
5 function, which gives a factor proportional to £x-q , 
the above reduces to 

(ia = ~ 
8TT3 AT 1 rNa*~f 

'I F 2\ 4^ I2 

J~q I Sl\qp\ fi T2 Wd2a2L%Tr* 

XE^qF(\qp)e^lkTKXqdKXdq. (3.13) 

This expression with the help of the dimensionless 
variables 

v=Ex/kT and £=Eq/kT 
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can be written as limit we use 

r edi r 
Qa=G 

Jo (e(-l)J(r 

$+(ri,£)e'hidri 

(«*- ! ) . /1 , ( « * " « - l ) ( e ' - l ) 

where 

a 
Nf fi \AT T10 

its** -

•^[" / (R* 0 ) ] 2 , 

(3.14) 

(3.15) 

16»?3|3+lVI4-6>?^+?6) 

0j>4 

- ( 4 7 / ^ - V ^ - f ) 1/417(17— f) 

±_ri_+_(4,?3_vi2_r)"|i (3il6) 
2L0 B * 0O

4 J J 

and r={6c+dD/2dD. For 6c>dD, r>l; however, for 
0C<6D we have to use r=l to satisfy the 5 function 
condition. For very low temperature limits the integral 
in (3.14) is easily evaluated for all the terms of (3.16). 
We have 

Qa (low-temperature limit) 

r l . 7 1.7 3.3 -1 
= WG\ h • (3.17) 

Following the same procedure, we get, after making the 
appropriate use of the 5 function while integrating, 
the values of Qap and Qg. Summing all the three 
expressions, we can write Q as 

Q (low-temperature limit) 

10W/ h \ AT T10 

•^["/(R/)]2 

7T3 \MkJ V 60%* 

r4.7 5.3 9.6 
X — + 

lec
4 eD* eje* 

Relaxation Time for Equilibration 

9.6 "I 
• (3. 

eD
2ecu 

18) 

The relaxation time for phonon-magnon interaction 
r s p is expressed as fJSU(I)] 

1 Q(1/CB+1/CL) 

rSP AT 
(3.19) 

where CL and Cs are, respectively, the lattice and the 
spin system specific heats. For the low-temperature 

12TT4 / T 
C L = Nk 

5 \6D 

(—) = 2UNk(—\ , (3.20a) 

and for a bcc antiferromagnet4 

Ca=*4Nk(T/0e)*. (3.20b) 

Substituting (3.20) and (3.18) into (3.19), we get 

1 104/ * \ T* /6C* dD
d\ 

r s p 7T3 \M0/OD*eA 4 234/ 

/4.7 5.3 9.6 \ 
X ( — + )S2[«/(R,0)]2 . (3.21) 

w eD* dD
2ecy 

I t is interesting to note tha t the above expression 
gives, in the low temperature limit, a simple law of the 
temperature dependence of the spin-lattice relaxation 
time in antiferromagnets, namely, 

TS^1/TK (3.22) 

4. ESTIMATES AND DISCUSSION 

We shall now apply the foregoing theoretical analysis 
to some specific systems. Unfortunately, we cannot 
compare the theoretical estimates with any experi
mental value, in that none is available for any system. 

The system which may closely approximate the 
model chosen, i.e., a body-centered cubic distribution 
of magnetic ions with each interpenetrating simple 
cubic lattice representing one of the two sublattices, 
is perhaps MnF 2 (body-centered-tetragonal structure) 
on which some AFMR experiments have been carried 
out. The estimated exchange field HE for this system 
is of the order of 105 and fl^-lO3 Oe.10 Thus, our 
approximation of neglecting HA in comparison with 
HE is reasonable. If we estimate 0C, following the 
Weiss approximation, its value for TV~70°K (the Neel 
temperature for MnF2) turns out to be 30°K. A rough 
measure of Q& can be obtained from the melting point 
of MnF2, i.e., 7,2if«11290K by making use of the 
Lindemann relation18: 

eD=B{TM/Mvwyi\ (4.1) 

where M is the mean atomic weight and V is the mean 
atomic volume. Using a value of the constant18 B equal 
to 115, we get 8JO^250°K. We get nearly the same 

value by using the formula18 

6D~ (h/k) (10a/9Mx)m, (4.2) 

where x is the compressibility. The value of x is deter
mined from the data of Benedek and Kushida.19 In 
estimating 

VCR*0) = £«<<£« | Vh | **X*«*m I V12 | f^/AEa, 
18 M. Blackman, in Handbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin, 1955), Vol. VII, Part I. 
19 G. B. Benedek and T. Kushida, Phys. Rev. 118, 46 (1960). 
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the procedure is the same as discussed infSU(I). 
(<l>a | V*| cj>i) is expected to be of the order of IX 10~3 dyn 
as shown from our previous study as well as the ligand 
field calculations on inorganic complexes.20 

The exchange integral of the type ($a<£m| Vn\<l>m<t>i) 
may be estimated from the latest calculations of 
Freeman and Watson.21 On the basis of their calcu
lation a minimum value of the above integral can be 
taken to be of the order of 10-3 eV. Actually, for the 
present integral one may expect a larger value because 
of the extended nature of the excited orbital. Further, 
the superexchange effects are mainly responsible for 
the spin coupling in magnetic compounds such as 
MnF2, and the excited orbitals are to be chosen on the 
magnetic ion centers or linear combination of atomic 
orbitals involving magnetic as well as nonmagnetic 
ions. Thus, using a value of AEaz=Ea—Eo^lO eV, we 
get aJ(Rh°) of the order of IX 10~7 dyn. If one identifies 
"/(R^0) with (dJ/dRh0), another estimate can be made 
from the data of Benedek and Kushida.19 Using their 
values, namely, 

(1/2V) (dTN/dP) = 4.4X lO-6/ (kg/cm2), 

(l/a)(da/dP)=- (0.45X10-6)/(kg/cm2), 

(l/c)(dc/dP)=- (0.31X10-6)/(kg/cm2), 

where P is the hydrostatic pressure, a and c being the 
lattice constants of MnF2, we get aJ(Rh

0)~dJ/dRh
0 

~6X10 - 8 dyn. This is in rough agreement with the 
value noted above; however, to be on the safe side, 
we shall use a value of ^/(R^0) to be of the order of 
10"8 dyn. Thus, with 5=5/2 and at T= 10°K, we have 

l / r s p ~ Wsec- 1 ; 

20 A. D. Liehr and C. J. Ballhausen, Ann. Phys. (N. Y.) 3, 
304 (1958). 

21 A. J. Freeman and R. E. Watson, Phys. Rev. 124, 1439 
(1961). 

i.e., Tap at 10°K is of the order of 10~8 sec. However, 
keeping in view the uncertainties in the values taken 
for the parameters involved, the above may be con
sidered to be a tentative estimate.22 

In contrast to the ferromagnetic case, an important 
difference is the absence of an exponential temperature 
factor in the expression for rsp in antiferromagnets 
which, in turn, is responsible for giving a shorter 
relaxation time in antiferromagnetic systems. This 
arises owing to the linear dispersion relation for anti
ferromagnets, namely, cox °c K\. 

From the experimental results on the linewidth of 
AFMR on MnF2 we expect the magnon-magnon 
relaxation time to be of the order of 10~10 sec at such 
low temperatures. Thus, the assumption, implicit in 
our theoretical analysis, that the magnons are in 
statistical equilibrium with each other would seem to 
be justified. It is desirable to have more experimental 
results on the AFMR of various antiferromagnets 
before a more quantitative estimate is attempted. 
Future experiments may help the verification of the 
temperature dependence suggested in the present work. 
We have already discussed the merits of choosing the 
present mechanism in preference to others in the 
previous paper [SU(I)], and the reasonable agreement 
between the experimental and calculated values of the 
relaxation time for ferromagnets impelled us to under
take a similar calculation for antiferromagnets. 
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22 The expression for (l /r8 p) is very sensitive to the value of 
the parameter dc = 2JS(2z)ll2/k. If / is estimated from the 
exchange field (reference 10) HE~6X105 Oe, 6C would be of the 
order of 40°K. Using this value of 0e, r 8 p ~10- 7 sec at 10°K. 


