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soids with 7 adjustable parameters, has been tried 
without success. This result is not unexpected since the 
galvanomagnetic measurements at6 4.2°K indicate that 
gallium has at least two bands and an equal number of 
holes and electrons. At present, a general two-band 
model with fifteen variables has not been calculated due 
to the difficulty in solving the simultaneous equations. 
However, it is not expected that a suitable fit would be 
found even if the equations for the two-band model 
were solved. Galvanomagnetic6 and magnetoacoustic12 

measurements suggest that the Fermi surface of gallium 
approximates the free-electron surface and this surface 
is far from ellipsoidal. It should be remembered that 
although a given set of ellipsoids has a corresponding set 
of galvanomagnetic coefficients, the converse is not true 
and it may not be possible to represent a set of galva
nomagnetic coefficients by a set of ellipsoids. 

12 B. Roberts, Bull. Am. Phys. Soc. 7, 222 (1962). 

IT has been reported that many of the heavy rare 
earth compounds have a cubic structure and become 

ferromagnetic at low temperatures.1-3 The characteristic 
magnetic structures of the rare earth nitrides having an 
NaCl structure were reported by Wilkinson and his 
associates1 and the intermetallic compounds with a cubic 
Laves structure were investigated by Bozorth and 
others,2 and Williams et at.3 

Kittel,4 Van Vleck,5 and Dillon snd Walker6 reported 
the ferromagnetic resonance phenomena in rare earth 
iron garnets. Cooper et al? and Niira8 reported analyses 
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APPENDIX 

Since most theoretical models calculate conductivities 
rather than resistivities, it is necessary to invert the 
resistivity tensor. The relations between the resistivity 
and conductivity coefficients are as follows: 
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of the magnetic behavior of heavy rare earth metals 
using a spin-wave approximation. One of the present 
authors has calculated the temperature dependence of 
the spontaneous magnetization of holmium nitride.9 

The ferromagnetic resonance phenomenon in holmium 
nitride is of great theoretical interest to physicists. The 
present paper treats the ferromagnetic resonance of 
HoN by employing the same simple model as that used 
in a previous paper by one of the present authors,9 in 
which the quantum-mechanical contraction of the ef
fective spin moment due to the partial quenching of the 
angular momentum was essentially taken into account. 
In the authors' model it is assumed simply that there 
are only the two lowest lying states in each ion and fur
ther that there is no accidental crossover10 between 
them.9 

Next consider a ferromagnetic system composed of N 
trivalent holmium ions which are subjected to a cubic 
crystalline field and which interact with one another 
by an exchange energy. At absolute zero temperature, 

9 Y. Ebina, J. Phys. Soc. Japan, 18, 189 (1963). 
10 C. Kittel, Phys. Rev. 117, 681 (1960). 
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Taking into account the quantum mechanical contraction of the spin moment due to the partial quenching 
of the angular momentum of the trivalent holmium ions, the effective g factor of the ferromagnetic com
pound HoN is obtained by means of a spin-wave approximation and neglecting the effect of the sixth-order 
cubic crystalline field. It is also assumed that only the two lowest lying states of each ion need be considered, 
and that there is no accidental crossover between them. Using a parameter which is estimated from the effec
tive Bohr magneton number observed, the value of the effective g factor is predicted to be about 8. 
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the effective spin moment of all the rare earth ions is 
directed along the molecular field caused by the ex
change energy. If the relaxation of the rare earth ions 
is not very great, each energy level of Ho+ 3 can be well 
defined. When the over-all splitting of the ground multi-
plet of the trivalent holmium ions in the compound is 
considered to be small compared with the separation of 
the excited multiplets from the ground multiplet,5 the 
total angular momentum J\ for the ground multiplet 
of the ith Ho+ 3 ion is a good quantum number. 

On the other hand, the exchange energy 

~A z^ijij (.My) 

also causes a dynamical effect upon the spin system, 
in which A is the exchange integral between the nearest 
neighboring ions. This implies that excitation of a rare 
earth ion induced by an applied small microwave field 
can propagate through the entire crystal and that in the 
crystal a certain kind of spin wave would be created 
which is slightly affected by the exchange stiffness but 
is affected by the anisotropic field to a larger degree. 

In an external magnetic field H applied parallel to 
the quantization axis, i.e., (100), the total Hamiltonian 
5C involves the unperturbed one-ion Hamiltonians 3Co» 
composed of the cubic crystalline potential V(Ji), the 
Zeeman energy, and the perturbation 3C'. The Zee-
man energy is proportional to the molecular field 
— 2AZo((Jz)) parallel to (100), where Z0 is the coordi
nation number. The perturbation 3C' involves the 
terms of the dynamical exchange effect defined by 
- 4 E * v i ( J J i ) + 2 ^ Z o « / * » E * J r < * and the Zeeman 
energy — gj^BB YL% Jf due to H, where gj is the Lande 
g factor and ixB the Bohr magneton. The energy quan
tum of this spin system can be calculated from the dif
ference AE between the two energies of the ground and 
the first excited states for 5C. The two energies mentioned 
above are calculated by using the following two wave 
functions: for the ground state 

* e = ^ ( 1 ) ^ ( 2 ) - • -<P0(N), (1) 

and for the first excited state 

1 
* * = E< ^ ( 1 ) ^ ( 2 ) - • •*.(*)• • - ^ W , (2) 

y/N 

in which the normalized wave functions 

<Pg=Hmam\?n), and <pe=T,nbn\n) (3) 

correspond to 
eigenfunctions 
tions for the 
tively.11 In Eq, 
factors of the 
m and n stand 
momentum of 

the ground state and first excited state 
obtained by solving the secular equa-

unperturbed Hamiltonians 3Co», respec-
, (3), am and bn are the linear combination 
wave functions \m) and \n), in which 
for the z components of the total angular 
the free ionic states. The AE obtained is 

11Y. Ebina and N. Tsuya, Sci. Rep. Res. Inst. Tohoku Univ. 
Suppl. B15, 1 (1963). 

FIG. 1. Effective g factor of HoN at zero temperature. The 
parameter expresses the degree of mixing of the fourth-order cubic 
crystalline potential with the exchange field. The abrupt change at 
the point u^0.5 is due to the fact that there is an accidental 
crossover between the first excited state and second excited state 
which occurs at this point. 

composed of two terms, one of which corresponds to the 
anisotropy and the other is proportional to the external 
magnetic field, 

A£=£an i s+geffM£#, (4) 

where gen is the effective Lande g factor obtained in 
the form 

g e f f = g j ( E m ^ | ^ | 2 - E » ^ | 6 n | 2 ) . (S) 

If the cubic crystalline field completely disappears, the 
energy difference is reduced to the well-known Zeeman 
energy, gj^H. Neglecting the effect of the sixth-order 
cubic crystalline field, the numerical calculation of geff 
is carried out by using data for the wave functions 
tabulated by the present authors in a previous paper.11 

The result is shown in Fig. 1, where the parameter u 
stands for the ratio of the intensity of the fourth-order 
cubic crystalline field to the effective exchange field.11 

When the mixing degree u of the cubic crystalline po
tential with the exchange energy is increased, geff in
creases gradually at first from a value of 5/4, and after 
reaching a certain point ^—0.5 it increases very rapidly 
and approaches a constant value of about 9 until the 
value ^ ~ 0 . 8 is reached. When u increases still further, 
geff decreases sharply to zero. 

We have already obtained the parameter dependence 
of the effective Bohr magneton numbers of Ho+ 3 in the 
cubic crystalline potential and effective exchange field.11 

Using the effective Bohr magneton number observed 
by Wilkinson and his collaborators1 for the calculated 
value of the Bohr magneton number,11 we have a value 
of about 0.9 for the parameter u.9 The predicted value of 
geff is calculated to be about 8. 

The effect of the sixth-order cubic crystalline field on 
the value of geff in several rare earth compounds with 
cubic structure is discussed in detail in another paper. 


