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The energy distribution of hot electrons in silicon has been investigated experimentally and theoretically 
by observation of the energy distribution of electrons emitted into vacuum from a reverse biased p-n junction 
1000 A below the surface. This emission has been related by means of the Boltzmann transport equation to 
the mean free paths for optical phonon emission and impact ionization. Two experiments were performed. 
In the first, with the junction biased to avalanche breakdown, the product of the mean free paths effectively 
determines the attenuation length for electrons in the resulting nearly Maxwellian distribution. The de
pendence of the emitted current on the ^-layer thickness, which determines the attenuation length, and the 
field configuration within the junction were determined by removing thin calibrated layers (33 A) of silicon 
by boiling water oxidation. The second experiment, in which avalanche breakdown and its complications 
were avoided by optical generation of carriers, has been analyzed in terms of a plane source of electrons 
released a known distance below the surface at a given energy. The number of emitted electrons then has a 
maximum at an energy loss depending on the ratio of the mean free paths. The solution of the transport 
equation similar to that of Wolff, extended to include the initial transient in a field region, was fitted to the 
experimental data. A good fit was obtained using mean free paths for optical phonon emission of 60 A 
and for impact ionization of 190 A. 

I. INTRODUCTION 

THE characteristics of the emission of hot electrons 
from a semiconductor into vacuum are governed 

both by the mechanism by which the electrons lose 
energy, a property of the solid, and by the method of 
heating the electrons to an energy sufficient for escape. 
The heating is generally achieved by a strong electric 
field, such as in a reverse biased p-n junction, and is, 
therefore, a function of the experimental structure. 

Described here are two experiments performed on a 
silicon structure in which a reverse biased p-n junction 
was located parallel and close to the surface. The ob
served attenuation length of 4- to 5-eV electrons was 
measured nearly independent of the method of genera
tion of the hot electrons. The second experiment con
sisted of measuring the emitted electron energy dis
tribution which is related to the energy gain and loss 
mechanisms of electrons traversing a region in which 
the geometrical parameters are known. 

The distance hot electrons will travel before losing 
too much energy to overcome the potential barrier at 
the surface is determined by the mean free paths for 
scattering by the two principal mechanisms: optical 
phonon emissions and secondary ionizations by colli
sions with valence band electrons. Electron multiplica
tion in the avalanche breakdown of p-n junctions has 
been analyzed in terms of these mechanisms but the 
mean free paths so determined vary widely, depending 
on how the relative effects of the mechanisms are aver
aged over the electron energy distribution. Because of 
this uncertainty and the close relationship between the 
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avalanche breakdown theories and the theory needed to 
describe the present emission experiments, we will sur
vey briefly the two theories, by Wolff1 and by Shockley,2 

before describing the emission experiments. 

Avalanche Breakdown Theories 

The calculation concerns the dependence of the ioniza
tion coefficient aiy the number of secondary electrons 
produced per unit length, on the field E in a junction. 
Wolff assumes that the electrons are distributed nearly 
isotropically in velocity space by expanding the dis
tribution function in the transport equation in terms of 
spherical harmonics and retaining only the first two 
terms. The energy distribution he obtains is Maxwellian 
below the threshold for secondary ionization, Si. The 
further assumption that the mean free path for ioniza
tion interaction (k) is much shorter than that for phonon 
emission Qr) and the assumed small anisotropy of the 
distribution leads to a dependence a» on E of the same 
form as the number of electrons above Si (which is given 
by the electron temperature of the Maxwellian distribu
tion below Si). Wolff finds that ln(a^) varies as approxi
mately E~2. The experimental In (a,) for silicon, however, 
varies very nearly as J5_1, indicating that the distribu
tion is perhaps not spherical for silicon in the range of 
fields obtained in junctions. 

Shockley, observing this discrepancy in the E de
pendence of ln(ce;), proposed a kinetic theory in which 
he treats only the deviation from the average of the 
distribution that describes electrons moving in the field 
direction. The peak of the energy distribution is assumed 
to occur at an energy small compared with Si. Then, an 
ionization can occur only when an electron can travel a 
distance Si/qE (q is the electronic charge) without any 
randomizing phonon collisions and can ionize in the first 
collision once it reaches Si. The ionization coefficient can 

1 P. A. Wolff, Phys. Rev. 95, 1415 (1954). 
2 W. Shockley, Solid-State Electron. 2, 35 (1961). 
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then be calculated in the low-field limitwhen the average 
energy of the electrons is low and all electrons capable 
of causing ionization are contained in a sharp spike in 
the field direction. As was pointed out by Shockley and 
elsewhere,3 this low-field limit is exceeded for silicon, 
indicating that the distribution is not completely peaked 
in the forward direction, but is partly spherical. 

Both theories can be appropriate for materials other 
than silicon in which the specific limiting forms of the 
distribution actually exists.4 The choice of the value of 
Si influences rather strongly the parameters needed by 
either theory to fit the ionization coefficient data. To
gether with the uncertainty about the exact shape of the 
distribution, the somewhat arbitrary choice of Si which 
must be made leaves the mean free paths in considerable 
doubt. Table I shows the parameters used by Wolff and 
Shockley, and those required by the present work on 
electron emission for an explanation of the observed 
data. 

One additional parameter assumed known from inde
pendent measurement5 is the energy loss to optical 
phonons. The assumption made by Shockley and used 
here also is that only the zero-wave-vector (Raman) 
optical phonon, Sr— 0.063 eV, can contribute. At low 
electron energies, however, some intervalley scattering 
by acoustic phonons may lead to a comparable mean 
free path. Since these phonons would have wave vectors 
nearly the value at the zone edge, they would be com
parable in energy to Sr. Their effect will be included in 
the optical phonon effects, although it is unnecessary to 
consider details of this type when the conduction band 
structure has been completely neglected in both of the 
above theories as well as the present work. 

Distribution of Emitted Electrons 

We now return to a consideration of the effect of 
collisions on the shape of the distribution of those elec
trons which are of interest to electron emission and then 
show how the appropriate conditions are met by the 
emission structure used. Only electrons with kinetic 
energies at the surface exceeding the electron affinity 
(#~3.8 eV for silicon), and, hence, Si can be emitted. 

TABLE I. Comparison of fitting parameters required by theories 
on avalanche breakdown with those of the present work on 
electron emission. 

Avalanche breakdown Electron emission 
Wolff Shockley Present work 

lr (phonons) 200 A 50 A 60 A 
U (ionization) 20 A 880 A 190 A 
&i (threshold) 2.3 eV 1.1 eV 
r=k/lr 0.1 17.5 3.2 

3 J. L. Moll and N. I. Meyer, Solid-State Electron. 3,155 (1961). 
4 Since the completion of the present work a more complete 

theory of avalanche breakdown covering the range between these 
theories has been developed: G. A. Baraff, Phys. Rev. 128, 2507 
(1962). 

5 B. N. Brockhouse 5Phys. Rev. Letters 2, 256 (1959). 

Being subject to both scattering mechanisms for most 
of their path, the electrons have an anisotropic distribu
tion governed by the mean free path ratio r—U/lr. 
During an ionization the primary electron loses an 
energy of at least the energy gap Sg and possibly con
siderably more for 4- to 5-eV electrons. An ionization 
collision will, therefore, reduce the chances of emission 
to zero for any but the most energetic electrons and will, 
therefore, be considered an absorption mechanism. For 
small values of r (ionization very probable) the phonon 
collisions, with relatively small energy losses, will have 
little opportunity to randomize the electron motion and 
a peak in the field direction will result. Larger values of 
r will give a more nearly spherical distribution under 
these circumstances. 

The experiments were restricted to cases where the 
absorption by ionization is a valid assumption, either 
by an absolute upper cutoff on the distribution or by a 
distribution dropping off sufficiently fast to give negli
gible error. The distribution of emitted electrons was, 
therefore, made up of electrons which had suffered no 
ionizations in the spatial range of interest. The following 
qualitative analysis can be made of the scattering 
history of electrons released a known distance from the 
emitting surface in an energy range small compared 
with Sr. The relative number that can escape with very 
few phonon collisions (small energy loss) is small since 
the probability of an electron traversing a distance of 
many mean free paths with few collisions is small. On 
the other hand, those electrons escaping with many 
phonon collisons (large energy loss) will have traveled a 
long random-walk-path length in reaching the surface. 
Their number will also be small because of the large 
probability of an absorptive ionization collision associ
ated with the long path. The maximum escape proba
bility occurs at an energy loss between these two limiting 
cases. The position of the peak will be a sensitive func
tion of the ratio r, as will be the magnitude of the 
emitted distribution. We will return to a quantitative 
analysis of this behavior as applied to the actual experi
mental conditions. 

The attenuation length measurement consisted of a 
measurement of the total number of electrons emitted 
as a function of the distance from the surface at which 
the electrons were released, not in a delta function as 
before, but in a Maxwellian distribution. The resulting 
increase in current with reduction of the intervening 
distance turns out to be relatively insensitive to r and 
provides an appropriate method of determining the 
magnitude of the mean free paths. 

Experimental Conditions 

The p-n junction electron emission structure de
scribed here differs from the devices used in other re
ported6 electron emission observations, in that the 

6 J. A. Burton, Phys. Rev. 108, 1342 (1957); J. Tauc, Nature 
181, 38 (1958); W. E. Spicer, Bull. Am. Phys. Soc. 5, 69 (1960); 
B. Senitzky, Phys. Rev. 116, 874 (1959). 
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VACUUM 

FIG. 1. Energy-band diagram and experimental structure. Two 
modes are possible: (1) Carriers created by light can be emitted 
from the ^>-type conduction band through the field and n regions, 
if they retain sufficient energy; (2) Carriers created in the junction 
at avalanche breakdown can be emitted if they are energetic 
enough. 

junction was parallel to the emitting surface. The depth 
of the junction was 1300 A, as determined by a method 
to be described. 

Under reverse bias F a p p , the band diagram (shown in 
Fig. 1) indicates the total potential energy drop across 
the junction for a conduction electron is 

<p=qVwv+8g. (1) 

We have assumed that the Fermi level is at the band 
edges for the nearly degenerate material used. Emission 
of electrons can occur when electrons entering from the 
conduction band on the ^-type side retain enough of 
their potential energy <p, after being swept across the 
junction to the surface, to overcome the electron affinity 
\[/. The advantage of this type of emission is that the 
problem is one dimensional, with all electrons exposed 
to the same basic history except for the scattering sta
tistics. The surface from which they are emitted is, in 
principle, an equipotential so that a retarding potential 
measurement to analyze their energies is significant. 
The current of nonemitted electrons, however, must 
flow parallel to the surface to the n-type contact and a 
lateral voltage drop at high current will upset the 
equipotential to some extent. 

Two modes of operation of the junction are possible. 
Electrons may be photoexcited in the ^-type bulk. From 
there, some will diffuse toward the junction starting in 
the field region in an energy range (thermal energies) 
which is narrow compared to the final energy distribu
tion at the emitting surface. The emitted distribution 
will have a peak at an energy dependent on r as de
scribed previously, provided the applied voltage is small 
enough that no electrons escape after suffering an ioniza
tion collision.7 Fitting the shape and magnitude of this 
distribution will then determine r. An electron injecting 

7 Clearly, with 5 V applied this is a justifiable assumption for a 
3.8-eV electron affinity. 

p-n junction could serve a purpose similar to that of 
the light. 

In the second mode of operation the junction was 
biased to breakdown and the emitted energy distribu
tion was found to be nearly Maxwellian. With a Max-
wellian distribution the diffusion of electrons from the 
w-type edge of the junction-depletion layer, which gives 
rise to an attenuation, can be related by a simple func
tion to the dependence of the total emitted current on 
the thickness of the n layer. The attenuation length is 
related to the mean free paths, so that knowing the ratio 
r, U and lr can be determined. The n layer was reduced 
in thickness in calibrated steps by oxidizing the surface 
in boiling water and removing the oxide with HF. 

Relation Between Theory and Experiment 

After this brief introduction to the experimental 
aspects of electron emission, we will turn to a more de
tailed mathematical analysis of an idealized model of 
the experimental structure. From this analysis we will 
determine the experimental conditions necessary for an 
understanding of hot-electron emission. The model as 
well as the actual structure can be divided into two 
regions (field and neutral n layer) and the surface po
tential barrier. In the next two sections the transport of 
hot electrons through the regions of this model will be 
related to the measurable features of the emitted elec
trons. Then, after a description of the experimental 
techniques in Sec. IV, the experimental results are 
interpreted by the adjustment of the fitting parameters 
h and lr in Sec. V. 

In Sec. I I the junction will be treated as a constant 
field region into which electrons are injected in a non-
steady-state distribution. The initial transient behavior 
of the transport equation is, therefore, examined for a 
distribution with the position of its maximum sensitive 
to the value of r in the manner described earlier. One 
special case of this transient case is the injection and 
subsequent diffusion of electrons in a field-free (neutral) 
region. A second special case is the steady-state solution 
in a constant field region. Solutions to these two cases 
as well as the complete transient case are contained in 
the Appendix. 

The solution to the differential equation governing 
the transient case will show that due to a necessary 
approximation a special group of electrons has been 
selected. This group consists of electrons that have had 
only a relatively small energy loss after their release in 
the junction and have as a result more than the average 
amount of kinetic energy. With their higher than aver
age velocity these electrons represent the diffusive part 
of the solution. The solution with this diffusive nature 
allows us to treat the experimental problem of electrons 
released with zero energy at the start of the junction in 
terms of an idealized problem. I t will be shown that, in 
spite of the very large field present, the electrons con
tributing to emission can be thought of as diffusing 
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toward the surface after being released in a field-free 
region with an energy equal to the total potential across 
the junction. The inclusion of the neutral layer as an 
extension of the field region follows as a straightforward 
extension. 

The energy distribution so obtained has the desired 
dependence on r. It must, however, be corrected for the 
reflection of the randomly oriented electrons by the 
surface potential barrier. An estimate of this effect is 
included in Sec. III. 

The relation between the mean free paths k and lr and 
the exponential decay in current with thickness of the 
neutral layer is calculated from simple diffusion theory 
for an incident Maxwellian distribution. The character
istic length is then a function of the ratio r and the 
electron temperature of the distribution as well as a 
parameter related to the magnitudes of k and lr. The 
information obtained from fitting the experimental re
sults with this characteristic length is then used in 
Sec. V to reduce the number of unknowns in the fit of 
the shape and magnitude of the photoexcited electron 
distribution to one, namely r. 

II. ELECTRON TRANSPORT 

The release of electrons with near zero energy in a field 
region, where a force F — qE sweeps the electrons in the 
x direction, requires the transport equation to be ex
amined for the initial transient behavior leading to the 
steady-state drift. Special cases of the equation are then 
the pure diffusion process for F=0 and the steady-state 
drift (independent of x). 

The physical assumptions made here parallel very 
closely those made by Wolff. The details of the silicon 
band structure are ignored by using the free-electron 
model. Phonon scattering is assumed to be isotropic 
with a constant mean free path lr and energy loss co
lonization will be characterized by the constant mean 
free path k and will be absorptive. The medium will be 
assumed to have an ionization threshold at zero energy 
since only near the beginning of the electron's path, 
starting from the ^-type side in the photoexcited emis
sion, will there be an error introduced. The k which 
results from this work represents an average mean free 
path over the energy range 0 to 5 eV weighted heavily 
towards the higher energy since the mean free path is 
expected to decrease with increasing energy and elec
trons are at high energies a majority of the time. 

Certain combinations of k and lT are convenient. In 
addition to r—U/lT, we define the direct-flight mean 
free path I by 

l / J = l / / d - l A , (2) 

and the diffusion attenuation length (or mean distance 
between collisions in the diffusion direction) X, for ab
sorptive ionization, by 

\2=lk/3. (3) 

The time steady-state distribution function in mo

mentum space is a function, by the assumed symmetry 
of the emission structure, of x, the magnitude of the 
momentum p, and the angle 0 between x and p. The 
number of electrons in the volume element dVp^lirp? 
Xsinddddp is 

N{x,pie)^f{x,p,e)dVv. (4) 

We will follow Wolff and assume a nearly spherical dis
tribution which we will find to be reasonably justifiable 
in the range of greatest interest. We may then expand 
f(x,p,d) in spherical harmonics and retain only the first 
two terms, if /o>/ i . Thus, 

f(x9p9e)^Mx,p)+fi(x9p) cos0. (5) 

The relationship between /0 and f\ which determines the 
justification for the retention of only two terms can be 
found in the energy range around the peak of the photo
excited emission distribution. We shall see later that 
near the peak in jfo 

Mfi=\/l=L(X+r)/3j». (6) 

The condition /o> / i will not be fulfilled over the 
entire range of interest for r=3.2. The violation of the 
condition will be illustrated quite graphically by the 
deviation between theory and experiment. The retention 
of only the first two terms, however, will prove to be 
better in this case than expected intuitively. 

Solutions to the Transport Equation 

Using the specific assumptions about the scattering 
mechanisms the transport equation is written in the 
Appendix as two coupled equations in /0 and f±. One of 
these provides a convenient relation between jf0 and / i : 

M<P,S) dfQ(<p,8) dfofag) 

IF d<p dS 

where §=p2/2m and <p=Fx is the potential through 
which the electron has fallen at point x. If we define T as 
the energy lost by an electron to collisions in reaching 
the point x, i.e., 

r = ? - s , (8) 
the transport equation can be written as a single partial 
differential equation in /0. It can take two specific forms 
depending on whether <p and T or S and T are chosen as 
independent variables. The two special cases, steady 
state drift and diffusion, are then found from the limiting 
form of the suitable equation under the condition 
dfo/dx —> 0 or F —> 0. The solutions to these equations 
are given in the Appendix and will be used where needed. 

The solution to the complete equation is obtained in 
the Appendix as an approximation under the condition 
2S^>rSr. As noted earlier it represents a description of 
the diffusive nature of electrons in a drift field and can 
be used as a very good approximation for electrons with 
sufficient energy to escape over a barrier of height 
^=3.8 eV. 
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The solution 
const 

fo(<P,T) = exp 
\ U0T rSj' 

where 
T ~\ U0T rSrJ 

S0=F2\2/rSr 

(9) 

(10) 

can be converted to give fi(<p,T) using the appropriate 
form of Eq. (7). The flux of electrons traveling toward 
the surface, which is related to experimentally meas
urable currents, can be determined from fi(<p,T). 

The nature of the solution can be examined if we plot 
the locus of the maximum of the /o distribution of 
Eq. (9) which occurs between T= <p and T = 0 . Figure 2 
shows this locus for the parameters of Wolff, Shockley, 
and the present work, using a field of 106 V/cm. We 
return to the discussion of Sec. I in which we mentioned 
that the peak of the distribution arose as a result of the 
increasing probability of transmitting an electron 
against phonon collisions with an increasing number of 
collisions (i.e., increasing T), counteracted by the in
creasing probability of absorption because of the in
creasing random-walk-path length. As ionization be
comes relatively more probable, i.e., r becomes smaller, 
the peak shifts to a lower number of phonon collisions 
(smaller T) as shown by Fig. 2. Although the peak shifts 
to higher energies, the magnitude at the peak reduces 
rapidly with decreasing r. I t is this position and magni
tude dependence of the distribution maximum which 
can be fitted to the experimentally observed distribution 
to determine the value of r. 

We have considered, in this section, solutions to three 
forms of the transport equation under much simplified 
conditions. We now turn to the application of these 
solutions (representing specific regions of the emission 
structure) to the two experiments of interest in order to 
obtain relations between measurable quantities. 

III. APPLICATION TO SHALLOW JUNCTIONS 

To be emitted, electrons must diffuse through the 
field-free n layer. Using the solution to the diffusion 
equation discussed earlier we can calculate the proba
bility that an electron will penetrate this neutral layer 
with a certain energy loss. If the distribution impinging 
on the layer is Maxwellian, we may calculate the result
ing distribution at the surface and its dependence on the 
thickness of the layer. For the peaked distribution, re
sulting from a delta function of photoexcited electrons 
entering the junction, we can show that to a good 
approximation the effect of the neutral layer on this 
distribution can be accounted for by extending the field 
region a distance equal to the neutral layer thickness. 

Neutral Layer 

The probability of transmission through the neutral 
layer is calculated from the flux of electrons 

Equation (7) relating / i to /0 , for diffusion alone is 

fi=-ldf*/dx, (12) 

so that we may write 

J(T)dT=Zd(gfo)/dx']dT, 

where Sf0 is the solution to the pure diffusion equation 
(F=0) treated in the Appendix [Eq. (A14)]. The proba
bility that an electron entering the neutral layer at # = 0 
and 8>T appears at oc=L in the energy range T to 
T—dT is then, using appropriate normalization, 

P1(T,L)dT=J(T)\x=LdT 

2 \ y V 
exp 

U rSr TndT 

4X2 T rSjTW 
(13) 

The distribution at the emitting surface resulting 
from a Maxwellian distribution entering the neutral 
layer may be written as a function of the energy variable 
at the surface SL= S—T, where S is the energy at which 
the electron enters, as 

N(SL)=(2/V*)(kTe)-w[ (SL+T)U* 

xexP[~(&+T)ArjPi(r,z)jr. (14) 
This integral can only be evaluated approximately. The 
integrand consists of a sharply peaked function times 
the factor (<§£+ T)1/2, so that under certain conditions 
the integral may be written as the value of the integral 
without the factor (SL+T)112 times this factor with T 
replaced by its value at the peak of the integrand. This 
procedure applied term by term to a Taylor series ex
pansion of the square root leads to the following ap
proximate expression under the conditions noted. 

/-00 dp 
/ (l+gp)«exp(-a2p-b2/p)-— 
Jo PVp 

\f-n 2abU+g~) 

r a{a-l)f a\ 
X 1 + 1 + - ) 

L 4ab \ gbJ 
+ • , (15) 

where a=% or §; ga/b<\; a2, &2»1. 
The distribution at the surface is, therefore, 

N(8L)= (kTiyW 

Xexp(-SL/kTe)e-L'L°(l+ 

J(S)dS=(87rm/3)SfldS. (11) 
X I -

rSr i £ o \ 1 / 2 

§L 2X2/ 

Lo2/ LLorSr\~
2 

: H 
4 l A 2\2SL )+ - } (16) 



S H A L L O W p-n J U N C T I O N S I N S i 977 

0 100 200 300 400 500 600 700 

FIG. 2. The locus of the maximum of the density distribution of 
electrons released at position x — 0 (start of the junction) for 
different values of r=k/lr. 

where 
L«2=\2/(l+r8r/kTe). (17) 

The values of the parameters L, L0, and X are such 
that the L dependence is governed to within 2% by 
exp(—L/LQ). We note that a Maxwellian distribution 
of the same temperature as that which entered, reduced 
in magnitude by exp(—L/L0), appears at the surface. 
The experimental procedure, therefore, consists of meas
uring this L dependence in a situation where a Max
wellian distribution is observed externally. The electron 
emission due to avalance breakdown meets these re
quirements. The reflection of electrons at the surface 
will not affect the attenuation measurement as long as 
it remains constant during the experiment. 

Field Region 

Before attempting to repeat a calculation of this type 
for the distribution of photoexcited carriers, it is neces
sary to establish the method by which the magnitude of 
this distribution can be obtained from the retarding 
potential experiment. Clearly the derivative with re
spect to energy of the emitted electron current measured 
as a function of the collector potential in retarding po
tential measurement, normalized by the photocurrent 
incident on the junction from the ^-type side, corre
sponds to the probability that an electron starting at the 
conduction band edge traverses the junction and neutral 
layer, overcomes the surface barrier, and is emitted in 
the appropriate energy range. We will, therefore, calcu
late a probability analogous to Pi(T,L) for the field 
region, integrate it with Pi(T,L), and then multiply it 
by the appropriate reflection factor. 

We note that for the independent variables <p and T 
Eq. (7) becomes 

f1/lF=-dM<P,T)/dcp. (18) 

The probability of transmission through the field region 

can, therefore, be found from Eq. (9): 

1 /<p2 cp\ 
P2(<P,T)dT=—( 

Uo\T2 TJ 

r x2 rSr T n 
Xexp IdT. (19) 

L 4X2 T rSj 

We have used both <p and x in this expression to bring 
out the similarity of the exponential term to that of 
Eq. (13). <p and x are now considered the total applied 
potential energy and the width of the junction, respec
tively. The normalization to a unit delta function was 
carried out in the limit <p —> 0 because of the approxi
mate nature of the solution given in Eq. (9). 

We now define 
U=<p-SL (20) 

to be the over-all energy loss of an electron traversing 
the field region and the neutral layer, so that the over-all 
transmission to the surface is given by 

P(x,L,U) = f P2(cP)T)Pl(LJ U-T)dT 
Jo 

~~4£oiL U J U \ 
r(x+L)2rSr U 1 

Xexp (for L<x), (21) 
L 4X2 U rSj 

where we substituted U—Tiox T in Eq. (13) and used 
the integral of Eq. (15) for a = | and § to obtain the 
approximate result. The approximation is accurate to 
4% in the application to the experimental results. 

The form of Eq. (21) is identical to that of Eq. (19) 
with x+L substituted for x. We, therefore, define 

X=x+L 
and 

$=FX=<p(l+L/x). (22) 

This result suggests that the whole effect of diffusion 
through the neutral layer may be included by consider
ing a field region increased in width by L. This diffusion 
nature of the field region solution deemphasizes the 
importance of the exact field distribution (under the 
condition 28^>r8r), so that the theory based on a con
stant field in the junction can be applied to the structure 
in which, as we shall see, the field is quite nonuniform. 
At the start of the junction the electrons will be affected 
by the field, but since at that point they are below the 
ionization threshold, where the theory does not apply, 
we can consider X to be a fitting parameter whose value 
is variable in a range determined by the actual junction 
width. 

Relation to Experiment 

We define K(SL) to be the percentage of electrons 
transmitted over the surface potential barrier, after 
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being incident on the barrier with energy SL, as a result 
of being transmitted to the surface by the probability 
P(x,L,U). Then if I0 is the current of photoexcited 
electrons entering the junction and Iem(U) is the current 
collected externally as a function of a retarding potential, 
the emitted electron energy distribution is given by 

1 dIem(U) 
P(U)dU= dU (23) 

Io dU 
1 / $ 2 $ \ 

= K(<p-U)—( ) 
4£oW 2 U/ 

r X2 rSr U -] 
Xexp \dU. (24) 

L 4\2 U rSj 

In obtaining the expression following K(<p—U) we 
have assumed that all those electrons with energies 
greater than the barrier are emitted. Those reflected by 
the barrier because of their transverse momentum can 
be accounted for separately in the absence of electron-
electron collisions. We will establish limits on the magni
tude of K(8L), the lower given by allowing electrons 
only one attempt to escape, the upper by considering 
the electrons free to be randomly reflected by lossless 
phonon collisions, but limited in the number of escape 
attempts by ionization absorption. In addition to elec
trons directed toward the surface given by the flux 
P(x,L,U), there are those due to the accompanying 
density distribution which can also be emitted. We 
need, therefore, the ratio / o / / i , and may at the same 
time investigate the applicability of the expansion of / 
in terms of spherical harmonics. 

For the distribution function fo as given by Eq. (9), 
the ratio fi/fo is obtained from Eq. (18) as 

fi/fi>=QF/26o)<p/T. (25) 

Substitution of FX for p and U for T gives the value 
of fi/fo at the emitting surface, with the result that 

/ i / / o = 3XSr/2lrU (at the surface). (26) 

The distribution fo has a maximum which occurs at 
^ / r = (l+r8r/Tyt22F\/r8r.Thus, for T^>rSrwe obtain 
at the maximum of fo 

/ i / / o = / A = [ 3 / ( i + r ) ] 1 / a (at the maximum of /„). (27) 

Using the experimental values, Eq. (27) gives a reason
able justification for the expansion in spherical har
monics, but because the maxima of / i and fo do not 
coincide Eq. (26) gives an / i smaller than / 0 through 
only part of the energy range in which the experimental 
data are fitted. We shall return to a fuller discussion 
of this point and assume for the present that in the 
range of interest / i and fo are comparable. 

Surface Reflections 

The electrons with energy SL which escape in the 
first attempt are all those with a direction of momentum 

in a cone of angle 60 given by 

COS0 O =(^ /<§L) 1 / 2 =M. (28) 

The number of electrons escaping on the first attempt at 
an energy SL] normalized to those incident, is therefore 

/ ( / o+ / i cosd)dVp/ / (fo+fi cos9)dVp 

= / O ( 1 - M ) + / I ( 1 - M 2 ) . (29) 

The lower limit on K(SL) is, therefore, 

K0(SL)= ( l+/0 / / i+Ai)(l—/*)• (30) 

The upper limit may be estimated by considering 
phonon collisions to be lossless randomizing collisions, 
which return electrons to the surface after each reflec
tion until they are emitted, absorbed by ionizations, or 
until they have suffered a number of phonon collisions 

n= (8L-t)/8r, (31) 

and they have insufficient energy for escape. We have, 
thus, overestimated the escape probability by neglecting 
the reduction in critical angle do with energy loss and all 
single- or multiple-phonon processes which prevent the 
electron from returning to the surface. The upper limit 
Kr{Si), resulting from the sum of a finite series of tries, 
is determined for r near 1 by the ionization absorption 
process. We find 

Kr(SL)=(r+l)ll+r(l-^)^{Ko-(l-fJiW(r+l) 

- [ I T o - ( l - M ) ] I > r / ( f + l ) » . (32) 

For ny>\ the term containing the n becomes negligible, 
i.e., electrons are absorbed by ionization before dropping 
below yp if they start with a large enough energy. We 
note that Kr=o(8L) = Ko(8L). To show the energy de
pendence of K(8L), i£ r(<§L)(1+ fo/f i)~ l is plotted in 

Fig. 3 for several values of r. We note that the energy 
dependence of K%.%{SL) does not differ greatly from 
KO(SL) over the range of interest except for a multiplica
tive factor. At low energies (n<6) the effect of the 
finite series is evident for KT(SL) for which the infinite 
series approximation is shown by the dashed curve. The 
dependence of fo/fi on r, given by Eq. (27), was used 
for these curves. 

We note that in correcting the Maxwellian distribu
tion for surface reflections, the reflection theory for a 
spherical distribution, /0 , was used in the lower limit 
only, i.e., 

Ko'(SL) = l-n. (33) 

IV. DEVICES AND PROCEDURES 

The particular geometry of the emission structure was 
chosen because of its over-all small size which allows a 
favorable retarding potential geometry. An emitting p-n 
junction was diffused into 0.02 fi-cm ^-type silicon, over 
an area of 0.050 in. on a side. This area was one face of a 
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FIG. 3. The surface reflection factor for a 3.8-eV energy barrier 
for different values of r. KO(&L) is considered a lower limit on the 
number of electrons transmitted over the barrier while curves for 
higher values of r give KT{ZL) as an upper limit. 

cube, the other faces of which were previously diffused 
to give high-breakdown (10 V) contact junctions, such 
that the emitting junction diffusion made contact to 
them. Contact to the ^-type bulk was made through a 
slot cut in one of the contact faces (see Fig. 1). 

The emitting face was diffused for 14 min at 880 °C 
with P2O5 in an open boat. Breakdown occurred be
tween 5 and 6 V, the range of simultaneous tunnel and 
avalanche breakdown in silicon. The details of the 
shallow junction diffusion, such as the depth of the 
junction below the surface and the concentration gradi
ent, were determined on a somewhat larger test cube by 
sectioning the w-type layer. The conductivity was 
measured through four of the ^-layer (n) sides between 
contacts made to two thick ^-layer (N) faces as shown 
in Fig. 4(a). Material was removed from the test cube 
by oxidizing the silicon in boiling water for 1 min and 
removing the oxide in HF. The amount of silicon re
moved by this boiling water-HF (BW-HF) method 
was determined from the weight loss with repeated 
cycles, as measured on a Mettler Micro-Grama tic 
balance. The oxide growth saturates after 1 min and the 
removal rate is nearly independent of the concentration 
of uniformly doped material. On samples such as the 
test cubes containing a shallow junction, however, the 
removal rate dropped to about 5 A/cycle, from the 
otherwise constant rate of 33 A/cycle, when less than 

600 A remained between the junction and the surface 
[Curve A, Fig. 4(b)] . Forward biasing the junction with 
light allowed the removal rate to be partially (Curve B) 
or completely (Curve C) restored to the bulk rate and 
could even be made to exceed it with sufficient light 
intensity. The removal rate, however, returned to nearly 
33 A/cycle when the junction was reached, independent 
of the light intensity (Curve B). A carrier injection 
model may explain this phenomenon in view of the 
junction bias dependence and the abrupt change in rate 
at the junction. 

The diffusion profile calculated from the conductivity 
measurement is shown also in Fig. 4(a). The character
istic "flat top" near the surface is noted, as is the nearly 
constant gradient of 1.0X1025 cm - 4 beyond it. The 
charge and field distributions (at 5 V applied) shown 
result from an extension of the linear gradient and the 
approximation of uniform positive charge on the p-type 
side. The peak field of 2X106 V/cm at 5 V indicates 

X1Q19 

2 X 106 V/CM 

1143 1300 1500 1710 
FIELD DISTRIBUTION 
( 5 VOLTS APPLIED) 

CHARGE DISTRIBUTION 
.(5 VOLTS APPLIED) 

(a) 

(b) 

0 200 4 0 0 600 800 1000 1200 1400 1600 1800 
DEPTH BELOW SURFACE IN ANGSTROMS 

FIG. 4. (a) Diffusion profile obtained by sectioning the w-layer 
of a test sample with the boiling water-HF (BW-HF) method. Also 
shown are the charge distribution assumed (note the approxima
tion of uniform charge on p-side) and the resulting field distribu
tion. (b) Calibration of BW-HF method for samples containing 
shallow junctions. Curves A, B, and C correspond to zero, and 
two different amounts of light applied to the test sample during 
the boiling part of the cycle. Curve C was used to obtain the results 
shown in (a). 
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FIG. 5. Variation of the total emitted current with 
thickness of the neutral layer. 

that at least part of the breakdown current is due to 
tunneling. 

The BW-HF method gives a uniform removal rate of 
33 A/cycle over the first 700 A of the n layer. I t was, 
therefore, used within this range only for measurements 
of the dependence of the emitted current on the neutral 
layer thickness. 

Of utmost importance to the magnitude of the emitted 
current is the cleanliness of the surface of the sample. 
Particularly any oxide, such as that grown in air at room 
temperature, must be removed to obtain consistent 
current measurements because electrons would have to 
tunnel through the thin potential barrier. The native 
oxide can be removed by etching with H F gas such as 
that liberated by decomposing ammonium binuoride at 
150-200°C. A thin-walled heater tube containing a few 
small crystals of ammonium binuoride was positioned 
with the only opening facing the sample and heated 
electrically while the device was kept approximately 
50°C hotter to avoid contamination by the ammonium 
fluoride byproducts. 

A second method of avoiding oxide contamination 
consisted of protecting a freshly H F dipped sample from 
air during mounting and subsequent pumping of the 
vacuum system, by means of methyl alcohol. The alcohol 
has a slight reducing effect on silicon that appears to 
persist momentarily, even after it evaporates. Improve
ments in the emission current over oxidized surfaces by 
these methods ranged from a factor of 20 to 500. 

The emitted electron current was collected on a hemi
spherical gold collector in which a small hole allowed 

light to pass to the emitting surface. A small positive 
spherical grid was used during the retarding potential 
measurements to accelerate the electrons radially so 
that their total energy rather than that normal to the 
surface was measured. The maximum sensitivity of the 
ammeter was 10~14 A. 

V. EXPERIMENTAL RESULTS AND 
INTERPRETATION 

Attenuation Length 

The variation of the total emitted current with the 
thickness of the neutral layer is shown in Fig. 5 for 
several devices with a constant breakdown current of 
25 mA. The exponential increase in current, with 
L 0 =45 A, is drawn through the points obtained from 
the best device. The remaining data adds support by 
virtue of having the same absolute magnitude. On some 
devices (data not shown) a similar slope was observed 
but with an apparent shift to the left indicating that 
some of the silicon was removed during the initial clean
ing step (due perhaps to foreign material on the surface). 
The limits which can be put on LQ from the data shown 
and general experimental conditions will be taken to be 

(34) =451? A. 

The energy distribution for breakdown electrons, as 
measured from the emitted distribution, and corrected 

4 0 0 

0.1 

0.5 eV 

DISTRIBUTION 
CORRECTED FOR . I c x 
REFLECTIONS WITH K ' 0 (o L ) 

^PHOTO BREAK-
* DOWN 

• 4 

IN eV 

FIG. 6. Shape of the emitted photoexcited and avalanche break
down energy distributions and the avalanche distribution cor
rected for surface reflections. 
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for surface reflections is shown in Fig. 6. The resulting 
distribution is Maxwellian over about two decades in 
the high-energy tail with a temperature 

&re=0.5±0.1eV, (35) 

but shows a significant deviation at lower energies. This 
deviation is probably due to the nonuniform surface 
potential resulting from the lateral voltage drop in the 
thin layer due to the large (25-mA) breakdown current. 
The potential barrier in the center of the emitting face 
is then effectively somewhat higher, an effect which is 
reduced, though not eliminated for distributions meas
ured with thicker layers. 

An important feature of the emitted distribution is 
the presence of electrons more energetic than those at 
the conduction band edge on the ^-type side as calcu
lated from the 5.5 V applied (see Fig. 6). The mechanism 
for the generation of such hot electrons can be one of 
two types consistent with conservation of energy. 

The breakdown current due to avalanche multiplica
tion flowed in microplasmas, as was observed from the 
recombination radiation. Electron densities in a micro-
plasma are quite high, typically 1016-1017 cm-3, and 
electron-electron collisions under these circumstances 
may thermalize the distribution. Stratton8 has proposed 
a criterion for the density at which the distribution 
becomes Maxwellian and his criterion gives a density in 
the above range for the electron temperature of 0.5 eV. 

The second possible mechanism by which electrons 
can attain energies in excess of the ^-type conduction 
band edge involves the actual avalanche multiplication. 
A few electrons will traverse such a large portion of the 
junction, before their first ionization collision, that they 
have energy considerably in excess of that needed for 
the secondary generation. If this energy is given up to 
the hole formed and the hole is also sufficiently fortunate 
in achieving a large amount of energy which is then 
given to the secondary electron it produces, electrons 
may gain energy from the field upon successive travel
ings of the junction. No estimate of the magnitude of the 
effect has been given. 

The measured electron temperature may be com
pared with the theoretical expression (not applicable in 
case of electron-electron collisions) given by Eq. (A15), 
but an appropriate average field must be chosen. Using 
an average field estimated from Fig. 4 at 106 V/cm and 
the parameters quoted in the introduction, we find a 
temperature of 0.45 eV from the electron emission 
parameters, in good (perhaps fortuitous) agreement 
with experiment, and the values of 0.11 eV and 0.73 eV 
for Wolff's and Shockley's parameters, respectively. 
With a nearly linear field dependence and no accurate 
way of determining the average field, the significance of 
these figures is quite limited. 

The value of L0 can also be shown to be consistent 
with an extrapolation of the total emitted current to the 

8R. Stratton, Phys. Rev. 126, 2002 (1962). 

edge of the depletion layer. An estimate of the number 
of electrons emitted over a 3.8-eV barrier, due to a 
25-mA current at the junction edge, using a distribution 
as described by Wolff (with <§;= 1.8 eV) and a simple 
spherical distribution reflection correction, requires a 
value of L0=46 A to fit the magnitude of the observed 
emission. The conversion from electron flux to density 
which tends to decrease Lo and the effect of the non
uniform surface potential which would increase L0 have 
been neglected in the estimate. 

Photoexcited Distribution 

The retarding potential measurement of the photo-
excited electron emission at a junction voltage below 
breakdown is also shown in Fig. 6, with the ^-type con
duction band edge shown for reference. The position of 
the peak of this distribution is much closer to the top 
of the surface potential barrier than the breakdown 
distribution. The temperature of the upper tail is lower, 
only 0.3 eV (a change not commensurate with the 
slight decrease in the junction field with 0.8 V lower 
bias), which, together with the surface reflections and 
the varying surface potential, would give rise to a lower 
energy peak, even for a Maxwellian distribution. How
ever, several factors indicative of a fundamentally differ
ent distribution may be cited. The photocurrent was 
only 1 mA and the lateral voltage drop was correspond
ingly lower. We also note that the transmission factor 
for classical surface reflections is a relatively slowly 
varying function (within the limits discussed earlier) 
and could not by itself give rise to the observed peak. 
Furthermore, the position of the peak relative to the 
band edge indicates that the nature of this distribution 
is different than that for breakdown electrons. The 
reservation which remains in order is the uncertainty 
in the complete reflection factor, including quantum 
mechanical reflections. 

The fit of the theoretical curve to the data proceeds 
as follows: The magnitude of (3(U) of Eq. (23) was 
determined from the photocurrent and the retarding 
potential data and the data were smoothed as shown in 
Fig. 7. From this magnitude (~10~8 eV"1) and an esti
mate of the linear terms of Eq. (24), we find a magnitude 
for the exponent of this expression at a particular value 
of U (= 1 eV). We now replace X in this relation by the 
experimental values of L0 and kTe using Eq. (17). With 
all energies expressed in eV, we then have 

/ x \2 l l 
+—=19 .3 . (36) 

\2L0/ l/rSr+2 rSr 

The choice of X/2Lo will then determine r. X may be 
obtained from the field distribution (shown in Fig. 4) 
and length L, which is determined by the amount of 
silicon removed at the time of the measurement. With 
21 BW-HF cycles X= 1010 A at the applied bias. We 
noted earlier that the constant field approximation in 
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FIG. 7. Fit of the shape of the emitted energy distribution of 
photoexcited electrons with a theoretical curve (solid line) using 
parameters determined from the magnitude of the observed dis
tribution. Adjustment of 0.1 eV was made in the relative scales 
of U (the energy loss in traversing the junction and neutral layer) 
and &L (the kinetic energy at the surface). The two steps near 
Z7=0 are a magnitude calculation of the number of electrons 
emitted in an energy range 8r for electrons with zero and one 
collision, using the same parameters. The dashed curve corre
sponds to the calculated distribution without the effect of surface 
reflection (arbitrary scale). 

the junction is valid only for the region where the 
electrons of interest are energetic enough to diffuse 
rather than drift. At low energies this assumption is 
no longer valid and the situation is further complicated 
by the fact that the initial portion of the electrons 
trajectory is below the ionization threshold. Clearly the 
X to be used here should be somewhat less than the 
1010 A, but how much less is uncertain. 

Choosing X/2L0= 10 as a reasonable value, we obtain 
r8r=0.2 eV from which r=3 .2 . The solid curve in Fig. 7 
shows the shape calculated from Eq. (24) using r=3.2 
and the reflection factor K$(8L). The factor K$.%{&£) 
changes the shape by only a few percent and actually 
improves the fit in the range where the theory is appli
cable. The effect of the reflections on the position of the 
maximum is relatively small as can be seen from the 
dashed curve, which corresponds to the calculated dis
tribution before emission over the barrier, plotted on 
an arbitrary scale. 

One adjustment, other than the choice of X/2L0 , was 
a 0.1-eV shift in the relative energy scales, U and &L-

From the junction voltage and the energy gap, <p was 
placed at 5.9 eV (the uncertainty due to contact re
sistance and perhaps lateral voltage drop across the 
emitting face is ± 0 . 1 eV). The initial rise of the dis
tribution with increasing energy and the electron affinity 
of the gold collector place the electron affinity at 
\l/—3.8 eV. The relation between U and SL used to 
obtain the best fit, corresponds by Eq. (20) to a value 
of <p=5.8 eV. This may be interpreted as either the 
limit of the error range on <p, or the need for an electron 
affinity ^ = 3 . 9 eV. 

Before discussing the deviation of theory and experi
ment in the energy range above the maximum, we will 
investigate the sensitivity of the position of the peak to 
changes in r, X, and L0. If we vary r by ± 1 , the theo
retical peak shifts by ^ 0 . 3 eV. This value is not un
realistic as the limit of accuracy of the measurement. 
Keeping the magnitude of the distribution constant this 
range of r corresponds, according to Eq. (36), to a 
variation in X/2L0 from 9.5 to 10.5. At this point we 
may include the range of uncertainty of X and compare 
the required extremes in L0 with those obtained from 
the direct measurement. We obtain 

£ 0 - 4 5 - 5 5 A; r=4 .2 

L 0 - 4 0 - 5 0 A ; r = 2.2 
8 5 0 A < X < 1 0 5 0 A . (37) 

The compatability of this uncertainty with that ob
tained earlier indicates a degree of self-consistency. 

Using r=3 .2 and Z,0=45 A, Eq. (17) gives the value 
X = 53 A for the electron temperature observed. From 
the definition of X [ = (//;/3)1/2] we obtain lr=60 A and 
U= 190 A. Figure 8 shows the relationship between these 
values and those used by Wolff and by Shockley. Also 
shown are the self-consistent extremes calculated from 
the two experiments. 

The deviation between theory and experiment at 
energies above the peak can be attributed to a break
down of the applicability of the theory. The expansion 
of / in terms of spherical harmonics is valid only for 
/ o > / i . As long as the coefficients fn are decreasing for 
increasing n, the flux, representing all particles moving 
in the x direction, will very nearly be described by 
Eq. (11). The integral over the hemisphere centered on 
the x axis vanishes or is very small for all higher order 
spherical harmonics. The condition giving the break
down of the theory is, therefore, fo=:fi, which according 
to Eq. (26) occurs at approximately the peak of the 
distribution of Fig. 7. For smaller U the distribution is 
then more sharply peaked in the forward direction until 
at TJ— 0 electrons with no collisions will represent a very 
sharp forward spike. Since at the field region start the 
direction of electrons can easily be changed to the x 
direction, independent of the initial direction, electrons 
with zero collisions are not affected by surface reflec
tions. Hence, fi(U)dU at Z7=0 is given by 

0(O) = e - W ( l / £ r ) e V - (38) 
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Using X= 1010 A and Z=45 A determined from U and lr 

by Eq. (2), we find a magnitude 1.75X10"9 eV"1, which 
is shown in Fig. 7 as a small line at U=0. The Sr appears 
to define the energy range in which the electrons emerge, 
ionization being absorptive. 

The number of electrons escaping with only one 
collision can be written as the probability that the 
collision was not an ionization [V/(H-1)], times the 
integral, over all angles and positions, of the probability 
of avoiding a collision before and after the single colli
sion. Again we assume the electron enters the field 
region normal to the surface, so that 

J r -T/2 pX fa I X — X\ 
0(S r)= / / erxlx— exp J sinddd 

SrT+lJo Jo I \ ICOSd/ 

= —lectin- 1̂1 
Srr+IL \ I J 

+EnJ~\+En^(~\\, (39) 

where y — 1.781 and En is the exponential integral. The 
asymptotic form of En then gives, for large X/l, 

r / yX 2/\ 
P(Sr)=P(0) (In 1 + - ) . (40) 

r + l \ / XI 
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FIG. 8. The relation between the parameters of Wolff and 
Shockley, and the optimum point. Also shown is the self-consistent 
range of parameters (solid line) and the relations imposed by the 
two separate experiments (dashed lines). 

The second step near U=0 in Fig. 7 results. The result
ing slope and magnitude are in good agreement with the 
observed distribution. 

One further theoretical difficulty which is not ap
parent here is the breakdown of the description of the 
statistical scattering process by means of a differential 
equation when only a few collisions are involved. Since 
at the peak about 20 phonon collisions have occurred, 
no difficulty arises in the range of applicable theory. 

VI. CONCLUSION 

The characteristics of the emission of hot electrons 
from shallow junctions in silicon can be explained 
quantitatively by a theory using mean free path param
eters intermediate to the values used by Wolff and 
Shockley. The fit to the data is good, perhaps fortuitous 
considering the rather drastic assumptions regarding 
band structure, constancy of the mean free path, details 
of uniformity of the layer, and cleanliness of the surface. 

Again we emphasize that the observed peak in the 
distribution may be the result of a more strongly energy-
dependent surface barrier reflection phenomenon than 
that described by the simple theory. 
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APPENDIX: SOLUTIONS TO THE 
TRANSPORT EQUATION 

The transport equation is written for a region where 
scattering by phonons is isotropic, ionization is absorp
tive, and the mean free paths are constant. The second-
order partial differential equation which results is then 
solved for the case of pure diffusion, steady-state drift, 
and the more complete transient case where both drift 
and diffusion are important. 

Collision Terms 

To obtain the phonon and ionization collision terms 
in the transport equation we consider an infinitesimally 
thin ring of volume dVp at angle 6 and calculate the net 
rate of electrons entering and leaving. All electrons 
entering the ring start with the same momemtum p' 
determined by conservation of energy. Assuming iso
tropic scattering electrons scattered from a spherical 
shell at pr are distributed uniformly over the shell at p. 
The contribution of the electrons entering the ring is 
then the average number leaving the p' shell, corrected 
by the ratio of the volumes of the two shells. Hence, 

dl\ _ „ ! 
0 £ I phonons "r 

M*,P)+fi(x,p) costf 

v' p'Hp( 

+TMx,p')——, (Al) 
lr fdp 
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where v and vf are the velocities corresponding to p and 
p' and the fi(x,pf) contribution from the entering elec
trons vanishes by the orthogonality of the spherical 
harmonics. From conservation of energy in a phonon 
collision and the small magnitude of 8r compared with 
the kinetic energy of the several electron-volt electrons 
of interest, we obtain 

p'-p^m&r/p^p. 

We may, therefore, expand fo(x,pf) about p and retain 
only the first two terms as an approximation. By 
neglecting terms in 8r

2 this procedure results in 

dt phonons • < • 

/lCOS0 Sr 1 98fo\ 

lr lr 8 dS J 
(A2) 

where 8==p2/2m. Since ionization is assumed to be 
absorptive, we write 

- I I /o / i COS0\ 

ioniz ^ H 1% t 

(A3) 

Transport Equation 

The transport equation, 

phonons ®t 

df df 
= z>cos0—\-F— 

dx dpx 

(df df\ sm0 df 
= vcose[—+F—)-v , (A4) 

\dx dS/ 2S dd 

can be written in terms of the assumed angular de
pendence as 

Srld(Sfo) /o F/ i r /df! fi\dfil 
-cos20 F[ H 

L \dS 28/ dxJ U 8 dS k 28 

--cosdl —I 1 \-F— 
\ / r U dx d8J 

(A5) 

Multiplication by sin0 cosSdB, or sinddO and integration 
from 6=0 to IT causes, respectively, the left- or the 
right-hand side to vanish identically, so that 

and 

where 

fl
ip 

dfo_dfo 

d<p dS 

1 <9(<§/„) S /o_ d /6fi\ 3jS/i\ 

<S0 dS F2X2 d<p\lFJ dS\lF/' 

8o=FW/r8r 

(A6) 

(A7) 

(A8) 

is the steady-state electron temperature which could be 
obtained from elementary energy balance considera

tions. <p=Fx is the potential energy gained by the 
electron and corresponds to the potential drop across 
the junction when x is the junction width under a 
constant field approximation. Here <p will be considered 
variable. Using the definition 

T=cp—8, (A9) 

the two coupled equations may be brought into a single 
second-order equation, which can take two distinct 
forms depending on which two variables are chosen to 
be independent. Using <p and T as independent vari
ables, one has 

d*(8f0) 1 d(Sfo) d / 8f0 

-f(-r)" 
d<p\<p—l / 

Sfo_ 

F2\2 dcp2 8o dT a<p\(p-

In terms of 8 and T, this same equation is 

dfo 

= 0. (AlOa) 

avo dfo 
d82 d8 

/ l 1 \ / 1 1 \ dfo 
;(-+—)+/o( = 0 . (AlOb) 
\8 8Q/ \88Q r8r8o/ dT 

Diffusion Solution 

Two special cases, field-independent diffusion and 
steady-state drift, can be obtained at once from Eq. 
(A10). Multiplying Eq. (AlOa) by F2 and taking F=0 
we find 

d2Q r8rdQ Q 
— - — = 0 , (Al l ) 
dx2 X2 dT X2 

where Q= 8fo is the slowing down density of Fermi's 
"age theory."9 Equation (All) is simply a "diffusion" 
equation with an absorption term. The "diffusion con
stant" is \2/r8r since time is expressed in terms of the 
number of collisions T/8r. Except for the last term 
which results in absorption, the solution is expressed as 
a function of the "age" r, the product of the diffusion 
constant and time, as 

where 
Q=Q(x2/r), 

T=\2T/r8r. 

(A12) 

(A13) 

Equation (All) was solved by Hebb10 without the 
absorption term for the case of an electron entering a 
slab of material at x=0 with an energy 8= <p. The 
boundary conditions are Q=0 at x= — 00 and all elec
trons that reach the position x=L are removed from 
the layer (emitted). The solution is then 

<2= (47rr)-1/2{exp(-o;2/4r) 

- e x p [ - (>-2L) 2 /4 r ]} exp( - r /X 2 ) , (A14) 

where the absorption term has been added to Hebb's 
result. 

9 E. Fermi, Nuclear Physics (Chicago University Press, Chicago, 
Illinois, 1950). 

10 M. H. Hebb, Phys. Rev. 81, 702 (1951). 
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Drift Solution 

The steady-state drift solution can be obtained from 
Eq. (AlOb) by removing the x dependence. The deriva
tive with respect to T vanishes for x —>oo and finite 8 
since T can then be replaced by <p=Fx. The remaining 
equation was solved by Wolff under the assumption 
that 8^>8Q and 8^>r8r, so as to describe electrons with 
energies above 8{. For his choice of parameters (r<<Cl) 
the assumption is valid. A more complete solution of the 
equation in terms of confluent hypergeometric functions 
shows that even when these conditions are not com
pletely satisfied (r>l) the exponential dependence of 
fo is still that given by Wolff, i.e., 

/o=const e x p { - [ i + ( i + ^ o A ^ ) 1 / 2 ] ^ / < § o } , (A15) 

but the multiplying factor has a somewhat different 
energy dependence leading to an error, in using Eq. 
(A15), of 25% in the worst case. We observe that in the 
absence of ionization, i.e., r •—»°o, the solution has the 
simple temperature <£0, where £0, however, becomes 
«l = W / 3 « r . 

Complete Solution 

The solution to the whole of Eq. (A10) can only be 
obtained in closed form as an approximation. Consider
ing now a given value of field, there are two distinctly 
different groups of electrons whose initial transient be
havior is described by Eq. (A 10). The first group con
sists of those which at large x have small values of 8, and, 
thus, form the steady-state drift electrons. Electrons in 
the other group have low energy loss to collisions (i.e., 
small T) and are those of interest to the problem out
lined in Sec. I. This distinction between groups, with 
emphasis on drift and diffusion, respectively, must be 
made because the exact solution to Eq. (A10) cannot 
be obtained and the particular approximations made 
will restrict the solution to the low-energy-loss group. 
Although the variables cp and T form the natural vari
ables for the solution for low-energy-loss electrons, the 
somewhat simpler form of Eq. (AlOb) makes the ap
proximate solution in terms of the variables 8 and T 
more attractive. We shall take the Laplace transform 
of this equation with respect to T, in which case the 
initial value of / 0 in the dfo/dT term vanishes for a 
delta function in / 0 at 8— T=0 or by Eq. (A9) at # = 0 . 
This delta function corresponds to the release of elec
trons with zero energy at the start of the junction. The 

remaining equation is similar to that solved for the 
steady-state drift by means of the confluent hypergeo
metric function but now the inverse transform is re-
required. Intermediate to the approximation used by 
Wolff and the complete solution is an approximate form 
in terms of the modified Bessel function, which affords 
a somewhat better approximation than that of Wolff. 
We, therefore, define 

¥(«,*) = / e~*Tfo(8,T)dT, (A16) 
So2 Jo 

from which we obtain for our boundary condition 

df0/dT=exp(- 8/28Q)sV. (A17) 

The effect of the factor exp(£/2<§0) is to reduce Eq. 
(AlOb) to 

d2* 1 # / 1 8Q 8O\ 1 
+ s+-+ ] — ¥ = 0 . (A18) 

d82 8 d8 \ 4 r8r 28/80
2 

Requiring / 0 (or ^ ) to go to zero at infinite energy we 
obtain under the condition 28^>r8r the approximate 
solution 

r8( 1 8o\1/2~] 
^^const iTo —( H — I ) , (A19) 

L8o\ 4 r8rJ J 

and the inverse transform 

e x p ( - £ / 2 £ 0 ) 
/o (8, TO^const 

T 

r S2 T(\ S0\-] 
X e x pri^"7U+T) • (A20) 

L 4:8QT <30\4 rSr/J 
Using the more natural variables <p and T, we may write 

const / cp2 T \ 
/ o (* , r ) = exp ). (A21) 

We see from the approximation involved in obtaining 
Eq. (A19), i.e., 28^>r8r, that we have, indeed, the group 
of electrons with high energies. The solution, in fact, 
does not go over into the steady-state drift solution at 
x (or T) —>oo, because we have not resupplied the dis
tribution with those electrons which were absorbed by 
ionization. 


