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The diffusion of particles from the center of a sphere of radius R is considered theoretically. An expres­
sion is obtained for the probability that a particle will be collected at a small probe within the sphere rather 
than at the surface. This result forms the basis for an experiment to determine the momentum transfer cross 
section Qm for electrons in a gas. The only parameter which must be known in order to obtain absolute cross 
sections by the technique proposed is the acceptance coefficient for electrons at the probe. The probability 
Ac that a particle will have exactly c collisions characterized by a constant cross section Q before striking 
the surface of the sphere for the first time is evaluated. It is assumed that these collisions are not correlated 
with the diffusion process. In contrast with previous work the present method takes into account the varia­
tion of total diffusion time as well as the probability of a particular number of collisions during a given 
time. The probabilities Ao, A\, and A2 are given in terms of elementary functions and a recursion relation­
ship is given for the other A's. The expression A 0 = y csch y (where y — RN{5QQm)112 and N is the gas density) 
is useful in an experiment to determine the cross section for inelastic collisions between electrons and gases. 
The probability of more than any given number of collisions, the average number of collisions, and the 
mean-square deviation from this average are also evaluated. 

I. INTRODUCTION 

TH E principal objective of this work is to develop 
the theoretical basis for a diffusion experiment 

to determine the cross section for inelastic collisions 
between electrons and gases. The relevant experimental 
technique is essentially the same as that of Maier-
Leibnitz1 who used the theory of Harries and Hertz.2 

We develop results in spherical geometry rather than 
in the cylindrical geometry employed by Maier-
Leibnitz. This geometry has several advantages which 
will not be discussed in detail. 

The first situation to be considered is a steady state 
in which a constant particle current flows to a partially 
reflective surface. We obtain a relationship between gas 
density and the current collected by a suitable probe 
within the sphere. The result suggests a simple tech­
nique for determining the momentum transfer cross 
section which is fundamental in the interpretation of 
any diffusion experiment. 

Before discussing the statistics of the collisions 
suffered by particles as they diffuse from the center to 
the surface of a sphere we evaluate the probability that 
a particle which is at the center of a sphere at / = 0 
will reach the surface during (t, t+df). This is done in 
detail only for the case of a completely absorbing 
surface. We then integrate the Poisson distribution of 
the number of collisions during a given interval over the 
distribution of arrival times at the surface. This 
approach differs from that of Hertz et ah in that the 
Poisson distribution is invoked before rather than after 
averaging over various times. 

Although this work is motivated by our interest in 
the diffusion of electrons in a gas the conclusions which 
we reach are, with suitable modification, applicable to 

* This work was begun at the Bell Telephone Laboratories. It 
has subsequently been sponsored in part by DASA through the 
U. S. Army Research Office (Durham). 

1 H. Maier-Leibnitz, Z. Physik 95, 499 (1935). 
2 W. Harries and G. Hertz, Z. Physik 46, 177 (1927). 
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the diffusion of any sort of particles in spherical 
geometry so long as the cross sections remain constant. 
For example, one might consider the diffusion of atoms 
excited to a metastable state or the diffusion of neutrons. 
In these cases it would be more difficult to realize 
experimental conditions which conform closely to the 
model we discuss than it would be for the case of 
electrons in a gas. 

II. STEADY-STATE SOLUTION 

When first-order transport theory applies, the net 
particle current density due to diffusion is3-7 

T=-V(DF), (1) 

where F denotes the density of diffusing particles. We 
shall consider the diffusion of particles which all have 
the same speed v. In this case the /0° of Allis8 Eq. 
(30.5) is an appropriately normalized delta function and 

D=v/MQm. (2) 

The density of particles with which the diffusing 
particles collide is N and the momentum transfer cross 
section which characterizes the collisions is Qm. Let 
a (6) denote the cross section for scattering by an angle 6 

3 W. P. Allis, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 21, p. 383. Alternative expres­
sions for D in terms of v, I, or Q are discussed in this reference as 
well as in the subsequent references 4-6. 

4 David J. Rose and Melville Clark, Jr., Plasmas and Controlled 
Fusion (Tech. Press, Cambridge, Massachusetts, and John Wiley 
& Sons, Inc., New York, 1961), pp. 14, 63 ff. 

5 Sanborn C. Brown, Basic Data of Plasma Physics (Tech. 
Press, Cambridge, Massachusetts, and John Wiley & Sons, Inc., 
New York, 1959), pp. 24 and 47. 

6 H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic 
Impact Phenomena (Clarendon Press, Oxford, 1952), Chap. I. 

7 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). The transi­
tion from the random walk viewpoint to the diffusion viewpoint 
is discussed in Chap. I. 

8 Reference 3, p. 412. 
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into a solid angle dQ, then3 - 6 

G *=A (0)(l-cos0>ffi. 

Consider Eq. (1) for the steady state in which a 
constant particle current, / , flows isotropically from a 
source at the center of a sphere and D is independent 
of position. Conservation of particles requires that the 
current be independent of the distance r from the source. 
Thus 

1= 4TTT 2 r r = - 4wr2DdF/dr, (3) 

except at r = 0 . Let J(r) = F(r)v/4: denote the random 
particle current density. The boundary condition which 
conserves particles at the surface r=R having an 
acceptance coefficient Bw is 

TR=-D-
dF 

) — 
dr 

-BWJ(R) = -
F(R)vBu 

The solution of Eq. (3) which satisfies Eq. (4) is 

I 

RJ TTRHB* 

I / l 1 
F(r) = -

4nD\r 

(4) 

(5) 

This equation gives the steady-state density of particles 
everywhere except within about one mean free path of 
r=0orr=R. 

We now consider the particle current collected by a 
probe situated within the sphere. In order that Eq. (5) 
describe the spatial distribution of charged particles 
there must be no electric field within the sphere. I t is 
especially important that the probe itself introduce no 
field because such a field would preferentially disturb 
the distribution near the probe and thus influence the 
current collected. In order that the probe not disturb 
the distribution given by Eq. (5), it is also necessary 
that the probe be small enough so that the current i 
which it collects is a negligible fraction of / . The total 
current collected by a probe satisfying these conditions 
is 

r Bv r 
i= / BJ(r)d$=~ / F(r)dS, (6) 

where the integration extends over the area S of the 
probe and B is the acceptance coefficient of the probe 
surface. 

Let H=i/I denote the proportion of the total current 
which is collected by the probe. When the expression 
for F(r) given by Eq. (5) and the value of D given by 
Eq. (2) are put into Eq. (6), we obtain 

H=-
B r 45 

16x1 .R2BU 

-3NQ, •/(;->} (7) 

If we let B = Bw=l, the value of II given by Eq. (7) 
is the probability that a particle diffusing from the 

center of a sphere will collide with the probe before it 
reaches the surface of the sphere. With general values 
of B and Bw, H is the probability that the particle will 
be collected by the probe rather than by the surface of 
the sphere. 

Equation (7) predicts that when first-order transport 
theory applies and the probe satisfies the conditions 
specified preceding Eq. (6), H is a linear function of TV 
for a given electron energy. This result suggests the 
following procedure to determine Qm as a function of 
electron energy: plot measured values of H as a function 
of TV" for various energies. The results should be straight 
lines with nonzero intercepts which depend upon the 
acceptance coefficient of the sphere. The slope of one 
of these lines is a measure of Qm at the energy in 
question. We see from Eq. (7) that 

Qm= (16TdH/dN) IZB f ( 1 / r - \/R)dS. (8) 

This expression involves only the acceptance coefficient 
of the probe surface and the geometric factor which is 
incorporated in the integral. In case all of the probe sur­
face is located at r=R/2 the geometric factor is simply 
S/R so that Eq. (8) becomes Qm= 167rR(dH/dN)/3BS. 
Since Eq. (5) is not valid near r=0 or r=R, the probe 
used for an experimental determination of dH/dN in 
Eq. (8) must not collect a significant current from 
either of these regions. 

The technique we have suggested is worthwhile 
because it gives a direct determination of the cross 
section for momentum transfer collisions. I t incorporates 
the factor (1 — cos#) without requiring auxiliary scatter­
ing experiments or calculation. In a sense, an apparatus 
fulfilling the conditions of this theory would be an 
analog computer for evaluating Qm. 

We have considered the diffusion of particles which 
all have the same speed and cross section. A value of 
Qm given by Eq. (8) represents an average over the 
actual energy distribution. Thus, the technique is most 
useful when the energy distribution of the electrons is 
narrow compared to the average. The theory does not 
take into account any asymmetry of the source. In an 
experiment involving electrons in a gas one should, 
therefore, strive for an isotropic source which supplies as 
nearly monoenergetic electrons as possible. In the 
absence of inelastic collisions, gas density can be chosen 
large enough so that diffusion theory applies but small 
enough so that the electron energy changes very little 
during diffusion. When inelastic collisions occur, some 
loss of resolution results. The extent of this loss depends 
upon the cross sections in the particular gas being 
studied. 

III. DISTRIBUTION OF ARRIVAL TIMES 

In order to evaluate the probability K(t)dt that a 
particle which is at the center of a sphere at t=0 will 
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arrive at r=R during (t, t-\-dt), we consider the proba­
bility current associated with the diffusion of a single 
particle. Let W(r,t)dV be the conditional probability 
of finding a particle known to be at the origin at t=0 
in dV at time t. Chandrasekhar7 and others have shown 
that after a time long enough for many collisions W(r,f) 
satisfies a diffusion equation with appropriate boundary 
conditions. In the case we are considering, the diffusion 
coefficient is given by Eq. (2) and is independent of r. 
The appropriate equation is 

dW/dt=DVW. 

For a spherically symmetric problem, this becomes 

dW D d / dW\ 
— = (r2—\ 
dt r2 dr\ dr / 

(9) 

In contrast with the discussion of Sec. I I , we neglect 
reflection at the surface of the sphere. We shall obtain 
at the end of Sec. IV certain approximate results which 
apply when the surface is reflective. The appropriate 
initial and boundary conditions in the present case are 

47rrW(r,0) = 5(r), 

W(R,t) = 0, 

(10a) 

(10b) 

where 8(r) is zero except at r = 0 and J*5(r)dr=l 
whenever the range of integration includes r = 0 . Upon 
making the substitution G(r,t) = rW(r,t), Eqs. (9) and 
(10) become 

dG/dt=Dd2G/dr2, (Ha) 

47rrG(r,0) = 5(r), 

G(JR,*) = 0 . 

( l ib) 

( l ie) 

An uncritical application of the recipe for determining 
Fourier coefficients leads to the following "solution" 
of Eq. (11a) subject to Eqs. ( l ib) and ( l i e ) : 

1 oo sr 
G(f ,0= E s s i n - e x p ( - $ y r ) , (12) 

2R2*=i A 

where A^R/w and T=A2/D. In the text we ignore the 
fact that this series does not converge for t=0 and 
proceed heuristically. A somewhat more satisfactory 
discussion leading to the same conclusions is contained 
in the Appendix. 

The net probability current at r—R is 

rrdG/dr-

L r2 

= -4rRD(dG/dr)R. 

(13) 

We substitute the expression for G given by Eq. (12) 
into the last line of Eq. (13) and interchange the order 
of summation and differentiation. This is justified when 

the resulting series converges. Thus, 

2 oo 
K(t) = - E ( - ) s + 1 * 2 exp(-sH/T), (14) 

T H 

except at t=0 when K(t) is known to be zero. This 
equation gives the distribution of arrival times at the 
surface r=R for particles which are at the center of the 
sphere at t=0. 

IV. PROBABILITY OF A PARTICULAR 
NUMBER OF COLLISIONS 

We wish to determine the probability Ac that a 
particle which diffuses from the center of a sphere will 
have had exactly c collisions characterized by a cross 
section Q before it reaches the surface r—R. First, we 
determine the probability Pc that such a particle will 
have exactly c collisions during a time t. Let the average 
collision rate of the particle be v=NQv. Divide the 
interval of duration t into k equal intervals. If the 
probability q of a Q-type collision in each of these 
intervals is independent of what occurs in the other 
intervals, Pc is given by the binomial distribution 
Zkl/cl(k--c)\']qc(l — q)k-c, where q=vt/k. In the limit 
of large k this approaches the Poisson distribution so 
that 

(vt)cexv(— vt) 
Pe(vt) = . (15) 

Insofar as the diffusion process is independent of the 
()-type collisions, Pc(yt) and K(t) are uncorrelated and 
the probability A c is given by the integral 

Ac= / Pc{vt)K{t)dt. (16) 

The assumptions we have made are less restrictive 
than those of Maier-Leibnitz, Hertz, et at. For com­
parison their argument is paraphrased in italics. The 
average number of collisions c which a particle has while 
diffusing to a surface is equal to the integral of the total 
collision rate per unit volume weighted by the probability 
that a particle from an element of volume will reach the 
surface in question divided by the total rate at which 
particles reach the surface. In our geometry all particles 
reach the surface so that c is equal to (v/I) multiplied 
by the total number of diffusing particles in the space, 
i.e., c= (v/I)J*FdV. When c is evaluated in this way 
using the expression for F given by Eq. (5) without the 
term involving reflection, we find c=y2/6 where 

E vR2/D=<ir2vT= 3 (NR)2QQn (17) 

/ / the average number of collisions experienced by a 
particle before it reaches a surface is c the probability that 
it will have had no collisions is exp(-c). This conclusion 
would follow if all particles, in fact, required the same 
time to reach the surface, for then Ac would be given 
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directly by the Poisson distribution. The difference 
between this work and that of Hertz is that we treat 
t in Eq. (15) as a variable and not as an average time. 
We shall see that this approach gives different expres­
sions for Ac than would be obtained by following 
Hertz's reasoning. However, when the average over all 
Ac's is evaluated, one still obtains c=y2/6. 

The application of diffusion theory places no restric­
tions on the magnitude of y itself. However, there must 
be an adequate number of momentum transfer collisions. 
This is assured when 3 (NRQm)2 is not too small. 

When Eqs. (14) and (15) are substituted into Eq. (16) 
and the order of summation and integration is reversed, 
we obtain 

2vc oo 
Ac=~ E (-)s+1s2Lc, (18) 

Tc\ *=i 

where Lc=f^tczxp(—vt)zxp(—s2t/T)dt. In order to 
simplify the integrals of Eq. (18), let x—t{v-\-s2/T). 
Then 

V. EVALUATION OF Ac{y) 

In working with the probabilities Ac(y) it is con­
venient to define the series 

Lc= / xl 

Jo 
e~xdx / (v+s2/T)c+1. (19) 

Note that the numerator of this expression is equal to c\. 
When Eqs. (17) and (19) are substituted in Eq. (18), 
we obtain 

2TT2 oo {-y+ls2 

Ac(y) = —j:- T~~z~-' (20) 
f - i [ i + W : v ) 2 ] c + 1 

For finite y, these series are summable for c=0 and 
convergent for all other c. As indicated by the notation 
adopted at this point, A c depends only upon the variable 

y-
We have obtained an expression for Ac(y) assuming 

that Q and Qm are constant. If inelastic collisions occur, 
Eq. (20) is not valid for particles whose energy is 
changed enough so that Q or Qm is altered. We must also 
recall that the result applies to the collisions suffered 
before a particle reaches the surface r=R. In case the 
surface reflects some of the particles, the result we have 
obtained is valid only as the particles reach the surface 
for the first time. 

I t would be quite cumbersome to evaluate Ac 

considering the possibility of reflection at the surface 
r—R because the boundary condition given by Eq. 
(10b) would be replaced by the more complicated Eq. 
(4). However, we can obtain an approximation which 
takes into account reflection at the surface if we ignore 
the distribution of arrival times. When the complete 
Eq. (5) is used for F(r), the average number of collisions 

r 3T 8 / Q \1/2" 
F(r)dV = -\y+—( ) 

J 6L BW\3QJ . 

h= (v/I) / F(r)dV 

Uc(y) = 2j: 
( - ) s+l 

- i [ l + ( « r / y ) 2 ] c 
(21) 

Like the Ac's these series are summable for c=0 and 
convergent for other c's. The series U0(y) sums to 1. 
According to Whittaker and Watson,9 

cschy=l/y-2yyt (-)s+1/(y2+^2)-

From this result we see that Z7i = l—y cscrry. 
Consider the difference between successive Uc(y)'s. 

In the approximation that all particles reach the surface 
at t=h/v the Ac's are given by Ac=hc{\/c^ exp(—ft). 

Uc-Uc+1=2j: ( - ) H - I . (—L 
xii+isWyyy 

D+(«r, 

_W (ST/y) 

l-—) (22) 

= 2 £ ( - ) . 
~i \ [ 1 + ( W # 

y+i) 

= Ac(y). 

The rearrangement of the terms of the U series which 
is done in the first line of Eq. (22) is justified by the 
absolute convergence of the series except for c = 0 . 
From Eqs. (20) and (21) it can be shown directly that 
A0 sums to (UQ— UI). Using the particular values of Uo 
and Z7i given following Eq. (21), we see that the proba­
bility that a particle will reach the surface r=R 
without having a Q-type collision is A^—y cscfry. This 
result is to be compared with exp(—y2/6) obtained 
following Eq. (17) by extending the reasoning of Hertz 
to spherical geometry. For small y both exp(—y2/6) 
and Ao^l—y2/6. The difference between Ao and 
exp(—y2/6) is quite important for large y, however; for 
then Ao~ 2y exp(—y). This shows that the contri­
bution to A o of arrival times earlier than the average 
changes the exp(—y2/6) dependence into one which 
decreases less rapidly than exp(—y). 

Consider the derivative of Uc(y) 

dUc(y) oo (_ c ) (_)*+i (_2sV/ ;y 3 ) 

= 2 E 
dy *=i [l+C?7r/;v)2]c+1 

2c 
-Ac(y). (23) 

The series which result from the interchange of the 

9 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1952), 4th 
ed., p. 136. 
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order of differentiation and summation in Eq. (23) 
converge except for c = 0 so the resulting expression is 
valid except for c = 0 . From Eqs. (22) and (23) we 
obtain a recursion relationship between successive £7c's: 
Uc+i=Uc-(y/2c)(dUc/dy). With this result it is 
possible to obtain any Uc in terms of Z7i= 1—y csclry. 

Equation (22) enables us to express the probability 
that the number of collisions will be between a and £ 
inclusive as the difference between two U's: 

]T An=Ua-Uni. 
n=a 

The case a — 0, fi—c— 1 is particularly useful: 

E i 4 „ = l - t f f l . (24) 

When Eq. (24) is substituted into the expression for 
A c(y) obtained from Eq. (23) we find 

— y d o- l 

Ac(y)= [Ei,«] 
2c dy n=o 

Thus, we can obtain any Ac except AQ in terms of the 
A c's of smaller index. This is a practical way to obtain 
the first few A0's. For example 

4 i G 0 = - (y/2)dA0/dy= (y/2) cschy(y cotbry-1) 

and 

A2(y) = -(y/4:)d(Ao+A1)/dy 

= (y/S) csch;y[(;y2- l)+2y2 csch2y-y cotbry]. 

The result given by Eq. (24) also yields an interesting 
physical interpretation of Uc. The probability of some 
number (0,1,2,• ••) of collisions is unity. Thus, since 
the probability of c—\ or fewer collisions is (1— Uc), 
Uc is the probability of c or more collisions. 

VI. MEAN COLLISION NUMBERS AND rms 
DEVIATION FROM THE MEAN 

The mean number of collisions can be evaluated 
using Eqs. (21) and (22). 

oo 

c = £ nAn(y) 
n - 1 

= (Ui- t/2)+2(Z72- Us)+ • • • +n(Un- Un+i)+ • • • 

= £ ^»(y)-iimC»^iCy)] 
n = l w->oo 

. . ( - ) H - l 

= 252 2 • 
rv-i-i[l+(sir/y)2y 

The fourth line follows from the third because the limit 
term is zero for preassigned, finite y. Because each of the 
U series converges absolutely, the order of the sum­
mations may be interchanged. When this is done and 

we note that 

zci+w^)2]-^^/^)-2, 

we find that 
- ( - ) s + 1 

8 = 2 ( ? / * ) * £ 

= f/6, (25) 

in agreement with the result obtained in the discussion 
following Eq. (17). The rms deviation of the collision 
numbers from c may be evaluated by considerations 
similar to those preceding Eq. (25). The result turns 
out to be 

((c-c)2)av
1/2==Cc(l+2c/5)].1/2 

When the variation of the path length during diffusion 
is ignored the rms deviation from the mean is just 
(c)1'2. 

VII. SUMMARY 

We have shown that the relationship between the 
momentum transfer cross section Qm and the current 
collected by a suitable probe is given by Eq. (8). This 
result is the basis for a direct experiment to determine 
Qm. 

We have determined the probability that a particle 
will have any given number of collisions characterized 
by a cross section Q as it diffuses from the center to the 
surface of a sphere. In particular the probability that 
it will have no Q-type collisions is y csclvy, where y is 
defined by Eq. (17). This result differs considerably 
from that which would be obtained by applying the 
method of Hertz et al. in spherical geometry because we 
have considered the variation of the paths which 
particles take during diffusion. This consideration alters 
the interpretation of experiments to determine inelastic 
cross sections with diffusion techniques by virtue of 
introducing a different relationship between the cross 
sections and the measured probability of reaching a 
surface without having had a collision. 
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APPENDIX. ALTERNATIVE TREATMENT OF 
THE TRANSIENT PROBLEM 

In order to avoid the complications associated with 
the series on the right side of Eq. (12) it is helpful to 
substitute a well-behaved function for 8(r) in Eq. ( l ib ) . 
A derivation analogous to that contained in the text 
then proceeds straightforwardly. A single interchange 
of the order of a limiting process and a summation is 
required in the final step to evaluate the probabilities A c. 

Instead of the initial condition given by Eq. ( l ib ) 
of the text consider the following: 

G€(r,0) = 0 for r > e , 
= 3r/4:7rez for r< e, 

(Al) 

where e is any radius satisfying 0<e<R. Note that 
Ge(rfi) defined in this way is normalized so that 

R pR 

W(r,0)dV= (l/r)G.(r,0)dV=l. 
o Jo 

For small e, the initial density is concentrated near 
r=0. Each term of the expression 

G.(r,t) = -
3A as(e) 

2x2e8 .=1 s2 *© sin( — )exp(-sH/T) (A2) 

satisfies Eqs. (Ha) and (l ie) when s is an integer, 
A^R/w and T^A2/D. The coefficients as(e) can be 
chosen so that G€(r,0) satisfies Eq. (Al) : 

as{e) = -
2TTW| 

3A 

r rR 

/ G.ir, 0) sin(rs/A)di "I 
sin2 {rs/A)dr 

= sin(es/A)— (es/A) cos(es/A). 

The function Ge(rfi) satisfies the hypotheses of Fourier's 
theorem10 for any e>0 . This assures us that, since the 
coefficients as(e) have been determined by the pre-

10 Reference 9, p. 175. 

scribed method, the series on the right side of Eq. (A2) 
evaluated for t=0 converges to Ge(rfl) except for f=e . 
We substitute the expression given by Eq. (A2) into 
K(t,e) = -±irRD[dGt(r,t)/dr~]R. The result, 

* ( * , € ) = 
6RD oo (_)*+ias(e) 

• e x p ( - * y r ) , (A3) 
Tre0 «=i 

is valid whenever e and / are positive. When K(t,e) 
given by Eq. (A3) replaces K(t) in Eq. (16) we find an 
expression analogous to Eq. (18) which is well behaved 
for nonzero e: 

Ac(y,*> 
iry (~)'s 

( - ) ^ g . ( « ) 

sll+isx/y)^1' 
(A4) 

The physical situation with which we are concerned 
corresponds to the limit of small e. Equation (20) of the 
text follows from Eq. (A4) if we take this ]ime^oAc(y,e) 
by interchanging the order of differentiations with 
respect to e and summation of the series. 

If we define a function Uc(y,e) analogous to Uc(y) in 
Eq. (21) as follows: 

Ue(y,e> 

We find that 

<T)*S 
(-)> + 1a,(e) 

s*[l+(sTr/y¥y 
(A5) 

Ac(y,e)=Uc(y,t)-Uc+i(y,t). (A6) 

The series Uo(y,e) obtained by taking c=0 in Eq. (A5) 
converges to 1 for any e satisfying 0<e<R. As e 
approaches 0, Ui(y,e) approaches 

2/E(-)8 + 1 /[3'2+M2], 

which is a series representation of l—^csch^. These 
results together with Eq. (A6) yield the following result: 
lime->o Ac(y,e) — y cschj. The reasoning used here is 
easier to justify than the heuristic line followed in the 
text. 


