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A generalized self-consistent field (SCF) theory of many-particle systems is developed by modifying the 
usual functional relationship between energy and wave function. A parameter £, 0 < £ < 1, is thus introduced 
into the energy so that for £ = 0, the particles interact only with a self-consistent field, for £= 1 the particles 
interact dynamically among themselves with the correct field, and for intermediate values of £ both SCF and 
dynamical interactions occur. A systematic development of the theory is given for time-independent and 
time-dependent problems, for finite temperatures, and for both uniform and nonuniform systems. The deriva
tive with respect to £ of the total energy, or free energy, is expressed in terms of the dielectric function and an 
improved version of the dielectric formulation of the many-body problem thereby obtained. A brief discussion 
of the advantages of the method, possible applications, and further generalizations or extensions is included. 

I. INTRODUCTION 

TWO recent contributions to the literature on the 
many-body problem1,2 are noteworthy in that 

exact theorems are derived in an elementary way 
without recourse to perturbation theory. Nozieres and 
Pines1 prove that the total energy Eo(e2) of a gas of N 
electrons in volume 12 is given by 

d\ read\ 
EQ(e*) = Eo(0)- — 

Jo A 

rn r°° 1 Nv<r\ 
X L — / do)lm > ( L 1 ) 

where JEO(0) is the free-electron energy; e(</,co; X) is the 
dielectric function of the electron gas for wave number 
q, frequency a>, and value X of electron charge squared; 
and where vq is the Fourier transform of the interaction, 
4ire2/q2ti. The theorem holds for any velocity-independ
ent central interaction between the particles provided 
only that the Fourier transform exists (no hard core). 
Englert and Brout2 have generalized (1.1) to finite 
temperature: 

F(e2) = F(0) 
ld\ n r™ 

— E — / *o 
X * 27T, 

/ 1 \ 1 Nv<n 
X( ) l m - - , (1.2). 

\l-e-^lkTJ €(q,co;X,T) 2 J 

where F is now the free energy, and the dielectric 
function e depends on temperature. The only assump
tion implicit in the derivation of (1.1) is that the formal 
derivative of E0(\), 

dEo(\) ( 1 \ 
— = ( * o ( X ) , i E ' ^ o ( X ) ) , (1.3) 

d\ \ i.i Tij J 
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1 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958). 
2 F. Englert and R. Brout, Phys. Rev. 120, 1085 (1960). 

is integrable, and similarly for (1.2). In (1.3), Ŝ o(X) is 
the ground state for charge squared equal to X. Once 
this restriction is made, (1.1) or (1.2) is a direct 
consequence of a quite general fluctuation-dissipation 
theorem. On the surface, at least, assuming integrability 
appears less restrictive than requiring the existence of 
one form or another of perturbation theory. 

Equations (1.1) and (1.2) furnish a rapid means of 
approximate calculation of the energy once an approx
imate dependence of the dielectric constant on charge is 
established. However, despite the appearance in the 
integral over X of small values of X, the charge squared 
can never be treated as small, and it is necessary to go 
to infinite order of perturbation theory to obtain the 
lowest satisfactory approximation to the dielectric 
function.1 But then all distinction from perturbation 
theory is lost, and the analysis has no advantage over 
the beautiful work of Hubbard,3"5 who established an 
equation equivalent to (1.1) by perturbation theory3 

before Nozieres and Pines, obtained explicit results for 
the energy of an electron gas,4 and treated electrons in a 
crystal as well.5 An approximation to the dielectric 
function can be obtained simply from an analysis of the 
equations of motion of the creation and destruction 
operators6,7 or, more simply still, from self-consistent-
field (SCF) theory.8-9 Further, Hubbard5 has found it 
convenient, if not essential, to start his perturbation 
analysis of the crystal from the Hartree problem. We, 
therefore, propose to derive exact formulas equivalent 
to (1.1) and (1.2) and holding for nonuniform systems as 
well by starting out from a SCF approximation rather 
than the free-particle problem. 

3 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957). 
4 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958). 
5 J. Hubbard, Proc. Roy. Soc. (London) A244, 199 (1958). 

This is only a formal solution of the problem. The possibility of 
basing an actual calculation on it is remote if lattice effects in the 
dielectric function are to be included. This was not done in 
references 22 and 23. 

6 R. Brout, Phys. Rev. 108, 515 (1957). 
7 H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961). 
8 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 28, 8 (1954). 
9 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). 
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The essential point of the Nozieres-Pines theory1 is 
that a simple expression is found for dEQ(k)/d\ which is 
then integrated from X=0, i.e., the free-electron case, 
to \=e2, i.e., the actual problem. The resulting expres
sion (1.1) thus depends on this particular starting point 
and the path of integration chosen. One might also 
parametrize the energy by means of some parameter £ 
different from e2 in such a way that for £ = 0 the param
etrized energy reduces to that of an approximate 
problem nearer to the actual problem than the free-
electron case and for £ = 1 becomes the actual energy. 
Constructing an expression for dE0/d£ and then 
integrating would mean calculating a smaller correction 
by a more rapidly converging process. As already 
mentioned, the starting point we choose is a SCF 
approximation; the formal problem we solve in this 
paper is how to construct in a systematic way an 
approximate theory which passes continuously over to 
the exact theory as a parameter £ varies from 0 to 1. 
This parameter £ can then be used as an ordering 
parameter alternative to rSy the radius of a sphere 
containing one electron, usually employed.10 

Accordingly, in Sec. I I we introduce a generalized 
SCF formalism in its simplest guise, that for the ground 
state of a uniform system of fermions, and derive a 
formula alternative to (1.1). In Sec. I l l , we derive the 
corresponding formula for the ground-state energy of a 
collection of atoms with fixed nuclei; however, a more 
complex analysis of the dielectric function is required. 
In Sec. IV, the SCF formalism is generalized to temper
ature-dependent problems, and we derive formulas 
alternative to (1.2) or its generalizations. A general 
discussion of possible applications is given in Sec. V. 

The detailed study of SCF theory carried out here 
for the first time is of considerable interest in its own 
right, as are the exact formulas derived for the ground-
state energy or the free energy. These same techniques 
can, for example, be applied to superconductors or to 
Bose fluids, after the Bogoliubov transformation11 has 
been made, in order to construct a theory valid in a 
wider domain. I t is even possible to allow for a hard-core 
interaction systematically, provided the excluded 
volume is small. However, these possibilities do not 
give rise to the primary motivation of the present work, 
which is to provide the basis for an approximate theory 
of real metals valid to reasonable accuracy at normal 
metallic densities. I t is with this in mind that the paper 
should be read. 

II. UNIFORM FERMION SYSTEM; 
GROUND STATE 

We consider a system of N identical fermions within a 
volume 12 interacting via pairwise central interactions 

10 K. A. Brueckner and M. Gell-Mann, Phys. Rev. 106, 364 
(1957). 

11 S. T. Beliaev, in The Many Body Problem, edited by C. De Witt 
and P. Nozieres (John Wiley & Sons, Inc., New York, 1959), 
p. 433. 

v (fij) = Vij. The Hamiltonian for the system is 

p.2 

5 C = E — + * E ' * * ( H i ) 

Following Bohm and Pines,12 we may simplify the 
writing of 3C by setting 

*>(r) = E V i q "> H = - \ dhv(x)e-^'T, (11.2) 
* 12 J 

P q ^ Z e~iq -r'" —> X; ajak+q 
?' k 

in second quantization, (II.3) 

K^Zpi2/2m. (II.4) 
i 

3C then becomes 

3 C = # + i Z q ^q{pqp_q-iV}. (II.5) 

The ground-state energy E 0 is the expectation of (II.5) 
with the ground-state wave function, 10) 

E o = < 0 | i r | 0 ) + | E q M ( 0 | p q P - q | 0 > - i V } , (II.6) 

<0|0>=1. (II.7) 

EQ is, of course, a minimum with respect to variation 
of |0>, 

S£o=0, 6<0|0) = 0, (IL8) 

or, equivalently, 10) satisfies the Schrodinger equation 

5C|0) = £ 0 | 0 ) (II.9) 

with E0 the lowest eigenvalue. If vq has a strength X 
(e2 for Coulomb interactions), it follows from the 
stationarity of EQ, Eq. (II.8), that 

dE0(\) 1 1 

— — = " £ M(o|pqp-q|o)-.v}. (iLio) 
d\ A 2 * 

This equation may be regarded as the starting point of 
the Nozieres-Pines formulation. 

II. 1 Generalized SCF Theory of the 
Ground State 

The integration of (11.10) over X carries one from the 
free-particle problem (X=0) to the actual problem. 
The free-particle problem is not usually a good starting, 
nor is the convergence rapid along this path or integra
tion. The familiar Hartree approximation suggests 
itself as, in general, a better starting approximation for 
the energy with possibly more rapid convergence along 
the path of integration. The way the Hartree approxi
mation is usually derived is to replace the exact wave 
function in the variational principle (II.6)-(II.8) by a 
product of one-particle wave functions. Such an 

12 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
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unsymmetric form for the wave function can never be 
reached continuously from the actual problem by 
variation of a parameter; moreover, the resulting 
equations for the one-electron functions are not 
Hermitian. I t is necessary to modify the usual Hartree 
theory somewhat before it can serve our purposes. In 
particular, instead of restricting the form of the wave 
function and leaving the functional relation between 
wave function and energy unchanged, we modify the 
functional relation between energy and wave function 
by the factorization9 

(01 p4p_q 1 0 ) - . <01 Pq 10)<01 p_q 10), 

and leave the wave function unrestricted. To distinguish 
the resulting theory from the usual Hartree or the 
Hartree-Fock theory, we call it simply the SCF theory.9 

We thus replace the form (II.6) by 

E o = ( 0 | ^ | 0 ) + i E q . q ( 0 | P q | 0 ) < 0 | p _ q | 0 ) . (11.11) 

Applying the variational principle (II.8) yields the SCF 
equation 

(K+Vsio))\0)=SQ\0)1 (11.12) 
where 

^ ( 0 ) = E q < 0 | p q | 0 ) P _ q (11.13) 

is the total self-consistent potential. Equation (11.12) 
is separable into a set of Hermitian single-particle 
equations, even though |0) remains a determinant of 
the single-particle wave functions satisfying these 
equations. They differ from the Hartree equations in 
that the potential is the same in each and contains the 
interaction of a one-particle state with itself. Con
sequently, one would expect the SCF theory to provide 
a good starting approximation only for extended 
systems. The sum of the one-particle eigenvalues gives 
So, and the total energy is 

£o=So-£EWo|Pq|o><o|pL_q|o> 
= So-i<0|yfl<°>|0>. (11.14) 

Because of the translational invariance of the system, 
(0|pq |0) vanishes unless q = 0 , but that is a simplifica
tion we need not make at this stage. 

I t should be emphasized that despite the occurrence 
of a determinantal wave function, there is no exchange 
in the SCF theory. This is an advantage in many 
problems, e.g., the electron gas, in which exchange and 
correlation must be introduced on the same footing.13 

Suppose now that we consider a somewhat more 
general functional relation between the energy and the 
wave function than (11.11) as the starting point of a 
generalized SCF theory, that obtained by multiplying 
(11.11) with l - £ and (II.6) with £, where 0 ^ £ ^ 1 : 

— <0€|pq|0€><0€|p_q|0€>—i>T>. (11.15) 
13 J. Bardeen, Phys. Rev. 50, 1098 (1936); E. Wigner, Trans. 

Faraday Soc. 34, 678 (1938). 

Thus Eo(0) is the SCF energy and EQ(1) the exact 
ground-state energy. Further, wherever £ is introduced 
in this paper, the formalism reduces to the conventional 
one for £ = 1 . If we impose the variational principle 
(II.8) on our ^-dependent function |0£), we get a 
generalized SCF equation 

Ws0\0£)={K+(l-$Vs(0)(l;) 

+- £ vq(p^q-N)}10*>= So(*)10£>, (11.16) 
2 « 

where 
^ ( 0 ) ( Q = Z W O £ | p q | 0 £ ) p _ q , (11.17) 

and 
£ o ( 0 = S o ( 0 - i ( l - 0 < 0 € | F f l W ( Q | 0 £ > . (11.18) 

If |0£) satisfies (11.16), then Eo(£) is stationary, and 

dEo(t) 
=il>q{<0£|p q p- q ]0£> 

d£ « 
— <0f I pq i Of ><0f j p_q 10f>—iV>. (11.19) 

Equation (11.19) may be taken as the starting point 
of an analysis similar to that of Nozieres and Pines.1 I t 
differs from the Nozieres-Pines expression (11.10) only 
through the presence of <0£ | pq 10£><0£ | p_q 10£> in (11.19). 
Since, however, these vanish for uniform systems apart 
from q = 0 , the advantage of introducting the general
ized SCF theory is not yet apparent and will not 
become so until we express (11.19) in terms of the 
dielectric constant. To do that we must first develop a 
time-dependent SCF formalism. The explicit depend
ence of the SCF (1-£)VS

(0) in the Hamiltonian (11.16) 
on £ provides a considerable advantage over the fixed 
SCF usually introduced.5 

II.2 Time-Dependent SCF Theory 

In ordinary quantum mechanics one treats time-
dependent problems essentially by starting out from 
the Schrodinger equation 

imt/dt=W&, (11.20) 

which reduces to (II.9) for the time-independent 
problem. However, in the problems involving a self-
consistent field, we have no energy operator to insert 
into (11.20), only an expression such as (11.15) for the 
energy itself. In the time-independent problem just 
discussed, that energy expression was used to derive a 
wave equation by insertion into the variational principle 
of ordinary quantum mechanics. For time-dependent 
problems, one can do the same. 

The variational principle of which (11.20) is the 
Euler equation is 

/

oo 

dt [(*,3Q&)--ifi(%d*/dt)l = 0. (11.21) 
-00 

To obtain the time-dependent SCF equation, we 
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substitute for (^ ,X^) in (11.21) the SCF energy 

-(*,P(p)(*,p^)-N} (11.22) 

and carry out the variation. We get, as might be 
expected, 

ihdV/dt=W8% (11.23) 
where 

X s = # + ( l - ^ ( * m ? E q M P q P - q - ^ (H.24) 

^ W = Zq^q(^Pq^)P-q. (H.25) 

Although (0£|pq |0£) must vanish, ($r,ptfir) need not. 
The advantage for uniform systems of the SCF pro
cedure over the procedure of Nozieres and Pines, in 
fact, resides in this difference between time-dependent 
problems, e.g., in which ^ is a mixed state or an exter
nal perturbation acts. 

We now define the density matrix P (read "capital 
rho") as the direct product of ^ with ^ * as usual; its 
equation of motion is, from (11.23), 

equation of motion (11.28), we get 

iftd?/dtV = [S,-p<ui+ ( l - Q [ A ^ , P 0 ] + [ X i , P 0 ] . (H.32) 

Putting (11.32) into component form and integrating, 
we obtain for the nonvanishing elements 

Po*(1) = 

where 

L(l-0{0^AVs\n0+(0^M)2 

^[[(C0 — O)no)— ioi] 

ftC0nQ = 0 n 0Q. 

n?*0, (11.33) 

(11.34) 

i*dP/d*=[3Cs,P]. (11.26) 

For its representation we need a complete set of 
functions. The eigenfunctions \m%) of 3Cs° are most 
convenient, 

JKtf|m£>=Sm|f»£>. (11.27) 

To emphasize the diagonal character of 5Cs° in this 
representation, we write for it 8, a diagonal matrix the 
elements of which are the Sm. Thus (11.26) becomes 

The change produced in the expectation value of 
pq ' by 5Ci is 

A(Pq') = E . , P0 . ( 1 ) ( ^ |Pq ' | 0g ) 
+ En/P„0(1)<()£|pq'k£>. (H.35) 

Substituting (11.28), (11.250, and (11.30) into (11.35), 
we obtain for A(pq') 

AW>-EC$(a^'0(i-*)vOAW'> 
q" 

=£>(q',qMq, (H.36) 
where 

fi n I — (co+w„o)+*a 

,(Of|pL. t"|»fX»f|p,'10f) 

(o>—wno) — ia 
, (H.37) 

ihd?/dt= [<S,P]+ ( 1 - t)LAVs,n (IL28) 
where 

AVs=V8(?)-VtP. (11.29) 

Equation (11.28) must be solved self-consistently with 

^ W = Lq^q(TrPpq)p_q. (11.250 

II.3 The Dielectric Function 

We now suppose that an external potential acts on 
the system, adding to the Hamiltonian a term 3Ci 
which is a sum of one electron operators depending on 
position as e~iq'r and not on momentum,14 and depend
ing on time as exp[(iw+a)f], OL —» 0+ , 

Xi=-4qp_q , Aqccei("teat, a - ^ 0 + (11.30) 

Initially, at / = —• <x>, the system is in the ground state 
with 

and the primed sum means exclusion of the n=0 term. 
Up to this point we have not made explicit use of the 

translation invariance of the system, in order to lay 
the ground work for a later treatment of nonuniform 
systems. Restricting ourselves to the uniform case, 
translation invariance arguments applied to the matrix 
elements in (11.37) quickly show us that 5D(q',q'0 
vanishes unless q ' = q " . Thus Apq> vanishes unless 
q = q', and 

3>q(«) 
A(pq) = A q, (11.38) 

1 - ( 1 - 0 , ^ ( 0 , ) 

where S)(q,q) has been abbreviated to £)q and the 
frequency dependence made explicit. 

Consider now a test particle at r0 which interacts 
both with all the particles in the system and the 
external potential as well. The total potential acting 
on the test particle is thus 

±nm—Anm —OwOOnO. (11.31) •U = E< vdto-riD+A^-'o. (11.39) 

As the system evolves, a term of order 3Ci appears in 
P, P (1), so that AVs is also of order 3Ci. Linearizing the 

14 I t is a simple matter to generalize this to momentum-depend
ent potentials; vid. the following note: P. Pascual and L. M. 
Falicov, Phys. Rev. 129, 1310 (1963). 

The change in the average *U induced by the external 
potential is, recalling (II.2) and (II.3), 

A(V)= [V^Pq) + ^q> ' q - r ° . (H.40) 

But this, according to (11.38), is proportional to Aq 
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itself, 

where 

A(V) = 

e(q,co;£) = l-

Atf* 
result into (11.46), we obtain 

<£)q(co) 

(11.41) 

(11.42) 

We now appeal to analogy with the longitudinal 
electromagnetic case. There the interaction is the 
Coulomb interaction, and the total Coulomb acting 
on a test charge equals that from the external charge 
distribution divided by the dielectric constant, or 
preferably dielectric function, considering the frequency 
and wave number dependence. Thus e(q,o>;£) is a 
kind of frequency and wave number dependent dielec
tric function. We note that for £ = 1 , i.e., the actual 
problem, Eq. (11.42) reduces to the result of Nozieres 
and Pines1 

e(q ,a>; lH- — — . (11.43) 
l+»q3)q(«) 

However, for £=0 , the dielectric function does not 
reduce to one as it would in the Nozieres-Pines theory 
for \ = 0 , but instead to the Hartree dielectric function 
first given by Lindhard8 '9 

/k—' /k+q 
e(q,a>; 0) = l+t>, E — — — — . (IL44) 

k ( E k + q - £ k ) - W W - W Q ! 

We get a nontrivial dielectric constant even for £ = 0 
because we have never assumed the electric charge, or 
its equivalent, to vanish. 

II .4 The Ground-Sta te Energy 

From the definition (II. 37) of £)(q' ,q"), it follows 
that15 

T Jo 
ImSDq(co)dco 

= £ '<0f lP^q l^X^ |Pq |0€> 

= [<0£|PqP-q|0?)-<0£|pq |0f)(0?|p_q |0£)] 

==<0£iPqP-q|0£)(l~$q,o), (H.45) 

where the last line holds only in the uniform case. 
Comparing (11.45) with (11.19), we see that 

= — E / »qImS)4(co)Atf-— 2 > q . (11.46) 
d% 2w q Jo 

N 

2 q 

Inverting (11.42) to get flq©q(co) and inserting the 

is Provided S„> 8o, which is true for uniform systems from 
(11.18). For nonuniform systems, a deeper discussion is required 
and is given in Sec. III . 

Eo(l) = £o(0)-
2TT Jo q Jo 

do) 

X l m 
f € ( q , « ; f ) - l 

l l + € W q , c o ; { ) - l ] 

Nvq 

i 2 
(11.47) 

for the ground-state energy. The q = 0 term absent in 
the last line of (11.45) is either already included in the 
Hartree energy E0(0) or cancelled altogether, as for an 
electron gas. 

There are significant differences between (11.47) and 
(1.1). The parameter £ enters explicitly into (11.47) in 
such a way that it is possible to use e(q,co;0) as a 
^-independent approximation to the dielectric constant 
and get a meaningful result. Writing 

gives 

Im-

e(q,co;0) = 1 + ^ + ^ 2 

€ - 1 2 

! + £ ( € - ! ) ( l + £ 4 ) 2 + ( £ 4 ) 2 

(11.48) 

(11.49) 

Supposing that 2 and A are independent of £ gives 

2 

/ . 

€ ~ 1 
d£ Im = 

o l + « € - l ) 

:tan~ 
1+A 

(11.50) 

Inserting (11.50) into (11.47) after interchanging the 
integration on £ with those on q and o) gives Hubbard's 
first result4 when the £ = 0 limit, i.e., the Hartree 
approximation, is taken for e. This result was established 
by Hubbard by use of perturbation theory and could 
be recaptured by Nozieres and Pines from Eq. (1.1) 
only after an equivalent perturbation analysis of e. 
In contrast, the result follows trivially out of the 
present theory. 

Hubbard4 has pushed beyond Eq. (11.50) by a rough 
evaluation of higher diagrams in the perturbation 
theory, and Suhl and Werthamer7 have also by an 
equation of motion analysis. In both treatments there 
is no self-evident convergence parameter other than rs, 
which is a doubtful one. Questions of convergence and 
criteria for the selection of terms are difficult; indeed 
there are objections to Hubbard's results.16 In the 
present theory, £ itself is a natural convergence param
eter. Preliminary investigations show that a modifica
tion of the Martin-Schwinger theory17 based on the 
present formalism appears to be a promising way to get 
at the higher order £ dependence of e. 

The conditions for the existence of the integral over 
£ in (11.49) are of great interest, but unfortunately we 
have no idea what they are. One cannot investigate the 
existence of the integral by interchanging the £ integra-

16 The higher approximation to the dielectric function given by 
Hubbard in reference 4 is unsatisfactory. See L. M. Falicov and 
V. Heine, Advan. Phys. 10, 57 (1961). 

17 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
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tion with the q and co integrations as has been done. 
Whatever the domain of validity of (11.49), it is 
probably larger than that of (1.1). However, the low-
density electron gas probably cannot be described with 
the present theory without elimination from the 
beginning of the interaction of each electron with its 
own average charge distribution present in the SCF 
theory. This consideration suggests that although 
iteration by use of £ may give more rapid convergence 
than expansion in rs, the densities at which both break 
down are comparable. 

One can, with reason, object to the introduction of 
(11.47) as an essentially new result on the following 
grounds. For the uniform case Vs° vanishes so that 
5Cs° is the same as the actual X but for a reduction of 
the strength of the interaction by the factor £. Thus, the 
integrand in (11.47) must be the same function of £ as the 
integrand in (1.1) is of X, and (11.47) can indeed be 
derived from (1.1) by reordering the perturbation 
expression for©q(co) (obtained without self-consistent 
field) in terms of its "proper parts."18 However, such a 
derivation is to some tastes more cumbersome than the 
present one, makes use of perturbation theory, provides 
no natural expansion parameter, gives no physical 
interpretation of the proper part of ®q(co) as a SCF 
dielectric function, and provides no particular basis for 
going on to nonuniform systems. 

III. NONUNIFORM SYSTEMS: THE MANY-ELECTRON 
GROUND STATE ENERGY 

The particular nonuniform system we consider here 
as a specific example is that of a collection of N electrons 
(index i, j) and nuclei (index a, b and charges Z0, 
^2aZa=N) fixed in as yet unspecified positions. The 
general kind of theory developed here is of interest 
also in connection with finite nuclei, atoms, or molecules, 
but a variety of special problems encountered there 
make it unprofitable to make the discussion general 
enough for both types of systems. The many-electron 
Hamiltonian is 

iY 1 
3e=E—+-L' -i 2m 2 a ri-

Zae
2 1 ZaZhe

2 

Rii 2 ab Rab 

-. (III.1) 

By defining 
S q S - E . Z a * - * - 8 - (HI.2) 

and recalling from Eqs. (II.2) and (II.3) that v(r) — e2/r 
so that vq=4:ire2/q2&, (III . l) may be written 

3 e = ^ + i E q ^ q { ( p , + Sq)(P-q+S-q) 

-N-ZaZa2}, (III.3) 

where K, pq, and £2 have their previous meanings 
[Eqs. (II.3) and (II.4)]. The ground state |01> has 

the energy -Eo(l) 

JEo(i)=<oi[ac[oi)=<oi|Js:|oi) 
+ * Z q M P I PqP-q | 0l) + 5q(0l | P_q | 01) 
+ ( 0 1 | P q | 0 1 ) 5 _ q + ^ _ q - i Y - i : o Z o

2 } . (III.4) 

Variation of (III.4) with respect to [ 01) of course 
produces the Schrodinger equation, but we go on instead 
to a generalized SCF theory like that of Sec. I I . 

The SCF approximation to (III.4) is 

Eo(0) = ( 0 0 | i T | 0 0 ) + | E q M ( ( 0 0 | p q | 0 0 ) + 5 q ) 
X « 0 0 l p _ q l 0 0 ) + 5 _ q ) - Z a Z a

2 } . (III.5) 

The linear combination (1 — £ ) J E 0 ( 0 ) + £ E O ( 1 ) produces, 
as before, the generalized SCF expression for the energy 

^ 0 « ) = <0£|2S:|0e> + iEq«q{«0£|Pq|0{> + 5q) 

X(<0£|p_q|0£> + S - q ) - E « £ q 2 } 
+ i£l>q{<0£|PqP-q|0£) 

- (0£ |Pq |0£X0£ |p -q |0£ ) -^} . (III.6) 

Varying (III.6) leads to 

3e5°|0£>=So(*)|0& (III.7) 

Ks°=K+Vs°+U E q vq{PqP-q-N}, (III.8) 

VS°= E q *q{ (1 - *)<0* I Pq I 0£) + Sq}p_q, (III.9) 

£o({)=5o(0 + iEq{"(l-«XOS|pq|O{> 
x(og|p_q|0£)+sqs_q--E*z<?}, (iii.io) 

d£ 
E»q«0{|PqP-q|0f> 

—<0€|pq|0€X0€|A_q|0£>—i^}. ( i n . i i ) 

Note that dE0(£)/d% is formally the same as for the 
uniform case. 

For an arbitrary, time-dependent wave function ^f, 
the energy E($r) to be inserted into the variational 
principle (11.21) is obtained from (III.6) by substituting 
^ for 10£). There results 

iftd*/dt=Ws% (111.12) 

3Cs=^s°+AVs(^)J (IIL13) 

AVs&)= ( l " © E q V^Pq>P-q, (HI.14) 

A(pq)= (^ ,p q^)-(0g |p q i0^) . (111.15) 

Comparison of Eqs. (III.12)-(III.15) with Eqs. 
(II.23)-(II.25) shows that the development of Sec. 
(II.2) from Eq. (11.26) on and the development of 
Sec. (II.3) up through Eqs. (11.36) and (11.37) for 
A(pq) can be carried over unchanged. 

The theory of the dielectric constant, however, is 
substantially different in the nonuniform case.19-21 

Although Eq. (11.39) still furnishes the starting point, 

18 We are indebted to Dr. F. Englert for discussion of this point. 

19 D. S. Falk, Phys. Rev. 118, 105 (1960). 
20 S. L. Adler, Phys. Rev. 126, 413 (1962). 
21 N. Wiser, Phys. Rev. 129, 62 (1963). 

in.ii
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Eq. (11.40) must be generalized to 

A<V>=Z»'[vA<P,<>+4q8M.>**' •'». (111.16) 

The proportionality of A(pq<) to A, permits us to rewrite 
(III. 16) as 

ACo)=L e-l(q',q;^; £)A^'-*\ (iii.n) 
q' 

where e_1(q',q) is an element of the inverse dielectric 
function, now in the form of a matrix. Solving Eq. 
(11.36) formally for A(pq>) and inserting into (III. 16), 
we obtain 

e-K^q;"; f)=V*+£ vqmq,q,®(q",q), (in.is) 
q" 

®nr%q,, = 8w- ( l - * ) S ) ( q ' , q " K » . (HI.19) 

We need flq$(q,q). I t is easiest to solve (111.18) and 
(III . 19) for this quantity symbolically, defining t~l 

as the matrix with elements e~1(q/,q), v as the matrix 
with elements flq5qq', etc. The result is 

i ; - ^ = - ( £ - I ) - C I + ^ ( e - I ) ] - 1 . (111.20) 

Proceeding as in Eqs. (11.45)-(11.47), we obtain 

E 0 ( l ) = £o(0)-
2TT Jo q Jo 

doo Im{(e—I) 

• [ I + t f e - I ^ K q - E — (HI.21) 
* 2 

for the ground-state energy of the system of electrons 
and nuclei under consideration. The only difference in 
form between (111.21) and (11.47) is the appearance of 
e as a matrix in the former and e as a number in the 
latter. The formula (111.21) should be compared with 
the corresponding formula developed by Hubbard 
from perturbation theory.5 

In the derivation of (111.21), the tacit assumption 
was made that the wave function 10£) corresponding to 
the minimum possible value of £(£) , EQ(Q, is also the 
ground state of the Hamiltonian Xs0, i.e., that £o(£) in 
(III.7) is the lowest eigenvalue of 3Cs0. The integration 
over frequency in (111.21) would otherwise extend over 
negative frequencies. Further, if <§o(£) were not the 
lowest eigenvalue of 3Cs°, the statistical mechanics of 
the next section would not give the state of lowest 
total energy, |0£), as the only occupied state at zero 
temperature. Thus, it is essential for the success of the 
present theories that 8Q(£) be the lowest eigenvalue of 

To explore this question we first define the total 
energy associated with an arbitrary wave function ^ , 
EQr), by substituting ^ for |0£) in (III.6). Similarly 
we define 

I t is easy to prove that 

E(*)-Eo=8$f)-8o 

1- f nvq\(%p^)-mpqm\2 
2 * 

by use of (III. 10). Suppose now that <§0 is the lowest 
eigenvalue of 3Cs° and that z>q is repulsive. I t imme
diately follows that E(^)>Eo from the above equation. 
Since ^ is arbitrary, it follows in turn that EQ is the 
lowest possible value of the energy. We have thus 
proved that the self-consistent solution of (III.7), 
10£), which is the ground state of its own self-consistent 
Hamiltonian 5C^°, gives the minimum total energy for 
repulsive interactions. For attractive interactions, no 
such general proof appears possible, and an internally 
consistent generalized SCF theory may exist only 
conditionally. We do not intend to search for the 
required conditions on the attractive potential, as we 
are concerned primarily with applications to the electron 
theory of metals where the interactions are repulsive. 
We may speculate, however, that the potential must be 
such as not to admit either collective or few-particle 
bound states. Inasmuch as the uniform system with 
attractive interactions may show instability against 
collective or few-particle bound states, the reservations 
concerning the present theory expressed here for 
nonuniform systems probably should be extended also 
to uniform systems. The local increases, however, in 
particle density occurring in nonuniform systems can 
be expected to enhance such tendencies toward 
instability. 

For a crystal, where the nuclei are periodically 
arranged, translation symmetry forces all matrix 
elements qq' of J) or e to vanish unless q ' = q + K , 
where K is 2ir times a reciprocal lattice vector. Equation 
(111.20) simplifies to 

*«S>(q,q) = - E [ e ( q , q + K ) - 5 K ) 0 ] ^ + e ( „ (111.22) 

(^-1)K+,,, = ^to+?Ce(K+q,q)-5Kio], (111.23) 

and Eq. (11.21) simplifies correspondingly. A simple 
approximation to (111.21) can be developed by using the 
£ = 0 approximation and neglecting all terms with 
KF^O in (III.22). In this way one gets an expression 
identical to (11.47), with c(q,q) from (111.22) and 
(111.23) replacing e(q) from (11.42). For small q, this is 
tantamount to neglecting local-field corrections to the 
dielectric constant19; for large q the simple concept of 
a local field loses its meaning. A still simpler approxima
tion, of course, is to use the free-electron dielectric 
constant in (111.21); this has been shown to be reason
ably accurate for atoms with small cores.22 Thus Eq. 
(III.21) or Hubbard's theory5 can be made to provide 
the basis for accurate band-structure calculations in 

22 M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961). 
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crystals containing small cores, as Phillips and Klein-
man have shown in detail for silicon.23'24 In principle, 
all the elements necessary for the band structure 
calculations were already provided by Hubbard23,24; 
the present work, however, provides a much simpler 
basis for carrying them out. 

IV. STATISTICAL MECHANICS 

We wish to derive an expression for the free energy of 
a uniform system analogous to Eq. (1.2). To do this it 
is necessary to generalize our SCF methods to finite 
temperature. We do so by replacing the expression 
(11.15) for the ground-state energy by 

U=Tr¥0K+± E q ^q[TrP0pq][trPop_q] 

+ i£EqM[t rP 0 PqP_q] 
- [trP0pq][trPop_q]-7V} (IV.l) 

for the average total energy in thermal equilibrium U, 
where P0 is now the density matrix for thermal equili
brium. We define the free energy to be 

F= U+kT[trV0 InPo]. (IV.2) 

We now apply the variation principle 

5F=0, (IV.3) 

S t rP 0 =0, P 0 t=P 0 (IV.4) 

to (IV.l) and (IV.2), and obtain for P0 

Po=exp[(^-3Cs°) /&r] , (IV.5) 
where 

Ws0=K+(l-£Vs0JhUi: vq{pqP-q-N}, (IV.6) 

Fs°=L^[ t rPoPq]p - e , (IV.7) 

subject to 

t=F-
1-S 

• E ^[trPop<z][trP0p_ J . 
Q 

(IV.8) 

To obtain a convenient representation for P0, we 
diagonalize 3Cs°: 

Ws°\ni)= Sm\m). (IV.9) 

The eigenfunction \m) and eigenvalues Sm of 3Cs° are 
now, in principle, temperature dependent because of the 
presence of Vs° in 3Cs°. In this representation, we have 

(Po)mn=exp[(^— &m)/kT~]§mn^pn$mn. (IV.10) 

Equations (IV.9) and (IV. 10) form 
self-consistent determination of P0. 
can be approximately determined 
parameters in (IV.l). 

We retain in the present theory 
interpretation of the density matrix, 
the probability of the system being 
More explicitly, we imagine that we 
an ensemble of systems, each with a 
the time development of which is 

the basis of the 
Alternatively, P0 

by variation of 

the probabilistic 
so that (P0) mm is 
in the state m. 
are dealing with 

wave function •#", 
governed by the 

Hamiltonian 3C,s°. The density matrix must be the 
ensemble average of the direct product of ^r and ^*. 
Expanding ^ in the | w), 

we have 
^ = E m # m | w ) , 

V± oJmtt== \#m#n. /av > 

( i v . i i ) 

(IV.12) 

where ( )av° means averaging over an equilibrium 
ensemble. For the nonequilibrium, time-dependent 
ensemble, the density matrix P is still the ensemble 
average of the direct product of ^ with ^*, but the 
time evolution of ^ is governed by 3Cs obtained by 
substituting P for P0 in (IV.6) and (IV.7), 

ifid^/dt=W,s^. (IV. 13) 

Thus, the probabilistic interpretation of P leads directly 
to 

ihd?/dt=[3CSjP'] (IV. 14) 

for the equation of motion of P.25 

From this point on, because in Eq. (IV. 14) we 
have recaptured Eq. (11.26), the development closely 
parallels that of Sec. I I . Here A(pq>) is defined as 

A W > = T r [ ( P - P o W ] (IV.15) 

and still is given by Eq. (11.36), but with 3) (#,#") 
now defined as 

1 [(m\pq,\n)(n\p-.Q'f\m) 

S(q',q")=-EM'' 
(m\p^q''\n)(n\pq'\rn) 

(IV. 16) 

Invoking now, for the first time, the translation 
invariance of the system, SXq^q") vanishes unless 
q /==q", so we set ®(q,q)=©q(co). Further, it may be 
shown by simple manipulation2 that 

Im©g(co) = [ l - e - ^ r ] - E pfnZ'(tn\p-q\n) 
•fa m n 

X(n\pq\m)d(a>nm-a>). (IV.17) 

From (IV.17) it follows that 

ft r« 
^ [ l - e - ^ ^ I m S V c o ) 

23 J. C. Phillips, Phys. Rev. 123, 420 (1961). 
24 J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962). 

= Tr(Pop^p-g) — E Pm(m\pq\m){m|p_g|m) 

- T r P 0 p 3 p - f f ( l - ^ ) 0 ) . (IV.18) 

For a uniform system (m\pq\m) vanishes except for 
q = 0 . Further, because of the stationarity of F with 
respect to Po, 

dF/dt=i E q ^q{Tr(P0pqp_q)- (TrP0pq)(TrPop_q)-iV} 

= £ E q * q { T r ( P 0 p q p _ q ) ( l - M - i V } . (IV.19) 
25 The above theory can be readily generalized to hold for open 

systems. P then has the grand canonical form, and 3C#—fxN 
everywhere replaces 3C# in the formalism, where n is the chemical 
potential. 
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Comparing (IV. 18) with (IV. 19) and noting that the 
relation between 2Dq(co) and the dielectric constant is 
unchanged by the introduction of a finite temperature, 
we obtain the SCF analog of Eq. (1.2) 

F(1) = F(0)-
2TT ]>?[/ dec • 

1 

X l m 
•1 

! + * ( € - ! ) ]-
-toa/kT 

NvQ 

E —:- (iv.20) 
« 2 

Again, the advantages of this formula over that of 
Englert and Brout, Eq. (1.2), are a more rapid con
vergence of the integral over £ than of the integral 
over X and a wider regime of existence of the integral. 
For £=0 , the dielectric constant is given by Eq. (11.44) 
where the /*. are now the temperature-dependent 
Fermi factors.12 I t would provide an approximation to 
(IV.20) equivalent to (11.50). 

We now turn to the generalization to finite tempera
ture of Eq. (111.21) for nonuniform systems. The 
development of the statistical mechanics proceeds as 
in the earlier part of this section, that development 
being sufficiently general. Further, the relationship 
between flq3Xq,q), as defined in (IV. 16), and the 
dielectric function remains the same as in Sec. I I . The 
only novel element arises in relating S3(q,q) to dF/d%. 

Equation (IV. 18) holds, before its final simplification 
for the nonuniform system as well, 

ft f °° 
- / dec [ l - e - ^ r j - i lmS)(q,q) 
7T J -on 

= Tr(P 0p gp_ f f ) -E pm(m\pq\tn)(m\p-.q\m), (IV. 18') 
m 

and so does (IV. 19), 

^M=4Eq^{Tr(Popq P_q) 
- (TrPoPq) (TrP0p_q)-AT}. (IV.19') 

Comparing these two equations we see that the desired 
formula can be constructed only if 

(TrPopq) (TrPop_q) = £ m pm(m | pq | w)£)n pn(n | p_q | n) 

can be shown to equal 

E m pm{m | pq | m){m | p_q | m). 

Let Xm+iYm stand for (m|p q |w) . We must show that 
(X 2 +F 2 ) a v in (IV. 180 is a sufficiently good approxima
tion to, or equals, <X)av

2+ (F)a v
2 in (IV. 190- For the con

densed systems to be considered here, crystals, liquid 
metals, etc., Xm is a macroscopic variable for the 
important states in the average, ranging from N112 to N 
in its order. We may, therefore, invoke the Einstein 
theory of the fluctuations of a macroscopic variable as 
presented, for example, in Tolman's book26 to argue 

26 R. C. Tolman, Principles of Statistical Mechanics (Oxford 
University Press, New York, 1938), p. 636 ff. 

that the relative difference between (X 2 +F 2 ) a v and 
<X)a v

2+(F)a v
2 is of order kT/N. I t follows that 

F(1) = F(0) f d%Z [ dec — ; Im{(e-I) 

' [I+f(e-I)^}M-El% (IV.21) 

V. THE GENERAL CASE 

The following general theorem emerges from the 
analysis of the preceding sections: 

If the Hamiltonian can be written in the form 

3C = 3Co+Eq»qOq"0-q, (V.l) 

where 3Co need not be spatially invariant and may 
contain interactions, e.g., the hard-core part of a 
potential, and where Oq may be any operator, scalar, 
tensor, spin-dependent, or whatever, then a formula 
like (IV.21) holds with z replaced by an appropriately 
generalized response function. In the course of proving 
the theorem by the methods of this paper, one estab
lishes a generalized fluctuation-dissipation theorem 
relating (O^-O-^) to the response function. Further, 
one can establish an equation of motion for Oq or for 
(Oq), solve it by iteration, using £ as an ordering 
parameter for the iteration, and thus arrive at a power 
series expansion of the response function in £ to insert 
into the formula for the free energy. 

One can obtain rapidly, clearly, and elegantly with 
the above method results already known for many-body 
problems, e.g., the electron gas,3-5 Heisenberg ferro-
magnetism,27-30 classical statistical mechanics,31 and 
others. However, we have not yet obtained any essen
tially new results in the cited problems. We do expect 
to be able to obtain essentially new results by the 
introduction of our generalized SCF methods into the 
theory of thermodynamic Green's functions and its 
attendant approximation schemes.17'32 Further, we 
have found the method perspicuous and very con
venient for a development of the theory of real metals 
to be presented in later publications.33 
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