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The conditions under which the so-called intermediate scattering function occurring in the theory of slow 
neutron scattering and in the theory of the Mossbauer effect can be written in the form exp[—K2T(0] have 
been explicitly stated; the intermediate scattering function is then factorizable into two parts; the part 
referred to in the paper as the displacement part gives on Fourier transformation a real space-time function 
which, quite unambiguously, has the meaning usually attributed to the Van Hove G,(x,t) function; the 
other part arises out of the nucleus recoiling against the neutron. It is shown that for systems in thermal 
equilibrium, the recoil part can be expressed in terms of the displacement part. This relation enables one to take 
care of the recoil part in case a classical approximation is made for the dynamics of the scattering system. 

I. FACTORIZATION OF THE INTERMEDIATE 
SCATTERING FUNCTION 

IN the theory of slow neutron scattering when one is 
concerned with the incoherent part of the cross 

section, one has to evaluate average values of operators 
of the type 

(j)(K,t) = exp(—iHt/fi) exp(—zW) 
Xexp(iHl/fi) exp(+iKx), (1) 

where fiK is the momentum lost (initial-final value) by 
the neutron, K is the magnitude of K, X is the position 
coordinate of the scattering nucleus in the direction of 
K. We shall further introduce the notation ficoR for ER9 

the energy of recoil of the scattering nucleus of mass M, 
v for the component of its velocity operator in the direc­
tion of K. I t is then easy to show (see, for example, 
Rahman, Singwi, and Sjolander1) that 

<p(K,t) = exp(ia)Rt)A (K,JO, (2) 

dA (K,t)/dt=iicv(-t)A ( K , 0 , (3) 

where v(—t) is the operator exp(—iHt/fi)v exp(iHt/fi). 
A formal solution of Eq. (3) is the Baker-Haussdorff 

formula and the reader is referred to Weiss and 
Maradudin2 for details and references. Denoting IKV(— t) 
by B{t) for short, and writing C{r) for the integrand 
occurring in Eq. (6) below, we have 

A (K,0 = exp(zi+32+.Z8+zd ), (4) 
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(5) 

C(r)dr, (6) 

C(T), B{c)d<r (7) 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126, 
986 (1962). 

2 G. H.Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962). 

In this the JS'S have been given indices related to the 
number of times B occurs in the expression for that 
particular z. Since in our case B contains the parameter 
K, zn is in fact the term with (/c)n as factor. Further, the 
commutator C{t) = [_B{t)Jz1{t)~] has been singled out in 
the above expressions to bring out the fact that all 
following terms, z3, 24, etc., are identically zero in the 
special case that C{t) is a c number. In general, C(t) is 
not a c number. 

Introducing the notation X(t) for x(0) — x(—t), one 
can easily show that 

Zi = iicX(t), 

z2=—ia}Rt+[x(- •0,*(0)]. 
Hence, 

<j>(K,t) = exp{iKX(f)+lx(-t),x(0)y/2+z3+- • • } , 

and in case C{T) is a c number 

0(K,O = exp[uZ(O] exp{[x(-f), * (0)> 2 /2} . 

(8) 

(9) 

(10) 

(11) 

This result, of course, can be more directly seen from 
(1) itself. The elaboration indulged in above is meant to 
throw some light on the nature of the so-called Gaussian 
approximation to be mentioned later. 

First, let us consider a few special cases. In all three 
cases (11) will apply. 

1. Freely Moving Particle 

For a particle moving with velocity v, X(t) = vt and, 
therefore, 

</>(K,t) = exp(iKvt) exp(io)Rt). (12) 

This is quite a familiar result. Here we would like to 
point out that it is the first term exp(ii<vt) which con­
tains the velocity of the particle whereas the second is 
independent of v and contains only the mass of the 
scattering nucleus. I t is obvious that the second arises 
from the recoil of the scattering nucleus and has nothing 
to do with its initial state of motion. 

2. Harmonic Oscillator 

If the oscillator frequency is coosc, we get 

0(K,O = exppfcXO8C(O] exp(icoi? sinco08c /̂cooSC). (13) 
1334 
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The displacement operator Xosc(t) is 

XO8C(t) = x(0)(l — cosco08Ct)+v(0) sincoosc^/wosc, 

and, hence, depends on the initial state of motion 
through x(0) and v(0). On the other hand, the term in 
03R is independent of x(0) and v(0). 

3. Vineyard-Langevin Equation 

In the equation considered by Vineyard3 one gets 

0(K,O = exp[i/cXL(O] 
X e x p { ^ [ l - e x p ( - / 3 | / | ) ] / « , (14) 

where /3 is the damping parameter. Here again the same 
remarks as for (12) and (13) are applicable. XL(t) is 
given in Vineyard's paper.3 

The purpose of showing the three Eqs. (12), (13), and 
(14) is to bring out the fact that before one has started to 
average <£(K,£) to get the so-called intermediate scat­
tering function Fs(K,t), in the notation of reference 1, 
certain terms involving COR get separated out; these 
terms always start with exp(ico#/) for small times but 
their eventual form depends on the nature of the binding 
of the recoiling nucleus. Furthermore, these terms are 
independent of the initial state of motion of the scat­
tering nucleus. 

We shall, therefore, refer to the part of <£(K,£) arising 
from the commutator [#(—/), #(0)] in (11) as the recoil 
part and expp/cX(^)] as the displacement part. This 
separation has a deeper meaning in the sense that the 
scattering is determined in part by the intrinsic motion 
of the scattering nuclei bringing into play only the wave 
aspect of the neutron wave front; the scattering is also 
affected by the fact that the neutron carries a mass and, 
hence, through the requirements of momentum conser­
vation gives a recoil to the scattering nucleus, irre­
spective of the state of motion of the nucleus. 

To clarify the meaning of the separation mentioned 
above, one can consider the Fourier transform with re­
spect to K of exp[ii<X(t)2 alone; one then gets 
5(x—X(/)). Through this transform one can define a 
new function Ms (x,t) which has an unambiguous mean­
ing of the kind envisaged for Gs(x,t) by Van Hove. Let 

M.(x,0 = <«(x-X(0)>, (15) 
where (• • •) implies the usual averaging process.4 In 
fact, taking the average of the displacement part 
(exppAcX(/)]) before taking its transform, one finds that 
the average is a real function since all odd powers of the 
displacement should average out to zero. Hence, quite 
generally, Ms(x,t) has the probabilistic interpretation 
usually attributed to Gs(x,t); the Van Hove function is 
complex and, hence, one encounters difficulties in at­
tributing to it an interpretation in terms of a proba­
bility; this is obviated in dealing with Ms(x,t). 

3 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 
4 The interference counterpart of Ms(oc,t) can similarly be 

denned but through a convolution of two 8 functions. 

The conclusion, thus, is that we have two alternative 
ways of formulating the problem of scattering. One can 
write the scattering in terms of a simple four-dimen­
sional transform of one function, the Van Hove Gs(x,t) 
function. However, Gs(x,t) must be a complex function. 

The other alternative is to break up the intermediate 
scattering function, which is the average of cj> (K,/) into a 
product of two parts, one arising from the displacement 
of the scattering nuclei irrespective of their encounter 
with the neutron, the other from their recoil against the 
neutron. One can then identify, through the first part, 
a space-time function Ms (xyt) which contributes to but 
does not completely determine the scattering of the 
neutrons. 

The advantage of sacrificing the formal simplicity of 
introducing the Gs(x,£) function of Van Hove is ap­
parent when one tries to make a classical approximation 
for the dynamics of the scattering system. 

When both the neutron and the scattering system are 
considered as classical particles, one can solve the 
scattering problem completely without invoking the 
coordinates of the scattering particles but only their 
velocities. 

However, since the whole purpose of slowing down the 
neutrons is to emphasize their de Broglie wavelength 
relative to the distances between the scattering nuclei, 
it is obvious that this point of view is of little value or 
consequence. 

One would, therefore, welcome the possibility of 
treating the neutron as a wave particle and at the same 
time the dynamics of the scattering nuclei classically. I t 
will be shown below that, at least in the so-called 
Gaussian approximation, this can be done correctly, 
provided the recoil part of <£(K,/) is first taken care of 
through the commutator [#(()),#(/)]. This point of view 
is already implicit in the work of Rahman et al.1 but the 
reformulation given below throws more light on the 
problem. 

II. THE GAUSSIAN APPROXIMATION 

From (10) it is seen that for the intermediate scat­
tering function FS(KJ) to be of the form exp[—K2y(t)2 
one has two conditions: 

[x(0), x(—1)~] is a c number, 

(expp/cX(0]) is expressible as exp[— £(X2(t))/2~]. (16) 

Thus, in the Gaussian approximation the dis­
placement part of Fs(K,t) is clearly the transform 
of a Gaussian-shaped Ms(x,t); the recoil part is 
exp{ —[x(0), x{—t)~]K2/2) and does not need averaging 
since (~ ~] is a c number. 

The displacement part gives rise to an unambiguous, 
real, width function yD (/) say5; we define 27^ (t) as the 
mean square displacement (X2(t))\ it is the width of the 
Gaussian Ms(x,t). 

5 The suffixes D and R are used for describing the connection 
with the displacement and the recoil part, respectively. 
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The explicit expressions for 7 D ( / ) in the three cases 
cited above can be easily written down. In all cases it 
is a real function, with value 0 at t=0 and starting off as 
t2 for short times. Notice that a width function defined 
naturally and generally through exp[iicX(i)~] does not 
have a nonzero value at / = 0 . 

The central problem is to take care of the recoil part 
of F8(n,t) while making a classical approximation for the 
displacement part. 

This can be done for systems in thermal equilibrium 
by use of the fluctuation-dissipation theorem. 

We first write 

Fs(Kyt) = e-^D^e-ili2y^t). (17) 

yD (t) has already been defined; it is a real quantity and 
S0iS7B( / ) . 

yR(t)=(l/2i)lx(0\x(~tn 

72>(0=iW0>. 
I t is easy to see that 

yn=(l/2i)\-v(0)Xtn 

yD = mO)v(f)+<t)v(0)\ (19) 

yD+iyR=(v(0)v(i)). 

Now one can use the fluctuation-dissipation theorem 
and get the well-known relation, with ft^h/lksT and 
D=d/dt, 

yR=-(ttm(3D)VD. (20) 
Hence, 

7*=-(tan/Mtyyi>. (21) 

The constants of integration can be shown to vanish.6 

(21), in fact, directly follows from the requirement that 
y(t+i($) is real. 

Hence, in the Gaussian approximation 

Fs (*,*) = e x p [ - K27 (/)], (22) 

7 W = [ l - i ( t a n ^ ) ] X | ( X 2 ( 0 ) . 

The last equation can be written alternatively as 

7 ( 0 = exp(-^ JD){sec(/3D)X|<X2(0)}. (23) 

Thus, p(t), defined as y(l+iP) is given by 

p(/) = sec(/?Z>)XK*2W>- (24) 

*The proof involves the fact that correlations like (v(Q),x(t)} 
also obey the relation: imaginary part = — tan(3D (real part). 

I t is easy to see that this corresponds exactly to the 
equation for y(t+i(3) given by Rahman et al.,1 which is 

p(0)+ J (t-u)($ecpD) Re(v(0)v(u))du. (25) 
Jo 

Expressions (24) and (25) can be shown to be equiva­
lent. The fact that the scattering cross section can be 
expressed so simply in terms of the mean square dis­
placement is masked by the form (25) in which p(t) was 
given. A prescription to take care of the recoil terms 
while calculating (X2(t)) classically now appears 
from (24). 

We have, using (24) and expanding sec(/iD) in powers 
of/3Z>, 

F.(K^+*3) = exp[-K?p(0] 
= exp[- /c 2 7D- (MER/4:kB2T2)yD 

+ E * X O ( f t 2 ) + - - ] . (26) 

Now using classical values for yD and yD one gets 

F8(K, H - # ) ~ e x p ( ~ ^(X2 (0)ci/2 
-MER(v(0)v(t))cl/4tkB

2T2). (27) 

To get this classical F«(K, t+if$) one should, thus, take 

p ( 0 = / (t-u)(v(0)v(u))cidu 

+ (¥/SkB
2T2)(v(0)v(t))ch (28) 

The second term in (28) contains a time dependence, 
through (v(0)v(i)), and this time dependence is usually 
neglected by putting (v2) instead. I t is easy to see that 
this term is anyhow of no practical importance in the 
interpretation of the experimental data available on 
slow neutrons scattered from liquids. Prescription (26) 
or (27) for using the classical velocity correlation is now 
seen to be equivalent to calculating the displacement 
part of the intermediate scattering function classically 
and then using it to take care of the recoil part. 
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