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The internal effective magnetic field (Heff) and the electric field gradient acting on europium nuclei in 
europium iron garnet has been calculated. The nondiagonal matrix elements connected with the admixture 
of states produced by the exchange interaction give the main contribution to these fields. The temperature 
dependence of these fields is compared with the dependence of the magnetic moment of the ion as caclulated 
by Wolf and Van Vleck. The effective magnetic field at 0°K turns out to be 7X105Oe, whereas, the elec­
tric field gradient at 0°K is eq/h — —555 Mc/sec per b. In an Appendix the paramagnetic correction for the 
internal magnetic field acting on the nucleus of Eu in the presence of an external magnetic field is also cal­
culated as a function of temperature. At room temperature fl"int=1.54 HQ. 

INTRODUCTION 

IN some recent researches,1-3 using the Mossbauer 
effect and 7-7 angular correlations in rare-earth 

iron garnets, effective magnetic fields, acting on the 
rare-earth nuclei, have been observed. This effective 
field is to be associated with the hyperfine interaction 
which is orientated as a consequence of the exchange 
interaction existing between the iron and the rare-earth 
sublattices in the garnet, below the Curie temperature. 
This exchange interaction also gives rise to the spon­
taneous magnetization of the rare-earth sublattice in 
the iron garnet.4 Neglecting the effect of crystalline 
fields, i.e., assuming "free" rare-earth ions which are 
acted on only by the exchange field and taking into 
account the ionic ground state alone, the magnetization 
and the effective magnetic field (Hea) should be 
similarly dependent on temperature, since both depend 
in the same way on the Boltzmann average of Jz (where 
Jz is the projection of / in the direction of the exchange 
field). Recent measurement1 seems to confirm the 
proportionality between the magnetization and Hea 
for Dy in dysprosium iron garnet (DIG), justifying in 
this case, at least, the free-ion approximation. 

As was pointed out by Wolf and Van Vleck5 the 
situation in the case of EuIG is quite different. The 
ionic ground state for Eu3+ is 7Fo, which is diamagnetic. 
On the other hand, there is an appreciable exchange 
interaction acting on the spin of this ion in the garnet. 
Moreover, there exist excited ionic levels, namely, 7Fi 
and 7F2, at energies which are relatively low and, 
therefore, are introduced as admixtures in the ground 
state, when taking into account the exchange inter­
action. This perturbed ground state gives rise to a 
nonzero spontaneous magnetization, as well as to a 
nonzero effective magnetic field. In addition, there is a 
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direct contribution of these excited levels (especially 
7Fi) owing to its thermal population as a function of 
temperature. Wolf and Van Vleck,5 using this approach, 
gave a satisfactory explanation to the spontaneous 
magnetization of EuIG as a function of temperature. 
They pointed out that the free-ion approach is justifiable 
for the case of EuIG since the point symmetry at the 
Eu3+ site is almost cubic, and a cubic field cannot 
remove the degeneracy for J < 2. 

We use, essentially, the same idea in this work in 
order to calculate the internal effective magnetic field 
acting on the Eu nucleus in EuIG as a function of 
temperature. A similar procedure for calculating Heu 
when influenced by an excited ionic level has been used 
by Caspari, Frankel, and Wood2 in the case of Sm3+ in 
samarium iron garnet, where the energy of the excited 
state is again relatively low. This approach, however, 
has not been successful in calculating the spontaneous 
magnetization in6 SmIG and as yet there is no satis­
factory explanation of the behavior of the magnetization 
as a function of temperature. 

In addition, we have also used the free-ion approach 
in order to calculate the electric field gradient produced 
by the orbitals of the 4 / electron shell which, in general, 
will be partially aligned under the influence of the 
exchange interaction and therefore correlated with the 
magnetization, as was pointed out by Bauminger et al.1 

This electric field gradient is perhaps the most signifi­
cant one in the case of Eu3+ in EuIG. 

There is some interest in calculating these two 
quantities since recently it has been shown that one 
can carry out Mossbauer experiments in EuIG, using 
the isotope Eu151 which has a first excited state of 
22 keV and gives large recoil-free effects.7 Since one 
can achieve an emission line of almost natural line-
width7-8 and there is a possibility to perform the 

6 J. A. White and J. H. Van Vleck, Phys. Rev. Letters 6, 412 
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-j-7/2) was measured in our laboratory by I. Nowik and S. Ofer 
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r<10.5X10~9 (unpublished). 
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experiment in a large range of temperatures, one should 
be able to study experimentally the behavior of the 
effective magnetic field and perhaps also the electric 
field gradient acting on the nucleus as a function of 
temperature. 

In an Appendix the paramagnetic correction for the 
internal magnetic field acting on the nucleus of Eu in 
the presence of an external magnetic field is also 
calculated. 

THEORY 

As was mentioned above, we make use here of the 
free ion approximation. We start with the Hamiltonian5 

X = ^ ( L - S ) + 2 / 3 0 ( H e x c h . S ) , (1) 

where we do not introduce an external field. Using 
first-order perturbation theory we calculate the admixed 
eigenstates for 7 = 0 ; 1; 2; 3. The energies for the 
excited ionic levels 7Fi, 7F2, and 7Fz are taken to be9 

480°K, 1330°K, and 2600°K. The effective field acting 
on the nucleus is calculated using the hyperfme inter­
action operator10 

/ 3(s»-rt-)rA 

N=Z (li-sa- V (2) 

The internal effective field is proportional to the 
average component of the hyperfine interaction operator 
along the direction of the exchange interaction, which 
we denote by the Z axis. We first express the matrix 
elements of N in the perturbed scheme and then 
perform its thermal average with respect to the ionic 

h? ^ 

200 300 
TEMPERATURE 

500 °K 

levels concerned. This is represented by {NZ)T\ then 
HGU is given by 

HeH=2t3o(r-*XNz)T. (3) 

The operator equivalents of N in the (JLS) scheme are 
calculated from the work of Elliott and Stevens.11 In 
our calculation we take into account also the contri­
butions from the thermal population of the ionic levels 
7Fi and 7F2 (the energies of which are denoted by Ei 
and E2, respectively). We then obtain for Heu 

HeU = 2^r-")Hexeh(T)(l+3e~E^T+5e-E^kn^ 

FIG. 1. The temperature dependence of the effective magnetic 
field and the electric field gradient acting on the nucleus of Eu 
in EuIG. For comparison the temperature dependence of the 
magnetic moment of the europium ion in EuIG is given. 

9 H. Gobrecht, Ann. Physik 28, 673 (1937); and also J. H. 
Van Vleck, Ann. Inst. Henri Poincare 10, 80 (1947). 
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A205, 135 (1951). 
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Since we are interested in comparing the temperature 
dependence of Hea with the magnetization of the Eu 
sublattice in the EuIG, we have extended the calcu­
lation carried out by Wolf and Van Vleck up to the 
same order as that of He{{. We obtain for the average 
magnetic moment 

M=/3o 2 f l r oxch( r ) ( l+3^^ /^+5e -^^ ) - 1 
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The temperature dependence of both curves is shown 
in Fig. 1 (assuming (1/r3) is 57X1024 cm3).12 The 
temperature dependence for Hexch is derived in the 
same way as was done in reference 5 using the value of 
/?o#eXch(0)/£ = 24°K. 

In the case of the electric field gradient, the operator 
under consideration is given by 

?s=e<r - 3 >E; (3cos 2 ^- l ) . (6) 

The electric field gradient is, essentially, calculated 
in the same manner, but here we have to consider a 
second-order admixture in the ionic eigenstates, since 
the first-order perturbation is zero. Elliott13 has calcu­
lated in a similar way the quadrupole interaction for 
europium nuclei in axially symmetric crystalline fields 
arising from the admixture of F2 into Fo produced by 
the crystalline field interactions. For the thermal 
average of the matrix elements it is sufficient to consider 
the contribution of the first two states only. 

The matrix elements of this operator in the (JLS) 

11 R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) 
218, 553 (1953). 
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13 R. J. Elliott, Proc. Phys. Soc. (London) B70, 119 (1957). 



E F F E C T I V E F I E L D A C T I N G O N E u I N E u I R O N G A R N E T 1363 

scheme are, apart from their sign, those of a single 
electron, since we have here a "hole" in a half-filled 4 / 
shell. We use here Eq. (44) of Racah14 for the evaluation 
of the matrix element of the tensor Co.2 

We obtain for the thermal average of qz 

(q,h= ^-3>/V#exch2 (T) (l+Se-^n-1 

(32(2E1+E2 r 1 

I 5Ei2E2 L-5^2r2 

1 /12 64 22 96 \ n i 
+ ~ -( + + ) • (7) 

The temperature dependence of (qz)r is also shown 
in Fig. 1. The expression for the quadrupole interaction 
energy is 

for Q (Eu151) = 0.95 b,15 a value of eqQ/h = - 530 Mc/sec 
at 0°K is obtained neglecting shielding effects.16 

In addition to this, one should consider two other 
contributions to the quadrupole interactions: (a) that 
produced by the ionic Stark levels of Eu3+ in the 
presence of the crystalline field, and (b) that produced 
by the external distribution of ionic charges in the 
lattice which is magnified by a large antishielding factor 
7oo=~70, according to recent calculations by Wikner 
and Burns.17 

The case of europium ethylsulfate, the symmetry of 
which is lower than cubic, was extensively investigated, 
theoretically and experimentally. Contribution (a) was 
calculated by Elliott13 and is about eqQ/h~+60 
Mc/sec. Contribution (b) was calculated from optical 
data17 and is eqQ/h^ — 35 Mc/sec. An experimental 
result of eqQ/h^ —140 Mc/sec was obtained by Judd 
et al.ls It seems reasonable that these contributions 
£(a) and (b)3 in EuIG are at most of the same magni­
tude as in europium ethylsulfate. Some support for 
this assumption is supplied by a calculation19 for 
ytterbium gallium garnet, where the departure from 
cubic symmetry is estimated, and the relevant expres­
sion for calculating the ionic electric field gradient17 is 
derived A 2°^ 50 cm-1, which is less than that for the 
case of europium ethyl sulfate ^2°~120 cm-1. All this 
suggests that for EuIG, the exchange interaction 
contribution to the quadrupole interaction is dominant. 

Heft at 0°K is about 7.105 Oe, according to the above 

14 G. Racah, Phys. Rev. 62, 438 (1942). 
15 K. Krebs and R. Winkler, Naturwiss. 47, 490 (1960). 
16 R. M. Sternheimer, Phys. Rev. 95, 736 (1954). 
17 E. G. Wikner, G. Burns, Phys. Letters 2, 225 (1962). 
18 B. R. Judd, C. A. Lovejoy, and D. A. Shirley, Phys. Rev. 

128, 1733 (1962). 
19 J. Thomas, Ph.D. thesis, University of Grenoble, France, 1962. 

calculations. For the ground state of Eu151 the magnetic 
moment is 3.6 nm and the magnetic Zeeman splitting 
gUnHeii/h will be of the order of 700 Mc/sec. Another 
contribution to Heu which is generally neglected is the 
core polarization which was estimated roughly by 
Freeman and Watson20 to be — 9X1045 Oe, where S is 
the spin. In the case of Eu3+, where the effective 
magnetic field is relatively small the contribution of 
core polarization must be considered. This contribution 
is negative and therefore diminishes the total effective 
magnetic field. 

It is seen from Fig. 1 that these calculations predict 
that the temperature dependence of Heu and the 
magnetization of the europium sublattice should be 
somewhat different. The decrease of Hen with increasing 
temperatures is much less than that to be expected for 
other (and as found for1 DIG and21 TmlG) rare-earth 
garnets. 

We are grateful to Professor S. G. Cohen for proposing 
the subject and for stimulating discussions. 

APPENDIX 

It was pointed out by Goldring and Sharenberg22 

that when measuring nuclear gyromagnetic ratio using 
an external magnetic field Ho acting on a system of 
paramagnetic ions, the field at the nucleus H{nt is equal 
to Z7o(l+i#), where /5 is an important correction which 
must be taken into account. The origin of this correction 
is the magnetic hyperfine interaction partially aligned 
under the influence of the applied field. Manning and 
Rogers23 have calculated this correction for all rare-earth 
ions, but neglected the admixture of the excited ionic 
states in the ground state in the case of Sm3+ and Eu3+.24 

Kanamori and Sugimoto25 have calculated the 
temperature dependence of this correction for Sm3+ by 
taking into account this contribution. In the case of 
Eu3+, where the ground state is 7F0, this correction can 
be calculated in a very similar way to that of Hen in 
ferrimagnetic europium iron garnet. The only difference 
is that the perturbing Hamiltonian in the present case 
is /3o(I»+2S)-Ho, where H0 is the external field, instead 
of 2^o(S-HeXch) in the ferrimagnetic case, since for the 
latter the exchange field (He^oh) acts only on the spin. 

20 A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 
(1962). 

2 1 1 . Nowik and S. Ofer, Phys. Letters 3, 192 (1963). 
22 G. Goldring and R. P. Scharenberg, Phys. Rev. 110, 701 

(1958). 
23 G. Manning and J. Rogers, Nucl. Phys. 15, 166 (I960). 
24 J. H. Van Vleck, Electric and Magnetic Susceptibilities 

(Oxford University Press, New York, 1932). 
25 J. Kanamori and K. Sugimoto, J. Phys. Soc. (Japan) 13, 

754 (1958). 
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Calculation of /3 as a function of temperatures gives 

r 4 0 / 40 26 2 
X r — \ . e - E i i k T ( 
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where all the related parameters are denned above in 
this article. 

At 300°K for instance, 0=0.54 (giving Hint= 1.54#0) 
instead of a value of (3—0, when the excited ionic levels 
are ignored. This relatively large correction would be 
important for the determination of nuclear gyromag-
netic ratios of excited states of europium isotopes using 
angular correlation technique. 

Note added in proof. Recent Mossbauer measurements 
carried out by I. Nowik and S. Ofer in this laboratory, 
and to be submitted for publication shortly, show that 
at 80°K Heu is about 750 kOe, in very good agreement 
with the present calculations. 
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The Feynman description of the polaron is used to write down a polaron Boltzmann equation. This 
equation is then used to discuss the drift mobility problem. In the limit of low temperatures, the Boltzmann 
equation is rearranged to exhibit elastic resonance scattering and it is solved exactly. The evaluation of the 
drift mobility thus obtained is compared with the results of other calculations. Other applications of the 
polaron Boltzmann equation are briefly discussed. 

INTRODUCTION 

IN this paper, we calculate the drift mobility of an 
electron in a polar crystal (a polaron) by making use 

of a model due to Feynman.1-3 Our procedure will be to 
use the Feynman model to derive a Boltzmann equation 
which may then be solved to find the mobility. Exten­
sive study4-7 has already been devoted to this mobility 
problem. The primary novel feature of the present work 
is the use of a Boltzmann equation in conjunction with 
the Feynman model. 

We begin from the Frohlich Hamiltonian for an elec­
tron in a polar crystal. We take all the optical phonons 
to have the same frequency and the electron-phonon 
matrix element to be proportional to the inverse of the 
magnitude of the phonon wave vector. In units in which 
ft, the phonon frequency, and the electron band mass are 
all equal to unity the Frohlich Hamiltonian is8 

H=ve*/2+U(te,t)+Y, ajaq 

/ 47TQ: \ 1 / 2 

q \^2vqy 
part by the 

(a {e
i^te+a^e~i^x"). (1) 
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Here, pe and re are electron momentum and position 
operators; a^ and aq are operators which create and 
destroy a phonon with wave vector q; V is the volume 
of the system; a is a dimensionless coupling constant 
which measures the strength of the electron-phonon 
interaction. U(i,t) is a scalar potential for a force 
externally applied to the system. At the space-time 
point r, t, this force is, of course, —VU(r,t). We shall use 
this force to set the polaron in motion so that we may 
measure its mobility. 

In the weak coupling limit, a<<Cl, we can apply a 
perturbation expansion in the electron-phonon inter­
action. We can take the basic electronic states to be 
plane wave states and write a Boltzmann equation to 
describe how phonon emission and absorption processes 
change the population of these states.4 However, when 
a is comparable with or greater than unity this descrip­
tion of the electronic states breaks down. Every electron 
now travels with a cloud of phonons about it and this 
cloud substantially modifies all the electronic properties. 

However, there exists a relatively simple description 
of the polaron which works quite well even when a is 
fairly large. Feynman1 pointed out that the motion of 
the electron in its associated cloud of phonons was quite 
similar to the motion that an electron would go through 
if it were coupled to another particlejvith apiarmonic 
oscillator coupling. If this ficticious other particle has 
mass M and the spring constant is k, then the Hamil­
tonian for this analog system is 

# o = P e 2 / 2 + P y 2 M + | £ ( r e - R ) 2 . (2) 


