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Calculation of /3 as a function of temperatures gives 
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where all the related parameters are denned above in 
this article. 

At 300°K for instance, 0=0.54 (giving Hint= 1.54#0) 
instead of a value of (3—0, when the excited ionic levels 
are ignored. This relatively large correction would be 
important for the determination of nuclear gyromag-
netic ratios of excited states of europium isotopes using 
angular correlation technique. 

Note added in proof. Recent Mossbauer measurements 
carried out by I. Nowik and S. Ofer in this laboratory, 
and to be submitted for publication shortly, show that 
at 80°K Heu is about 750 kOe, in very good agreement 
with the present calculations. 
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The Feynman description of the polaron is used to write down a polaron Boltzmann equation. This 
equation is then used to discuss the drift mobility problem. In the limit of low temperatures, the Boltzmann 
equation is rearranged to exhibit elastic resonance scattering and it is solved exactly. The evaluation of the 
drift mobility thus obtained is compared with the results of other calculations. Other applications of the 
polaron Boltzmann equation are briefly discussed. 

INTRODUCTION 

IN this paper, we calculate the drift mobility of an 
electron in a polar crystal (a polaron) by making use 

of a model due to Feynman.1-3 Our procedure will be to 
use the Feynman model to derive a Boltzmann equation 
which may then be solved to find the mobility. Exten
sive study4-7 has already been devoted to this mobility 
problem. The primary novel feature of the present work 
is the use of a Boltzmann equation in conjunction with 
the Feynman model. 

We begin from the Frohlich Hamiltonian for an elec
tron in a polar crystal. We take all the optical phonons 
to have the same frequency and the electron-phonon 
matrix element to be proportional to the inverse of the 
magnitude of the phonon wave vector. In units in which 
ft, the phonon frequency, and the electron band mass are 
all equal to unity the Frohlich Hamiltonian is8 

H=ve*/2+U(te,t)+Y, ajaq 

/ 47TQ: \ 1 / 2 

q \^2vqy 
part by the 

(a {e
i^te+a^e~i^x"). (1) 
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Here, pe and re are electron momentum and position 
operators; a^ and aq are operators which create and 
destroy a phonon with wave vector q; V is the volume 
of the system; a is a dimensionless coupling constant 
which measures the strength of the electron-phonon 
interaction. U(i,t) is a scalar potential for a force 
externally applied to the system. At the space-time 
point r, t, this force is, of course, —VU(r,t). We shall use 
this force to set the polaron in motion so that we may 
measure its mobility. 

In the weak coupling limit, a<<Cl, we can apply a 
perturbation expansion in the electron-phonon inter
action. We can take the basic electronic states to be 
plane wave states and write a Boltzmann equation to 
describe how phonon emission and absorption processes 
change the population of these states.4 However, when 
a is comparable with or greater than unity this descrip
tion of the electronic states breaks down. Every electron 
now travels with a cloud of phonons about it and this 
cloud substantially modifies all the electronic properties. 

However, there exists a relatively simple description 
of the polaron which works quite well even when a is 
fairly large. Feynman1 pointed out that the motion of 
the electron in its associated cloud of phonons was quite 
similar to the motion that an electron would go through 
if it were coupled to another particlejvith apiarmonic 
oscillator coupling. If this ficticious other particle has 
mass M and the spring constant is k, then the Hamil
tonian for this analog system is 

# o = P e 2 / 2 + P y 2 M + | £ ( r e - R ) 2 . (2) 
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Here, P and R are momentum and position operators 
for the fictitious particle. 

Feynman found that, when k and M were correctly 
chosen, he could get an excellent description of the 
electronic properties by employing the Hamiltonian H0. 
In particular, he calculated time-dependent correlation 
functions for the electron in the canonical ensemble con
structed from H0. These correlation functions enabled 
him to calculate the electronic energy. The parameters 
k and M were choosen to minimize this ground-state 
energy. At the end of this variational calculation, 
Feynman had a better, i.e., a lower energy than any 
previous worker.3 

In this paper, we shall take the point of view that the 
model Hamiltonian (2) provides a correct zeroth-order 
description of the electron. We shall take the basic level 
scheme for the electrons to be given by the eigenvalues 
of (2). Then, we shall write down a Boltzmann equation 
for a distribution function which describes the occupa
tion of these various levels. The scattering from one level 
to another will occur because of the emission and absorp
tion of phonons. Following Feynman's discovery that 
the electron-phonon interaction could be treated as a 
perturbation when the zeroth-order Hamiltonian is Ho, 
we shall simply apply the golden rule for the electron-
phonon interaction to calculate the transition rate into 
and out of the eigenstates of H0. 

We begin by examining the eigenstates of H0. We can 
diagonalize Ho by working with the set of canonical 
variables: 

center-of mass position: r= (re+MK)/(M+1), 

total momentum: p = pe—P, 

relative position: ros=r e — R, 

relative momentum: pos = (Mpe—P)/ (M+l). 

(3) 

In terms of these variables, the Hamiltonian Ho is 
diagonalized as 

#o=-
M+l 

-T 2 -Pos2+-rc„ 
2 (M+l) 2M 2 

Clearly, HQ describes the motion of a compound 
system, a "molecule" in which the center of mass moves 
freely but the two particles are bound as a harmonic 
oscillator. The eigenstates of this Hamiltonian are 
labeled by the total momentum p and the integers nx, 
nyy nz which describe the level of the three-dimensional 
oscillator. Since the oscillator frequency is 

v=[_k(M+l)/Mji\ (4) 

The energy levels are 

•&p,n— ~ •(nx+ny+n,+$)v, (5) 
2 (M+l) 

and corresponding eigenstates can be labeled as | p,n). 

In this approximation, M+1 represents the effective 
mass of the system of electron plus its cloud of phonons. 
In the weak-coupling limit a<<Cl, this effective mass 
reduces to the electron band mass, i.e., M —> 0. Also, in 
the weak-coupling limit, the electron moves essentially 
freely. Hence, its coupling to the other particle, here 
measured by the spring constant k, also goes to zero. In 
the opposite limit of strong coupling, a^>l, the electron 
appears very heavy and very strongly bound, M^>1 and 
zOl. The oscillator frequency v remains uniformly 
greater than unity. 

II. THE BOLTZMANN EQUATION FOR POLARONS 

We describe the state of the polaron system by giving 
the distribution function /(p,n,r,£) which gives the 
occupation of the state | p,n) for particles in the neigh
borhood of the space-time point r, /. In our calculation 
of the mobility, we want to know the average velocity 
induced by the external force. Since the electron and the 
fictitious particle remain bound together, the average 
electronic velocity is the same as the average center-of-
mass velocity, i.e., the average electron velocity in the 
neighborhood of r, t is 

v(r. , « . / d'pT, /(P,n;r,0 
n M+l 

dspZf(v,n;r,t). 
n 

(6) 

Our level scheme in terms of p and n remains ap
propriate whenever the external scalar potential varies 
sufficiently slowly in space and time. In particular, this 
demands that the frequencies contained in U(t,t) be <<Cfl 
and the wave numbers be much smaller than the inverse 
radius of the bound state. When these conditions hold 
the Boltzmann equation takes the simple form 

P'Vr 

M M+l 
+F(i9t)-v: 

1 df 
> /(p,n;r,/) = — 
J 8t 

(7) 
collision 

Here F(r,J)= —v77(r,J) is the external force on the 
electron which is the same as the force on the center of 
mass of the bound system. The M+l appears in (7) 
because the velocity of the center of mass is p/(M+l). 

To get the collision term we apply the golden rule. 
The number of particles in the state | p,n) is diminished 
by both processes in which the electron induces the 
emission of the phonon and also processes in which 
phonons are absorbed. First, we calculate the absorption 
rate. According to the golden rule this rate is 

E JV-
4twa 

|<p,n|£r*>r«|p',n')l' 
q.p'.n' V 2 F g 2 ' 

X2irB(Ep,n-Ep>,n>+l), (8) 

Here N is the equilibrium number of phonons in the 
state labeled by q at the temperature 0_1: 

JV=(e^-l)-1 . (9) 
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To get the absorption rate, this number is multiplied by 
the electron-phonon matrix element squared and finally 
2TT times the energy conservation delta function. In 
computing the matrix element we use, of course, the 
eigenstates |p',n') of H0. Finally, this result is summed 
over all phonon wave vectors q and all final states 
|p',n'). The matrix element is easily computed if we 
notice that the electron-position operator can be de
composed as 

re=r+[M/(M+l)]r03, 

and the eigenstates can also be decomposed as 

| p , n ) = | p ) | n ) , 

so that the matrix element in (8) is 

M 
<pk 

/ M \ 
r*i" r |p')(ii|exp( -iq-ros ) |n ' ) 

\ M+U 

( M \ = 5p+q,p>(n|expf —*qToB ) |n '} . 
M+i 

Consequently, the expression (8) for the rate of phonon 
absorption is 

/ 
dy 

(2x)» »' 
£ 2r&(Ep.n-Ep.,n.+ l)NWr,n;t>,n>, ( 1 0 ) 

where 

Wp,n-V',n' = -
4xa | < n | e x p p ( p - p ' ) - r o s M / ( M + l ) ] | » ' ) | 2 

-ft (P -P ' ) 2 

(ID 

describes the transition rate between the states |p,n) 
and | p',n'). The rate of emission of phonons is_given by 
a form very similar to (8) except that N —> N+1 and 
inside the energy conservation delta function 1 —> — 1. 
The rate of scattering into the state | p,n) can be calcu
lated in exactly this same way. When all these results 
are combined the collision term takes the form 

8t 

f «T 
= - / E27rJFp,n; 

collision J ( 27 r ) W 

X 5 ( £ P ) n - ^ , n ' + l ) [ i V / ( p , n ; r,0 

- ( f f + l ) / ( p ' , n ' ; r , f l ] 

+ « ( £ P f n - £ p ' . n ' - l ) [ ( ^ + l ) / ( p , n ; r , / ) 

- # / ( p ' , n ' ; r , 0 ] . (12) 

[The reader might argue that there should, in fact, be 
extra scattering terms in (12) resulting from the differ
ence between H0 and pe

2/2. This difference indeed con
tributes to higher order scattering processes; but it 
cannot induce real transitions in first order. Hence, it is 
omitted from the present analysis.] 

There are three features which make the Boltzmann 
equation obtained by substituting (12) into (7) different 
from the standard transport equation for electrons in a 
polar crystal. The first is the relatively trivial fact that 
the effective mass, M + 1 , appears instead of the electron 
band mass. The second is that the w's serve as a set of 
extra state labels so that more kinds of transitions need 
to be considered. Finally, the appearance of the factor 

(n|exp i (p-p ' ) - r 0 l 

M 

~M+\A 
*') 

in W tends to prevent large momentum transfers from 
contributing appreciably. 

To see this fact in more detail consider the case 
n = n ' = 0 . Then (9) becomes9 

4™ e x p [ - ( M " A ) ( p - p 0 2 / 2 ( M + l ) ] 
W W . * ^ — : • (13) 

V2 (P-PO2 

The factor (13) includes an exponential cutoff at high 
momentum transfer. This cutoff occurs because the 
electron is continually emitting and absorbing phonons. 
I t does not stand still long enough to achieve sufficient 
localization to be noticed by the very short wavelength 
phonons. In other words, because of its random motion, 
the electron is a diffuse structure and it is quite trans
parent to short-wavelength phonons.10 

I t should be pointed out that we have not derived a 
Boltzmann equation for the polar on system. Instead, we 
have simply assumed that the "molecules" of the Feyn-
man model have sufficiently well-separated collisions so 
that the Boltzmann equation concept is valid. Con
sequently, we cannot make any statement about the 
range of validity of our analysis. 

III. MOBILITY CALCULATIONS 

We wish to compute the average velocity which ap
pears as the linear response to a weak force for the 
particular case in which the force is independent of 
space and time. Because of this independence / (p ,n ; r,i) 
is itself independent of space and time. We write 

/ (p ,n ; r,0 = /o (p ,n ) [ l+p(p ,n ) ] , (14) 

where / 0 is the complete equilibrium distribution 
function 

/o (p ,n ) -exp(~^E p , n ) (15) 

and <p(p,n) represents the deviation from equilibrium. 
Notice that when / is replaced by /o in the collision 
term (12) that term vanishes. After a bit of algebra we 

9 The harmonic oscillator matrix elements are evaluated in, for 
example, J. Schwinger, Phys. Rev. 91, 728 (1953). 

10 See the discussions of T. D. Schultz and P. M. Platzman, in 
Proceedings of the Scottish University Summer School on Exci
tations in Semi-conductors [Oliver Boyd Ltd., London (to be pub
lished)]. 
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see that we can simplify the collision term as 

f d3P' 
- / o ( p , n ) / -—-E2xT7p,„ ;p' ,„-

J (2x)3 »' 

Xl8(Ep,a-Ep,,a,+W+8(Ep,n-Ep.,a,-l)(.N+lft 

X [ ^ ( p , n ) - ^ ( p ' , n ' ) 3 . (16) 

On the left-hand side of our Boltzmann equation we 
have F'Vp / (p,n) . Since we only want to consider the 
linear effect of the force, we can replace this by 

<p(p',0) contributes very little to the right-hand side of 
(21). For the moment, however, let us simply neglect 
this term. Then (21) is of the form 

M+l 
--T(€p)<p(p,0) for e p < l , (22) 

where 

aN r exp[-(ilfA)(p-p,)2/(-M'+l)] 
r(€p)=— Up' 

/3F-p 
F-Vp/o(p,n)= — / 0 ( p , n ) . 

M+l 

(P-PO2 

Xd(ep-ep,+l) (23) 

(17) 

The common factor / 0 may be cancelled out of (16) and 
(17) leaving an integral equation for <p of the form 

0F-p r d*p' 
— = / — L "E2 i rT rp i „ ; 

+ 1 J (2TY a' 
p'n' 

M + l J (2TT)3 

Xl5(Ep,n-Ep,,n,+l)N+5(EPtn-Ep,,n,-l)(N+l)-] 

X[>(p,n)-*>(p' , i i ' ) ] . (18) 

Once we have calculated <p, we can calculate the 
velocity, v, by making use of Eq. (6). In the limit of 
small F and hence small <p, 

is the rate of occurrence of phonon absorption processes 
in which the polaron is both initially and finally in the 
lowest oscillator level. 

For very small p, 

T(0) = 2aN(M+l)ll2e-MI\ 

We can determine the mobility by substituting 

/SF-p 
(24) ¥>(p,0) = -

(M+i)r(o) 

into (19) to find that the average velocity is 

F v = -

• / 

d3p 

(2TT)3 « M+l 
<p(p,n)/o(p,n) 

d*p 
X) /o(p,n). a n d hence 

(lf+l)r(0) 

(19) 

Then the drift mobility is given as the coefficient /x in the 
relation 

ev=juF, (20) 

where e is the magnitude of the electronic charge. 
For very low temperatures, j£2>l, the only contribu

tion to v in (19) occurs for n = 0 and p2/2(M+l)<Kl. In 
this limit, Eq. (18) is relatively simple. The second 
delta function in (18) cannot contribute because its 
argument is always smaller than zero when n = 0 and 
p2/2 (M+1) < 1. (The vanishing of this term reflects the 
impossibility of processes in which a low-energy polaron 
emits a phonon and also processes in which a low-energy 
polaron is produced by the absorption of a phonon.) In 
this range of energies, the other delta function only con
tributes for nr = 0, since v>l. Thus, by making use of 
(18) and (13), we find 

H = 
(Af+l ) r (0) 2aN(M+l)V2 e x p ( - M A ) 

(25) 

The result (25) for the low-temperature mobility was 
previously obtained in reference 6. However, in refer
ence 7 a somewhat different result was obtained. Here, 
the mobility, which was calculated for all temperatures 
and all frequencies, reduces in the zero-frequency, low-
temperature limit to 

M F H I P -
2$ (M+l)r(0) 

(26) 

/3F-p aN 
— = / d*p' 
f-1 TTV2 7 

exp[-(MA)(p-p')V(M+l)] 

M+l TTV2 7 " (p-pT 

X 5 ( € 2 , - e ^ + l ) [ ^ ( p , 0 ) - ^ ( p , , 0 ) ] for e , < l . (21) 

Here we have used the abbreviation ep for the kinetic 
energy of the "molecule," p2/2(M+l). 

In the next section we shall show that the term 

This differs by a factor of 3/(20) from (25). However, 
there exists no real disagreement between our con
clusions and those of FHIP because the authors of 
FHIP take great pains to point out that the perturba
tion theory they employ fails in the zero-frequency limit. 
The source of this failure can be seen in the fact that 
their dc mobility was derived by extrapolating the high-
frequency form of <p(pfi) to lower frequencies. This gave 
a result which can be expressed in the present language 
as 

F H I P : <p(p,0)=^0p-F for all p. (27) 

Here <po is a constant which is to be determined self-
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consistently. In our work we have assumed that for low 
temperatures 

<p(p,0)=<p0p-F for ep<l, 

= 0 for €P>1. 
(28) 

I t is well known4'11 that in a variational calculation 
based upon the ordinary Boltzmann equation, the 
assumption (27) leads to an incorrect estimate of the 
low-temperature mobility. In fact, the error produced 
in the variational calculation by this incorrect assump
tion is just the extra factor of 3 / (2/3) which appears in 
MFHIP-12 Equation (27) is wrong because <p(pfi) is greatly 
reduced by phonon emission processes whenever the 
energy of the particle is above the emission threshold. 

In order to make this point more firmly, in the next 
section we calculate <p(p,0) from our polaron Boltzmann 
equation with the aim of establishing the validity 
of (28). 

Resonance Scattering 

At this point, we return to Eq. (21). This equation 
can be written in terms of the variables 

ep=p*/2(M+l), 

o = p / | p | , 

as 
2e Y'2 

M+l 
•r(e) <p{e,Q) 

-I 
da' 

4r 
p ( 6 + i , Q ' ) P . + . i - « ( a ' - > a ) (29) 

Here, T(e) is the phonon absorption rate denned by 
Eq. (23) and Pe+i-+e is defined by 

r(e)P6 + i->6(Q'->&) 

M (p-p')2-j 
= 2v2oJV / dp'p'2 5 (ep- ep>+1) exp 

r M 

L~7 2(M+1)J 
= 2aiV[(e+l)(M+l)]1'2 

X-
e x p { - (M/v^QtW-Q'ie+iyitJ} 

(30) 
[ Q e ^ - O ' C e + l ) 1 ' 2 ] 2 

From Eq. (29) PE+I-M (£!'—>• £i) represents the proba
bility that, in a phonon emission process, a particle with 
initial energy e + 1 and direction i i ' would have the 
direction £i after the emission. This probability is 
normalized so that 

/ 

da 
Pe+l- . ( Q ' - ^ O ) 

• / 

da' 

4?r 
« ( n ' - » Q ) = l. (31) 

11 J. M. Ziman, Electrons and Phonons (The Clarendon Press, 
Oxford, England, 1962), p. 344. 

12 F. Garcia Moliner (private communication), noted this feature 
of JUFHIP. 

Thus, Pe+1_»e(£y —> a) represents an angular correlation 
factor for an emission process. Because of detailed 
balancing symmetry, P«+i_»£ (&' —> a) also represents 
the angular correlation factor which gives the proba
bility that, after an absorption process a particle with 
initial energy e and direction a would have final direc
tion af. This dual role of P is indicated by writing 

P . - ^ i ( a - » &) = Pe+i->e(a' -> Q). (32) 

Equation (29) involves <p(e+l, &'). For n = 0 and 
e> 1, the Boltzmann equation (18) involves both terms 
proportional to N and terms proportional to N+l. 
Since N is <<Cl for low temperatures, we neglect it and 
find 

M+l 
= — d*p"d(-

irfLJ. \2 

P" 
-1 

X-

\2(M+1) 2{M+1) 

exp[- (M/v)(p'-p")*/2(M+l)l 

( p ' - p " ) 2 

X[>(p' ,0)- -<p(s>"m &) 
We multiply this equation by N, write p'2/2(M+l) 
= e + l and utilize our definitions of V and P to write 
(33) as 

r 2 ( € + l ) - j 1 / 2 r 
N$B-Q'\ = r ( e ) <p(e+l, a') 

L M+l J L 

da' 

4T 
-cp(e,a")Pe->€+1(a"->a)L (34) 

Notice that we begin from a particular value of the 
energy, say e, for e < l . Equation (29) tells us that be
cause of phonon emission processes <p(e,Q) is deter
mined by <p(e+l, a'). However, Eq. (34) tells us that 
because of phonon absorption process <p(e+lt a') is 
itself determined by <p(e,a"). Hence, we can eliminate 
<p(e+l, af) from the pair of Eqs. (29) and (34). 

Since N<K1, the left-hand side of (34) may be replaced 
by zero. Then (34) implies 

* ( e + l , Q ' ) = 
da'' 

4x 
^ ( e , Q " ) P e ^ + i ( a " - > Q ' ) . (35) 

The result of combining (35) with (29) is 

r 2e n1/2 

/SF-O r — T 
LM+1J 

r r da' da" 
=r(e) <p(e,a)- / <p(e,a") 

L J Air 47T 

XP^e+i(a"-+ a')pe+!^(a'-* a")\ (36) 

This result may be best understood by multiplying it 
by /o. Because the angular scattering probabilities 
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nte grate to unity (36) then implies 

iF-Vp/(A0) 
da' da" 

• / ( P " , O ) | . » _ = -r(«)[ /(p,o)- | : 
4x 4x 

X P . - M + I ( O " - » • a ' ) p t + 1 ^ ( a ' • a) L (37) 

Equation (37) is naturally interpreted by looking at 
scatterings as a compound in which a low-energy 
polaron first absorbs and then emits a phonon. The 
rate at which this process occurs is T(e); while 

da' 

4T / : 

describes the angular correlation between the initial and 
final directions of the polaron. 

This view of the scattering as a compound process has 
been espoused by Schultz.3 He called this a resonance 
scattering process. Notice that we have derived reso
nance scattering only for very low temperatures; in our 
view the concept breaks down for higher temperatures. 

Now we can see quite directly why it is possible to 
neglect the second term in (36) in the limit € —> 0. In 
this limit the initial and final momentum of the particle 
almost vanishes. Therefore, the directions of these mo
menta are almost irrelevant in determining the direction 
of the momentum in the excited state, Q'. This means 
that for small €, the angular correlation factors, P , may 
be replaced by unity. Then, (36) becomes for €<<Cl 

r 2e -ii/2 
0F-Q 

LM+1. 

=r(0) 
r f da" n 
U(€,G)-J *fcO")J. (38) 

However, because of the vector character of the dis
turbance $>(€,Q")~F-Q" times a function of €. Thus, 
the angular average of <p vanishes, and the second term 
on the right-hand side of (38) disappears. 

We can, therefore, conclude that the collision time 
approximation, (24), is fully justified at sufficiently low 
temperatures. 

Another way of seeing this same result is to again 
make use of (35) which implies that, for very small e 

r da" 
p ( e + l , Q ' ) = / *>(e,O") = 0. 

J 47T 

Thus, we see quite directly that, above the emission 
threshold, the FHIP assumption (28) is quite untenable. 

CONCLUSIONS 

The work reported in this paper is quite incomplete. 
We have only calculated the drift mobility in the 
extreme low-temperature limit; our Boltzmann equa
tion is capable of predicting the drift mobility for all 
temperatures. We have not considered the Hall mobility 
at all; the analysis given here can easily be extended to 
the case in which a magnetic field is present. Calcula
tions of the drift and Hall mobilities at all temperatures 
are in progress. 

Finally, the most important gap in this paper is the 
question of the range of validity of the Boltzmann 
employed here. Is this equation correct for all tempera
tures and coupling strengths? Is it correct in the pres
ence of a strong magnetic field? These questions too are 
under investigation and it is hoped that we can report 
some progress in the near future. 


