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To the first and second orders in electric and magnetic fields, respectively, isothermal transport properties 
of a uniform cubic crystal are described by five coefficients. With sinusoidally varying electric field, the co
efficients are complex functions of frequency. This paper discusses the frequency dependence of the coeffi
cients for the case of electrons occupying states near nondegenerate energy minima arranged with cubic 
symmetry. The frequency dependence is found to be strongly influenced by the mechanism of the electron-
lattice interaction. 

I. INTRODUCTION 

IT|has been shown by Seitz,1 using a phenomenological 
argument, that the five coefficients of the equation 

J = ( r E + a ( E x B ) + / 3 ( B . B ) E 

+y&-B)B+6{EaBB*t+EyBy*j+EJB*k} (1) 

describe the isothermal transport properties of a uni
form crystal with cubic symmetry to the first and second 
orders in electric and magnetic fields, respectively. The 
orthogonal xyz axes in Eq. (1) are aligned with the cubic 
axes of the crystal. Although the five coefficients defined 
above are directly calculable from the Boltzmann 
equation, dc experiments generally measure the com
ponents of a resistivity tensor inverse to (1). Compari
son between theory and experiment then involves 
intermediate calculations relating the coefficients of the 
resistivity and conductivity tensors.2 

When the electric field is varied as eio}t, the five 
coefficients are complex functions of frequency. As in 
the dc case, the complex coefficients are not directly 
observed in a high-frequency (hf) experiment but must 
be related to measured quantities through intermediate 
calculations. These calculations embrace a variety of 
forms because of the extreme diversity of experimental 
techniques employed at the frequencies of interest,3 

generally in the microwaves. 
The present paper discusses the frequency depend

ence of the five coefficients for the case of electrons 
occupying nondegenerate energy minima arranged with 
cubic symmetry. The frequency dependence is shown to 
be substantially affected by the mechanism of the 
electron-lattice interaction. This sensitivity to the de
tails of the interaction mechanism is seen to increase 
with ascending powers of the magnetic field and sug
gests that hf transport properties can be used to study 
scattering processes in solids. Microwave techniques for 
measuring the zero- and first-order coefficients, a and a, 
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have recently been described by the author.4,5 A com
panion technique for measuring the second-order coeffi
cients will be the subject of a forthcoming paper. 

II. Hf TRANSPORT PROPERTIES 

If the electron-lattice interaction can be described by 
a relaxation time r, the hf, low-field transport properties 
follow from the dc properties by the substitution of 
T'— T/(l-\-io)r) for r. This well-known result of the 
Boltzmann equation is the basis of the work that 
follows. 

A. Many-Valley Model 

Herring and Vogt6 have formulated a transport 
theory for the nondegenerate, many-valley model based 
on a relaxation time tensor with energy-dependent 
principal components rj.(e) and r n (e) . Their results can 
be generalized to the hf case7 by replacing these com
ponents by r±'(e) and Tu{t), where 

and 

r / (e ) = 

rn'(e) 

Tl(«) 

l+io)ru(e) 

In terms of the weighted average 

(2) 

(3) 

« 
Jo 

h(e)ll-f0(e)2^x(e)det 

f 
Jo 

/ „ ( 6 ) [ l - / o ( e ) ] e ^ 6 , (4) 

in which /0(e) is the Fermi function, the frequency-
dependent coefficients are written 

nq>( (T,') <T„ '>\ 

3 \ mr mil*/ 
(5) 

4 K. S. Champlin, Physica 28, 1143 (1962). 
5 K. S. Champlin and D. B. Armstrong, IEEE Trans., MTT-11, 

73 (1963). 
6 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 
7 J. K. Furdyna and M. E Brodwin, Phys. Rev. 124, 740 (1961). 
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FIG. 1. Real and negative imagi
nary parts of <r(a))/a(0) for rj.(e) 
= rn(e) = r(e) and nondegenerate « 
statistics. z 
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where n and q are the electron density and charge, re
spectively, and mi* and mn* are principal components 
of the effective mass tensor. The constants in Eq. (7) are 
tabulated in Table I for the two cases which occur in 

TABLE I. Magnetoconductivity constants defined in Eq. (7) 
for valleys on the [100] and on the [111] symmetry axes, 
respectively. 

[100] valleys 
Kx K2 Kz 

[111] valleys 
K\ K% K% 

/S - 1 - 1 - 1 - 2 / 3 - 5 / 3 - 2 / 3 
T 0 3 0 2/3 5/3 2/3 
8 1 - 2 1 - 2 / 3 4/3 - 2 / 3 

crystals with cubic symmetry. 
Equations (5), (6), and (7) can be evaluated for 

specific cases by numerical integration of (4). The 
evaluation requires knowledge of ri(e) and rji(e) which, 
in turn, are determined by the mechanism of the 
electron-lattice interaction. One sees that, in general, 
each of the five coefficients is a different function of 
frequency. 

The frequency dependence has a simple form if the 
electrons interact with the lattice through neutral im
purity scattering; through intervalley phonon scattering 
from either acoustic or optical modes; or, in nonpolar 
crystals, through intravalley optical mode scattering. 
For these cases, 

is a good approximation8 so that Eqs. (5)-(7) yield 

a (a>) (T/(l+icor)) 

<r> 

a(co) < r 2 / ( l + « o r ) 2 ) 

0 ( a > ) _ 7 ( « ) _ 8 ( « ) <T3 /(l+Mor) s> 

^ ( 0 ) ~ 7 ( 0 ) _ 5 ( 0 ) ~ <r3> 

(9) 

(10) 

(11) 

If the effective mass is highly anisotropic, Eqs. (9)-(11) 
may also apply quite well to intravalley acoustic mode 
scattering8; however, ionized impurity scattering is 
generally poorly described by6 Eq. (8) thus requiring the 
more general form, Eqs. (5)-(7). 

B. Single-Valley Model 

When the many-valley model degenerates to the case 
of a single valley centered at k = 0, cubic symmetry re
quires that 

^x*=Wn*=w*, (12) 

and requires further that 

rx(€) = rII(e) = r(€) (13) 

will apply to every type of scattering. Thus, Eq. (7) 
yields (5= —7, 8=0; and from Eqs. (5)-(7), 

<r(co) (r/(l+2cor)) 

(r) 

a(o>) < T 2 / ( 1 + « O T ) 2 > 

a ( 0 ) ~ <r2> 

0 ( » ) 7 ( » ) ( T 3 / ( 1 + W T ) 8 ) 

0(0) 7(0) <TS> 

(14) 

(15) 

(16) 

Ti(e) = Tu(e) = T(e) (8) 8 C. Herring, Bell System Tech. J. 34, 237 (1955). 
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FIG. 2. Real and negative[imagi-
nary parts of a(<a)/a(0) for the 
same model. Note shift in fre
quency scale. 

Intervalley scattering is, of course, nonexistent for the and for ionized impurity scattering12 

single-valley model; and for intra valley scattering from T /€\ ^ €3/2# (19) 
either the acoustic modes9 or from dislocations10 one has 

Equations (14)—(16) have been evaluated as func-
(17) tions of co(r) for the cases of nondegenerate statistics and 

r(e) given by either (17), (18), or (19). For 7-(e) pro-
while for neutral impurity scattering11 portional to e~1/2 and e3/2, the integrations were per

formed numerically with a digital computer. The re-
r (e) = const, (18) suits, shown in Figs. 1-3, also apply to the many-valley 

r(e)oce-- 1 / 2 

T ( £ ) = CONSTANT 

9 W. Shockley and J. Bardeen, Phys. Rev. 77, 407 (1949). 
10 W. T. Read, Phil. Mag. 45, 775 (1954). 
11 C. Erginsoy, Phys. Rev. 79, 1013 (1950). 
12 E. M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950). 

P FIG. 3. Real and negative imagi
nary parts of /3(o))/j8(0) = 7 (<o)/7 (0) 
for the same model. 
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model if Eqs. (17)—(19) correctly describe the electron-
lattice interaction. 

III. CONCLUSIONS 

From Figs. 1-3, one sees that the nature of the 
electron-lattice interaction becomes increasingly im
portant in determining the frequency dependence with 
ascending powers of the magnetic field. It appears that 
any deviation from a constant relaxation time will move 
frequency-dependent effects to correspondingly lower 
frequencies. Indeed, with ionized impurity scattering, 

INTRODUCTION 

THE availability of measured elastic constants for 
vanadium and lithium now permits the computa

tion of the vibration spectra of these two metals without 
having to resort to derived elastic constants. The vibra
tion spectra have been determined using three well-
known force models. 

In one model the atomic interactions are assumed to 
be central forces between nearest and next-nearest 
neighbors in the bcc lattice structure. This model is 
called the central model in this paper. The calculated 
frequency spectra for 18 values of the ratio of the next-
nearest-neighbor force constant to that for nearest 
neighbors have been reported previously by Clark,1 and 
calculations for the specific heats of seven bcc elements 
were reported later.2 

In a second model, interactions of a noncentral nature 

* Some of the work reported here formed parts of the theses 
presented by Hendricks and Riser to the Faculty of the Graduate 
School of Southern Methodist University in partial fulfillment of 
the requirements for the degree of Master of Science. 

t Present address: Physics Department, Rice University, 
Houston, Texas. 

1 C. B. Clark, J. Grad. Res. Center 29, 10 (1961). 
2 C. B. Clark, Phys. Rev. 125, 1898 (1962). 

the imaginary part of j3(co) reaches its maximum when 
W(T) is less than one-tenth. 

One would expect intervalley scattering to have a 
large effect on the frequency dependence for many-
valley semiconductors because of the extreme way it 
influences r(e).8 Also, since the theory predicts that the 
three second-order coefficients have the same frequency 
dependence when the relaxation time is a scalar function 
of energy, comparison of these quantities should yield 
information concerning anisotropy of the relaxation 
time tensor. 

between nearest neighbors are considered as well as 
central interactions between next-nearest neighbors. The 
model is characterized, then, by 3 force constants. This 
model has been described by Leibfried,3 for example, and 
was employed by Singh and Bowers4 for the calculation 
of the spectrum of vanadium; however, their calculations 
employed elastic constants deduced from low-tempera
ture specific-heat data. This model is referred to as the 
noncentral model in this paper. 

The third phenomenological model is due to de 
Launay.5 In this model it is presumed that the conduc
tion electrons in a metal respond in-phase to longitudinal 
components of lattice waves, but are not influenced by 
transverse components. This response modifies the force 
constants so that one set is effective for transverse com
ponents and a different set is effective for longitudinal 
components. This model will be called the de Launay 
model in this paper. (It should be pointed out that de 
Launay proposed a model which would reduce to this 

3 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1955), Vol. 7, Pt. 1, p. 104. 

4 D. N. Singh and W. A. Bowers, Phys. Rev. 116, 279 (1959). 
5 J. de Launay, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2, 
p. 219. 
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Vibrational spectra and specific heats have been calculated for lithium and vanadium, from measured 
elastic constants, on the basis of three different models. Two of the models are of the Born-von Karman 
type. One of these considers only central forces between nearest and next-nearest neighbors; the other 
includes noncentral forces between nearest neighbors and central forces between next-nearest neighbors. 
The third model is due to de Launay. The calculated quantities from all models are compared with the avail
able empirical values and values calculated by others. It is concluded that none of the models is a satisfactory 
representation of either metal. 


