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model if Eqs. (17)—(19) correctly describe the electron-
lattice interaction. 

III. CONCLUSIONS 

From Figs. 1-3, one sees that the nature of the 
electron-lattice interaction becomes increasingly im­
portant in determining the frequency dependence with 
ascending powers of the magnetic field. It appears that 
any deviation from a constant relaxation time will move 
frequency-dependent effects to correspondingly lower 
frequencies. Indeed, with ionized impurity scattering, 

INTRODUCTION 

THE availability of measured elastic constants for 
vanadium and lithium now permits the computa­

tion of the vibration spectra of these two metals without 
having to resort to derived elastic constants. The vibra­
tion spectra have been determined using three well-
known force models. 

In one model the atomic interactions are assumed to 
be central forces between nearest and next-nearest 
neighbors in the bcc lattice structure. This model is 
called the central model in this paper. The calculated 
frequency spectra for 18 values of the ratio of the next-
nearest-neighbor force constant to that for nearest 
neighbors have been reported previously by Clark,1 and 
calculations for the specific heats of seven bcc elements 
were reported later.2 

In a second model, interactions of a noncentral nature 

* Some of the work reported here formed parts of the theses 
presented by Hendricks and Riser to the Faculty of the Graduate 
School of Southern Methodist University in partial fulfillment of 
the requirements for the degree of Master of Science. 

t Present address: Physics Department, Rice University, 
Houston, Texas. 

1 C. B. Clark, J. Grad. Res. Center 29, 10 (1961). 
2 C. B. Clark, Phys. Rev. 125, 1898 (1962). 

the imaginary part of j3(co) reaches its maximum when 
W(T) is less than one-tenth. 

One would expect intervalley scattering to have a 
large effect on the frequency dependence for many-
valley semiconductors because of the extreme way it 
influences r(e).8 Also, since the theory predicts that the 
three second-order coefficients have the same frequency 
dependence when the relaxation time is a scalar function 
of energy, comparison of these quantities should yield 
information concerning anisotropy of the relaxation 
time tensor. 

between nearest neighbors are considered as well as 
central interactions between next-nearest neighbors. The 
model is characterized, then, by 3 force constants. This 
model has been described by Leibfried,3 for example, and 
was employed by Singh and Bowers4 for the calculation 
of the spectrum of vanadium; however, their calculations 
employed elastic constants deduced from low-tempera­
ture specific-heat data. This model is referred to as the 
noncentral model in this paper. 

The third phenomenological model is due to de 
Launay.5 In this model it is presumed that the conduc­
tion electrons in a metal respond in-phase to longitudinal 
components of lattice waves, but are not influenced by 
transverse components. This response modifies the force 
constants so that one set is effective for transverse com­
ponents and a different set is effective for longitudinal 
components. This model will be called the de Launay 
model in this paper. (It should be pointed out that de 
Launay proposed a model which would reduce to this 

3 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1955), Vol. 7, Pt. 1, p. 104. 

4 D. N. Singh and W. A. Bowers, Phys. Rev. 116, 279 (1959). 
5 J. de Launay, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2, 
p. 219. 
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one for very low temperatures, and to the central model 
at higher temperatures.) This model was used by Dayal 
and Sharan6 for computing the vibration spectrum and 
specific heat for lithium. They used theoretical elastic 
constants and determined the frequency spectrum by a 
method somewhat different from the one used here. 

The next section of this paper concerns the computa­
tion of the frequency spectra histograms for the three 
models. The following section presents the method of 
computation of the specific heats and Debye character­
istic temperatures for lithium and vanadium for each 
model. In the final section these results are compared 
with empirical data and results calculated by others. 

For lithium, a comparison between calculated values 
of specific heat and low-temperature experimental 
values may not be meaningful. All the models described 
here are for bcc crystals. Martin,7 however, has shown 
that below about 80°K bcc lithium is transformed into 
the hep form, with the proportions of the two forms 
depending upon the history of the sample. 

THE VIBRATIONAL SPECTRA HISTOGRAMS 

For a given model, one obtains the secular equation in 
the familiar harmonic approximation. The secular equa­
tion for the central model is given, for example, in the 
references cited in footnotes 1 and 5, and the latter 
contains the secular equation for the de Launay model. 
The secular equation for the noncentral model may be 
written in the form of a determinant equal to zero, 
where the elements of the determinant are 

Da= (a1+2az)(l-C1C2C3)+(3/2)a2Si*-3Mo>*/8, (1) 

Dn= (ai—az)S!SjCk, i, j , k different, (2) 

where i, j , k have the values 1, 2, or 3; co is the frequency 
of the plane wave multiplied by 2TT; d=cos(kia/2); 
Si=sm(kia/2)mj hi is the ith component of the wave 
vector; a\ is the nearest-neighbor radial force constant; 
a2 is the next-nearest-neighbor force constant; az is the 
nearest-neighbor angular force constant; M is the atomic 
mass; and a is the lattice constant. If a3=0, this model 
reduces to the central model. 

In each of the three secular equations, it is convenient 
to perform some collections of terms and define a 
dimensionless quantity Q by the relation tt2—3Moo2/8ai. 

The resulting secular equation then contains ratios 
involving the original force constants of the model. 
These ratios or elastic parameters (as well as the force 
constants themselves) can be related to the macroscopic 
elastic constants, cu, Ci2, Cu for cubic crystals. These 
relations for each model are 

central model, 

0=cVai= (cn—c12)/3cu, (3) 

6 B. Dayal and B. Sharan, Proc. Roy. Soc. (London) A259, 361 
(1960). 

7 D. L. Martin, Proc. Roy. Soc. (London) A254, 444 (1960). 

noncentral model, 

P=az/ai= (cn—cu)/(ci2+2cu), (4) 

y = az/ai= (cu—Cn)/2(ci2+2cu), 

de Launay's model, 

P=a2/ai = (en—Ci2)/3cu, 

f = (ai—a1)/ai= (ci2—Cu)/3cu, (5) 

r) = {2a\—3a2) — {2a±— 3a2) = 0. 

The elastic constants for lithium were measured by 
Nash and Smith8 for the temperature 78°K. Those for 
vanadium were measured by Alers9 at temperatures 
ranging down to 4.2°K. 

The symmetry of cubic lattices is such that only 
propagation vectors k which lie in a region bounded by 
a trihedral solid angle of (47r/48) sr, and the first 
Brillouin zone boundary, need be considered. For a bcc 
lattice this region of k space is a tetrahedron with vertex 
at the origin. It is convenient to work with a dimension-
less quantity K which is related to the propagation 
vector k by 

K=ak/27r. (6) 

In K space the corresponding tetrahedral region (called 
the basic tetrahedron) was taken to be that bounded by 
the planes 

K2=0, K!=Kh K1=Kh and Kr+K^l. (7) 

The Univac 1103 electronic computer at the Southern 
Methodist University Computing Laboratory was used 
to calculate the three roots of the secular equation at 
each of 42 925 points within the basic tetrahedron in K 
space. The solutions were classified as belonging to the 
proper one of 100 equal intervals between 0 and fimax. 
A count was made of the number of solutions in each 
range. These numbers constitute the tabular histogram 
representing the frequency spectrum. Histograms were 
obtained in this manner for lithium and vanadium for 
each of the three models.10 

THE SPECIFIC HEATS 

As explained by Clark,11 the choice of vectors K for 
which the secular equation was solved caused the fre­
quency spectra to be inaccurate at very low frequencies. 
In addition the increments of size &max/100 were found 

8 H . C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 
(1959). 

» G. A. Alers, Phys. Rev. 119, 1532 (1960). 
10 Tabular histograms and tables of the Debye © (calculated 

for the temperature range 1 to 600°K) for all three models of both 
lithium and vanadium have been deposited as Document No. 
7476 with the American Documentation Institute (ADI) Aux­
iliary Publications Project, Photoduplication Service, Library of 
Congress, Washington 25, D. C. A copy may be secured by 
citing the Document number and remitting $1.25 for photoprints, 
or $1.25 for 35-mm microfilm. Advance payment is required. 
Make checks or money orders payable to: Chief, Photoduplication 
Service, Library of Congress. 

ii C. B. Clark, J. Grad. Res. Center 30, 15 (1962). 
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FIG. 1. Frequency spectra for vanadium. The dimensionless 
variable x is proportional to frequency. The smooth curve is based 
on neutron diffraction experiments by Eisenhauer et al. B is a 
portion of the spectrum calculated for the central model, while C 
was calculated for the de Launay model. Both calculations 
utilized elastic constant values determined by Alers. 

too large for computing specific heats at very low tem­
peratures. The histogram entries from the first n inter­
vals were fitted according to the method of least squares 
by a polynomial curve having the form 

f(x) = CiX2+C2X*, (7) 

where ^=0/12m a x . The values of n, ci, and c^ for each 
model for both lithium and vanadium are given in 
Table I. 

TABLE I. Parameters used to supplement histograms* 

Element Model C\ 

Li central 
noncentral 
de Launay 
central 
noncentral 
de Launay 

13 
14 
20 
18 
23 
20 

7721.10 
9622.39 
8179.43 
3043.52 
5728.76 
5764.97 

43 816.36 
7697.97 

92 771.29 
628.35 

1165.65 
2632.13 

The formula for computation of the specific heat and 
a description of the program for determining values of 
the Debye characteristic temperature © were given in 
two previous papers.2 '11 Values of the atomic heat at 
constant volume divided by three times the universal 
gas constant were calculated at 92 temperatures ranging 
from 1 to 600°K. Some of the corresponding values of ® 
were used to prepare the graphs presented in the next 
section. 

COMPARISONS 

The vibration spectrum for lithium has been reported 
by Dayal and Sharan,6 for de Launay's model, but using 
different elastic constants than those used to obtain the 

results found here. The Univac program was modified 
to repeat the calculations of Dayal and Sharan. Several 
errors in their reported values of frequencies were re­
vealed. The principal one is that the maximum fre­
quency occurs at the corner (f ,0,i) °f the basic tetra­
hedron, rather than within the basic tetrahedron as their 
paper indicated.12 The same paper lists values of specific 
heat at low temperatures, but their calculations suffer 
also from the difficulties which led us to introduce the 
polynomial fit for the low-frequency range and divide 
the intervals in 0 (or x) into smaller increments for 
the low-temperature calculations. 

Eisenhauer et al.u found the vibration spectrum of 
vanadium from neutron diffraction experiments. Figure 
1 shows their curve together with the histogram ob­
tained from de Launay's model, and the lower frequency 
peak in the histogram obtained from the central model. 
The higher frequency peaks for all three models are so 
nearly the same they cannot be shown conveniently on 
the same graph at the scale of Fig. 1. The lower peak for 
the noncentral model occurs at a slightly lower value of 
x than that for de Launay's model. To avoid further 
complicating the diagram it was not shown in Fig. 1. 

As previously mentioned, Singh and Bowers4 used 
different elastic constants with the noncentral model to 
obtain the spectrum for vanadium. Figure 2 shows their 
histogram as well as that obtained in this work. The 
difference is striking, as would be expected from the 
difference in elastic constants. 

The values of @ at low temperatures have been calcu­
lated for the three models. The results for vanadium are 
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FIG. 2. Frequency spectra from the noncentral model for 
vanadium. The histogram A (solid line) utilized elastic constants 
determined by Alers. The histogram B (broken line) was deter­
mined by Singh and Bowers using quite different elastic constants. 

12 This has been acknowledged by B. Dayal (private com­
munication) . 

13 C. M. Eisenhauer, I. Pelah, D. J. Hughes, and H. Palevsky, 
Phys. Rev. 109, 1046 (1958). 
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FIG. 3. Debye characteristic temperatures for vanadium. Curve 
A was determined by use of de Launay's tables for the central 
model; B is from the central model described in this paper; C is 
from the noncentral model; D is from the de Launay model. All 
four calculations utilized elastic constants determined by Alers. 

shown in Fig. 3, along with a curve calculated from 
de Launay's tables5 for the central model. Actually the 
parameters for the latter had to be obtained by extra­
polation of the values computed by de Launay, because 
the range of elastic constants considered by him did not 
include those for vanadium. The spread of values of the 
Debye characteristic temperature at 0°K, @0, among 
the three models amounts to 1 or 2% of @0- Alers9 

reports a calculated value of 399.3°K for ®0. Corak 
et al.u reports a value of 338±5°K based on experi­
mental measurements of specific heat. It seems evident 
that none of these models adequately represents 
vanadium. 

The results of calculations for Li are presented in 
Fig. 4 together with an empirical curve due to Roberts.15 

14 W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and 
A. Wexler, Phys. Rev. 102, 656 (1956). 

15 L. M. Roberts, Proc. Phys. Soc. (London) B70, 744 (1957). 
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FIG. 4. Debye characteristic temperatures for lithium. Curve A 
was reported by Roberts from experimental data for specific heat. 
The other three represent results of calculations for the three 
models described in this paper; B is for the de Launay model; C is 
for the central model; D is for the noncentral model. All calcula­
tions utilized elastic constant values determined by Nash and 
Smith. 

The spread in @0 values due to the three models is 
greater than for vanadium. All, however, give consider­
ably different values than those reported by Roberts. 
The models are all for bcc crystals. As pointed out by 
Martin,7 the measurements reported by Roberts may 
have been for samples in which a large part of the Li 
had undergone a transition to hep form. 
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