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A theory of optical absorption by electrons in ionic crystals is given for two cases: (1) for transitions from 
a wide valence band to a narrow conduction band; (2) for transitions from one narrow band to another. 
All coupling of electrons in the wide valence band with the phonons is ignored while for the narrow bands 
coupling with the longitudinal optical phonons is treated by use of the wave functions of small polaron 
theory. Dispersion of phonon frequencies, interaction with acoustical modes, and all effects involving spin 
are neglected. Transition probabilities between states are obtained by standard time-dependent perturbation 
theory with the electron-radiation interaction as a perturbation. Indirect transitions via a third band and 
exciton absorption are qualitatively discussed. Consideration of the effects of an interaction quadratic in 
the normal coordinates is given for the case of electronic interaction with a single mode of lattice vibration, 
and Urbach's rule is discussed using this model. The applicability of the theory to the transition metal 
oxides and alkali halides is considered. 

I. INTRODUCTION 

MANY difficulties occur in the theoretical treatment 
of the properties of electrons in ionic crystals 

because of the strong coupling of electrons with the 
longitudinal optical modes of lattice vibration. An 
electron in these crystals has to be thought of as 
carrying around with it a cloud of lattice polarization. 
The complex of electron plus surrounding polarization 
is usually called a polaron. 

The problem of calculating the self-energy and 
increase of effective mass of a low-energy electron (with 
an effective mass which may differ from the free-
electron mass) due to its interaction with a vibrating 
polarization continuum has been quite well treated by 
variational techniques, as may be seen from Frohlich's1 

and Allcock's2 review articles. Calculations on the 
mobility of electrons in this model have also been made 
(see Schultz's review3) but there is some disagreement 
about results for intermediate strengths of the coupling. 
One reason for difficulties is that little is known about 
the properties of polarons of energies of the order of the 
phonon energy above the bottom of the band. 

An alternative approach to the polaron problem, 
which is usually known as small polaron theory, and is 
applicable to electrons in narrow bands, for which the 
above-mentioned effective mass model will not be 
valid, has been developed by Yamashita and Kurosawa,4 
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Sewell,5 and Holstein.6 In this approach the polaron 
states at low temperatures consist of linear combinations 
of states in which the electron is localized on one lattice 
site, with the centers of the lattice vibration harmonic 
oscillators suitably displaced by an amount depending 
on the strength of the coupling. The coupling with the 
phonons gives rise to a band narrowing, which gets 
more extreme as the temperature is raised. (In this con
nection see the note added in proof at the end of the 
paper.) Above a certain transition temperature (of the 
order of half the optical phonon temperature if the main 
interaction is with the optical phonons) the band picture 
breaks down and a picture in which the electron hops 
from site to site with an activation energy takes its 
place. Neglecting impurity scattering, the mobility de
creases with temperature at low temperatures, when the 
band model applies, but increases exponentially with an 
activation energy above the transition temperature. 

The optical properties of ionic crystals are also 
difficult to investigate theoretically because of the 
strong coupling with the lattice polarization. Absorption 
of a photon is normally accompanied by the absorption 
or emission of many phonons. 

Optical properties of solids are determined by the 
refractive index n and extinction coefficient K as a 
function of frequency. These quantities are simply 
related to the complex dielectric constant or complex 
conductivity, and so one method of rinding them is to 
calculate the electronic current as a function of time 
induced by a small electric field of arbitrary time 
variation. Feynman el at.1 have calculated the complex 
impedance of a polaron in the effective-mass model by 
writing down the quantum-mechanical expression for 
the expected current, eliminating phonon coordinates 
by standard field-theoretical techniques, and then 
introducing some approximations. Sewell8 has given 

5 G. L. Sewell, Phil. Mag. 3, 1361 (1958). 
6 T . Holstein, Ann. Phys. (N. Y.) 8, 325 and 343 (1959). 
7 R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M. 
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formal expressions for the conductivity in a small 
polaron model at high temperatures for frequencies less 
than (kT/fi) and less than the phonon frequencies, by 
making use of a modification for open systems of Kubo's 
formalism for the linear response of a closed system to 
an applied field. 

In this paper, instead of calculating both n and K by 
finding the complex conductivity, we shall assume that 
the refractive index is known and then calculate the 
absorption coefficient by use of perturbation theory. 

For a process in which n phonons assist in the absorp
tion of a photon, one method of treatment is to take the 
electron-phonon interaction plus the electron-radiation 
interaction as a perturbation, and use (#+l)st-order 
perturbation theory (see, e.g., Meyer's9 and Dumke's10 

articles for one- and two-phonon processes treated by 
this method), while a second approach is to consider the 
effect of the electron-phonon interaction on the lattice 
and electron wave functions first, and then calculate the 
absorption using first-order perturbation theory with 
just the electron-radiation interaction as the perturba
tion. I t seems likely that in many cases the second 
method will provide advantages over the first, as it 
avoids the consideration of large numbers of inter
mediate states,11 and it also offers the possibility of being 
used when the electron-phonon interaction is too strong 
to be treated by perturbation theory. For optical pho
nons it has the additional advantage that use may be 
made of the extensive literature on the theory of 
polarons. 

This second method is used in this paper to deal with 
transitions involving polarons in narrow bands for which 
"small" polaron theory applies. Much of the work is 
similar to that of Pekar12 and of Perlin and Palistrant13 

on optical transitions in and from F centers in the alkali 
halides. 

In Sec. I I the theory of absorption is given for two 
cases: (1) for transitions of electrons from a wide valence 
band for which the coupling with the phonons is 
neglected, to a small polaron conduction band; (2) for 
transitions between two small polaron bands. Indirect 
transitions via a third band and exciton absorption are 
briefly discussed. 

In Sec. I l l the range of validity of the theory of Sec. 
I I is discussed, estimates of the parameters of the theory 
and of the importance of some neglected factors are 
made, and some simplifications of the results at low and 
high temperatures are indicated. 
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13 Yu. E. Perlin and M. E. Palistrant, Opt. Spectr. 9,320 (1960). 

In Sec. IV a model involving interaction with a single 
harmonic oscillator is used to give a discussion of the 
effects on absorption of an interaction between an 
electron and lattice vibrations quadratic in the vibra
tional coordinates. The connection between this type of 
interaction and Urbach's rule is shown for this model. 

In Sec. V the applicability of the theory to the 
transition metal oxides (in particular, NiO) and the 
alkali halides is considered. 

II. THEORY OF ABSORPTION 

A. General 

In this section we shall be concerned with a system 
with a Hamiltonian Htot given by 

Htot=H+Hr+He~r, (1) 

where Hr and H€~r are the radiation Hamiltonian and 
electron-radiation interaction for a radiation field which 
has already been modified from the free radiation field 
by the introduction of a refractive index, and 

H=He+Hv+He-v, (2) 

where He is the electron Hamiltonian for a crystal with 
the atoms in their lattice sites, Hp is the phonon 
Hamiltonian, and H^~p represents the electron-phonon 
interaction. 

If the eigenfunctions of H are given by 

B\s)=E.\s), (3) 

then standard absorption theory gives the following 
expression for the electronic absorption coefficient K 
for electromagnetic radiation polarized in the x direction 
as a function of photon energy 0, provided that the 
wave vector of the radiation is negligibly small: 

A 
tf(G)=—Av.E \(s\ L (d/dxi)\s>)\* 

XB(E.'-E.-Q). (4) 

Here n is the refractive index (which may be a function 
of O), %i denotes the x component of the ith electron 
coordinates; the sum inside the matrix element is over 
all electron suffixes i, Avs Y,s> denotes a thermodynamic 
average over all initial states | s) energy Es and a sum 
over final states | s'), energy £s>, and 

1 4 T T W 

where V is the volume of the system, m and (~e) are 
the mass and charge of an electron, and c is the velocity 
of light in vacuo. The refractive index n may depend to 
a large extent on the same electronic processes con
sidered here as contributing to the absorption. Thus, 
our theory cannot be used to predict the absorption 
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coefficient K itself but only a relation between n and K. 
However, we should remember that K will vary over 
many orders of magnitude near an absorption edge 
while n normally remains of order unity, and so the 
general form of the dependence of K on photon energy 
12 may be obtained by supposing n is constant. 

In the following subsections we shall specialize to the 
case where Ee and He~p can be expressed as a sum of 
one-electron Hamiltonians, shall ignore all branches of 
the phonon spectrum except one, and shall take wave 
functions which are approximate eigenfunctions of the 
part of H referring to a single electron for the special 
cases of narrow bands for which small polaron theory 
applies, or of a wide band with He~p neglected. 

B. Wide Band to Narrow Band Absorption 

In this subsection, we shall consider absorption of 
radiation in an ionic crystal due to transitions from 
states consisting of an electron in a wide valence band 
plus free phonons, to states containing an electron in a 
narrow conduction band, whose wave functions are 
given to a good approximation by a linear combination 
of states with the electron localized on a lattice site and 
surrounded by the lattice polarization induced by such a 
localized electron cloud.14 Only one branch of the 
phonon spectrum will be considered. 

Thus, we take initial and final states \a) and | / ) 
given by 

1 
\a)=\vk{n})= wk(r) exp(^k-r) I I |»w), (6) 

| / > = | * ' { » ' » = — - Z e*p(*k ' .R ' )*(r-R' ) 
N1'2 R' 

xni»w',/w(R')>. (7) 
w 

In (6) and (7) v and c stand for valence and conduction 
band, {n} and {nr} denote the sets of phonon occu
pation numbers nw and nW', N is the number of unit 
cells in the crystal, r is the electron coordinate, «k(r) 
is the periodic part of the Bloch function of wave vector 
k in the valence band (normalized within one unit cell), 
| nw) denotes the nwth excited state of the normal mode 
of wave vector w of the branch of the phonon spectrum 
being considered, the set of <£(r— R') are normalized, 
orthogonalized wave functions localized about lattice 
sites R', being orthogonalized atomic functions slightly 
modified by a deepening of the atomic potential well 
by the lattice polarization. The sum in (7) is over all 
lattice vectors R', the products are over all phonon 
wave vectors w, and \nw',fw), a displaced harmonic 

14 Although more often than not we expect valence bands to be 
narrower than conduction bands, we have chosen the reverse 
case in view of possible applications to the transition metal oxides 
(see Sec. V). The results, however, are expected to apply equally 
well to transitions between a small polaron valence band and a 
wide conduction band. 

oscillator state, is defined by 

1 
kw , , /w) = e x p { - J | / w | 2 } (&w t+/w*)nw' 

Xexp(-/W&w+)|0W), (8) 

where #w
f is the creation operator for a phonon of wave 

vector w, / w is a complex number, and we use an 
asterisk to denote the complex conjugate of any number 
or function. 

For more realistic wave functions the <£'s should 
depend on the instantaneous position of the ions on 
which they are concentrated and perhaps of their 
neighbors, but we shall not attempt to consider this 
dependence. There is a similar neglect of the dependence 
of electron wave function on nuclear positions in the 
valence band functions (6), and, using the semiclassical 
argument that absorption takes place so quickly that 
the ions do not have time to change their position during 
the absorption, and remembering that a first improve
ment on the electron wave function in (6) and (7) 
would allow the <f> on one ion and the part of u nearest 
this ion to follow rigidly the motion of the ion concerned, 
we might expect that the two errors have a tendency to 
cancel each other. 

Since the eigenfunctions of the Hamiltonian of a 
crystal must simply multiply by a phase factor on 
translation of all coordinates through one lattice 
distance, we require 

/ w (R ' ) = <*wexp(-iw-R'), (9) 

where dw is independent of R'. 
We shall assume an electron-phonon interaction 

Hamiltonian He~p linear in the phonon creation and 
annihilation operators of the form 

# e - * = E w Vw(b-J-bw)sw(r) exp(iw-r), (10) 

where the sw(r) are periodic functions of electron 
position r (normalized in unit volume), and the Fw ' s 
are constants with the dimensions of energy. If we now 
find the dw's by taking just one term of the sum over 
R' in (7), and minimizing the expectation value of the 
Hamiltonian as in strong coupling effective mass 
polaron theory,1 we find that 

*"*=-(—) J * * W * t o exp(;w-rK(r)<23r, (11) 

where cow is the angular frequency of the phonon of 
wave vector w, and 0 is a localized electron wave func
tion which is of the type occurring in (7) for the case 
when the lattice point is at the origin. If the electron-
phonon interaction arises from long-range forces only, 
then s w ( r ) = l , and, since we are supposing <j> is suffi
ciently localized for overlap between nearest neighbor 
<£'s to be small, it will be a fair approximation to put 
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exp( iw- r )~ l inside the integral in (11). Thus, in this 
case, we have 

J W ~ F W / W (12) 

The matrix element of (d/dx) between the initial 
and final states of (6) and (7) may now be written down 

Mwin)U>)=(vk{n} | (d/dx)\ck'{n'}) 

=— / d h Y , [ exp( ;k ' -R ' )K*( r ) exp(-*k-r ) 
N J R' 

X (d/dx)4>(r-R'))l I I <»w| »w',/w(R')>, (13) 
w 

where the r integration is over the whole crystal. 
We next restrict ourselves to a consideration of sets 

{n} and {n'} related by 

nw'=nw+l, w£{-4} , 

nw'=nw-l, w £ { £ ) , (14) 

nw'=nw, w(£{^4} or {B}. 

Here {̂ 4} and {B} denote distinct sets of phonon 
wave vectors. The quantities / and / ' are of the order 
of N~1/2, and hence are small. Thus, we can make use of 
the approximate relations 

(n,f\n,f')~l- (n+i)hh*-Im(fh*), 

<», f\ ( » + l ) , / ' ) ^ (»+ l ) 1 / 2 A*, (15) 

(n, f\(n-l), f^-n^h, 

where h is defined by h= ( / '—/) , and Im denotes the 
imaginary part. Writing 

* ( r - R 0 = Ek» ak„ exp[A"- ( r - R ' ) ] , (16) 

we find, using (9), that integration over r followed by 
summation over R' in (13) gives a zero result for the 
matrix element unless 

k ' - k + ^ A w - I B W=2TTL, (17) 

where L is a reciprocal lattice vector and J^A, Y,B 
denote sums over all w belonging to {̂ 4} and {B}, 
respectively, and that when (17) is satisfied 

i/kk'UH»'}=(?kii {^*(^w+i) i / 2} n i ^ w i / 2 } 
A B 

X e x p { - E K + D K I 2 } . (18) 
w 

Here H A and JJB denote products over all w which 
belong to {A} and {B}, respectively, and the sum
mation in the exponential, although strictly containing 
modified terms for w's in {A} or {B}, may be taken 
over all wave vectors, since the fraction of these in {A} 
and {B} will be negligible for cases of interest. Qk is 

defined by 

L' 

X \dh uk*(r) exp(2ir*L'-r). (19) 

Here the sum is over all reciprocal lattice vectors I / , 
and the suffix x on a quantity denotes its component 
in the x direction. We expect Qk to vary slowly with k 
for small k provided that it does not vanish at k = 0 . 

The absorption coefficient due to transitions between 
states given by (6) and (7) may now be obtained by 
using the extension of (4) to apply to our case, i.e., 

A 
K$)=— A v n £ E E |i^WU}U'}|25(energy), (20) 

flQi n' k k ' 

where A is given by (5) and M by (13), specialized to 
(18) for states which (14) and (17) hold, and the wave-
vector summations are over all occupied k in the 
valence band and all unoccupied k ' in the conduction 
band. We shall assume that the valence band is com
pletely full and the conduction band completely empty. 
Transitions in which occupation numbers of individual 
oscillator states change by two or more play a negligible 
part in the absorption for macroscopic crystals, and so 
(18) and (20) give sufficient information to determine 
the absorption coefficient in principle. However, the 
mathematics involved is very complicated even for 
simple functions Qk and dw. We shall concentrate on 
the features of the absorption which can be obtained 
without too many calculations. 

We shall restrict our considerations to optical phonons 
from now on, and neglect dispersion of phonon 
frequencies. 

We first split K up into parts according to the net 
number of phonons emitted during the photon absorp
tion process,15 i.e., we write 

K(il)= £ KP(Q), (21) 
p—~ oo 

where KP(Q) represents the part of the absorption 
taking place with a simultaneous net emission of p 
phonons, and po is the largest integer less than (£2/feo). 

Next we note that, since the matrix element of (18) 
does not depend on k', if we forget about the 8 function 
of energy on the right-hand side of (20), the summation 
over k' just selects the k' which satisfies the wave-vector 

16 The method used here of splitting the absorption coefficient 
into parts involving given numbers of phonons is useful only when 
phonon dispersion is small. For this case, the split-up enables us to 
obtain certain details of the shape of the absorption fairly simply. 
For a more general case use of the method of moments as developed 
in detail for electronic transitions between impurity levels in 
semiconductors and insulators by M. Lax [J. Chem. Phys. 20, 
1753 (1952)] and by R. Kubo and Y. Toyozawa [Prog. Theoret. 
Phys. (Kyoto) 13, 160 (1955)] would perhaps be advisable, at 
least for transitions between two narrow bands, 
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conservation condition. For a given {n} summation 
over the {n'} which contribute to KP(Q) may be per
formed by summing over all sets {^4}, {B} containing 
(m+p) and m members, respectively, and then over all 
m. The summation over sets {A}, {B} of a given size 
may be expressed in terms of a multiple sum over w's 
or, if (2m+p)<^N, as a product of simple sums over 
w's. Finally, since all nw's are independent, averaging 
over {n} just replaces all the nw's by n, where n is the 
thermal occupation number of the phonon states. 

Bearing in mind that the results of the last paragraph, 
we can show from (18), (20), and (21) that 

[nKp(Q)Qdn=A E | & 12RPy (22) 

where 

Rp= £ (n+l)m+*>(n)™ 
m==mi (m+p) \m \ 

X e x p [ - ( 2 n + l ) Z > ] , (23) 
with 

£>=EwK|2, (24) 
and m\ is zero if p is positive but equals (—p) if p is 
negative. 

If n^O we can also write Rp in the alternative form 

Rp= (l+l/n)^Ip(Z) e x p [ - (2n+l)Z>], (25) 

where Iv denotes a Bessel function of imaginary 
argument and 

Z=2\n(n+i)Ji2D. (26) 

I t is of interest to note that the absorption without 
assistance of phonons is decreased by the exponential 
factor in (23) due to the electron-phonon interaction, 
but that the total integral of nK£l is unaltered by the 
interaction. 

By writing down double summations over m and p 
and summing over p first it is straightforward to show 
from (23) that 

E * * = 1 ; E pRP=D=p (say); 
p=—co P=—oo 

(27) 

p——oo 

Thus, the mean net number of emitted phonons con
tributing to the integrated absorption equals D, while 
the mean square departure from this number is equal 
to [D(2n+1)~}. At low temperatures the mean number 
of phonons emitted multiplied by the phonon energy 
in some sense gives the length of the tail of the absorp
tion, since there is always some absorption without 
assistance of phonons, but most of the absorption is due 
to processes involving net emission of about p phonons. 
Alternatively, however, we may say that any absorption 
which would occur without electron-phonon interaction 
is spread into an energy region such that the root-mean-

square energy change is {((p— p)2)av}
ll2fioo. Thus, at 

low temperatures, according to which definition of the 
width of the absorption tail we use, we may say that 
this width is equal either to Dfico or to Dl/2fio). 

To obtain information about the shapes of the 
individual bands, we first make a further splitting of 
the absorption coefficient into parts iTp,m(0) due to 
processes where (m+p) phonons are emitted and m 
phonons absorbed. Thus, we have 

KM = E Kp,m(Q), (28) 
m = m i 

with mi=max(0, —p) as before. 
Now going back to (20) and (18) and using some of 

the arguments presented before Eq. (22), we see that 
if p and m are not both zero the dependence on 0 of 
Kp>m is given by 

ntiKp,m(Q) a / Pv(E)pc{Qt-EQ-p:hoi-E) 

XBPttn(E,Q)dE, (29) 

where EG is the energy gap, pv and pc are the densities 
of states per unit energy in the valence and conduction 
bands, and 

Bp,m(E^) = Av{\Qk\
2 I I l^w|2}. (30) 

A,B 

Here YLA,B denotes a product over all w's in {̂ 4} and 
{B}, and the average is over all k, k ' and sets {A}, {B} 
which contain (m-\-p) and m members, respectively, 
subject to the conditions that wave-vector conservation 
is satisfied and that 

Eck> = Q-E6-pfia>-E, (31) 

EVk=E, (32) 

where Ec^ and Ev^ are the energies above the bottom 
of the conduction band and below the top of the 
valence band of polarons and bare electrons of wave 
vectors k' and k, respectively (see Fig. 1). 

Now if we neglect the conduction bandwidth entirely, 
i.e., if we put 

Pe(E)=N6(E), (33) 

then (29) is considerably simplified, as may be seen 
by the following argument. Finding the average in 
(30) involves summations over k, k ' and sets {^4}, {B} 
which satisfy the wave-vector conservation conditions 
and (31) and (32); the summation over {̂ 4} and {B} 
gives a result which depends only on (k—k'); for the 
correct E the summation over k' will extend over all 
k' and hence over all (k—k;) (regarding wave vectors 
differing by 2TT times a reciprocal lattice vector as 
identical); thus the summation over k', {^4}, and {B} 
of HA,B \dw\2 gives a result independent of k, and we 
find 

Bp,m(E,Q) «Q2(E)^Avk\Qk\
2, (34) 
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FIG. 1. Energy band diagram for Sec. I I B. 

where the average is over all k which satisfy Eq. (32). 
Hence, when (33) is satisfied, using Eqs. (21), (22), 

(28) to (32), and (34), we find 

K(Q)=(A/n&) E F(tt-EG-phu)Rp, (35) 

where pi is the positive or negative integer defined by 

0 < f l - E c r - ^ i f e o ^ feo, (36) 

i.e., it is the largest integer less than {($2-—ZZ^/foo}, and 

F(E) = Q*(E)Pv(E). (37) 

If the width of the conduction band is not negligible, 
calculations become much more difficult. However, it 
is worth noting that for large (2m+p) the averaging of 
UA,B |dw | 2 in (30) gives a result independent of k and 
k' (see Appendix I ) . Thus (34) holds, and so the shapes 
of the large p, m bands can be obtained by simple 
integrations if Q(E) and the density-of-states functions 
are known. 

C. Narrow Band to Narrow Band Absorption 

1. Direct Process 

In this subsection we shall consider absorption due to 
transitions induced by the electron-radiation interaction 
between states of two narrow polaron bands, the states 
being of the type used for the conduction band in Sec. 
I I B. The process considered here will be direct in the 

sense that no intermediate state in a third band is 
involved, but indirect in the sense that phonon occu
pation numbers will change during the transitions. 

Thus, for initial and final states | a) and | / ) we take 

|a>= |ak{»}> = £ exp(ik-R)</>a(r-R) 
N112

 R 

X i I | n w , / a w ( R ) > , (38) 
w 

1 
| / > s |0k'{»'}>= £ e x p ( * ' . R ' ) # ( r - R ' ) 

N112 R' 

X I I |«w,7flw(R')>, (39) 
w 

where <j)a and <j>$ are localized, orthogonalized functions 
of the electron coordinate for the bands a and 0, con
centrated near lattice points R and R', 

/ i w (R) = dwexp(—iw-R), i=a , /3 , (40) 

where the divf's are independent of R, and the other 
notation is as in Sec. I I B, i.e., \nj) is defined as in 
(8), N is the number of unit cells in the crystal, k and 
k' are electron wave vectors, and the w's are phonon 
wave vectors. 

Calculation of the matrix element of (d/dx) between 
these states involves integrations over r and the phonon 
coordinates, and summations over R and R'. We have 
to distinguish two cases, one an electron transfer 
process where the main contribution to the matrix 
element is from R ^ R ' and the other a single site 
process where the main contribution is from R = R'. 

Transitions by electron transfer. For bands made up 
of localized functions of the same parity, such as the 
d bands in the transition metal oxides, or of functions 
of other suitable symmetry properties, 

/ • 
<£«*(*-

d 
-R)—<^(r-

dx 
•R)J 3 r -0 , (41) 

and so the terms with R = R 7 in the summations over 
lattice vectors in the matrix element of (d/dx) between 
the states of (38) and (39) vanish. 

The terms in the matrix element from R T ^ R 7 depend 
on differences of faw on one lattice site and ffiyr on a 
different site. Before proceeding further we shall make 
the simplifying assumption that 

daw=dpw=dw (say). (42) 

This equation will hold if the electron-phonon inter
action is due to Coulomb interaction with ions, and if 
the <£'s are sufficiently localized for overlap to be 
neglected and are also small enough for variations of 
the Coulomb field across 0 to be negligible. These 
assumptions are likely to be valid for the long-wave
length modes where the d's are determined mainly by 
the long-range interaction; but for the short-wavelength 
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modes, considerable departures from (42) might occur 
(see the discussion on NiO in Sec. V). 

We shall next suppose that contributions to the 
matrix element from R and R' differing by more than 
one lattice distance are negligible. Defining a(G) by 

a ( G ) s / <£ a*( r-R)—<^(r-R-G)<J3r , (43) 
J dx 

where G is any one of the set of smallest nonzero lattice 
vectors, using Eqs. (15) and (40), we can now show that, 
if {n} and {nf} are connected by the relations (14), and 
the wave-vector conservation condition and (41) and 
(42) are satisfied, then the matrix element of (d/dx) 
between the states (38) and (39) is given by 

Mafikk>in)in>} = (ak{n} | (d/dx)\0k'{n'}) 

= 2 C#(G) exp(ik-G) 
G 

X I I { [ l - e x p ( - ^ w G ) ] ^ w * ( ^ w + l ) 1 / 2 } 
A 

X l I { C e x p ( f w G ) -
B 

• i ] r f w ( 0 ^ } 

Xexp f - E 2 ( 2 » w + l ) | d w | * s i h / — ) (44) 

Here the summation is over all nearest-neighbor lattice 
vectors G, YLA and Y[B denote the products over all w 
in {̂ 4} and {B}, and, as before, the sum in the expo
nential can be taken over all w, since the fraction of 
w's in {̂ 4} and {B} is negligible for cases of interest. 
The exponential in (44) should be independent of G 
for a thermal distribution of phonons. 

To pass from the matrix element to the absorption 
coefficient, we again use (20), putting the band suffices 
a and /? on the matrix element and remembering to 
restrict the sum over k and k ' to occupied k in band a 
and unoccupied k' in band /?. For a general set of 
occupied k and unoccupied k' progress is difficult but, 
since we are concerned with narrow bands, at not too 
low temperatures any set of electrons in thermal 
equilibrium in bands a and f3 should be randomly 
distributed over the wave vectors k and k' of the bands. 
If this is the case, we find that we can ignore cross terms 
between different G in a sum over initial and final 
electron wave vectors of squares of matrix elements 
in (20). Thus, dividing K into partial absorption 
coefficients Kv due to processes involving the net 
emission of p phonons as before,15 assuming that all 
phonon frequencies are equal, and using arguments 
similar to those used in Sec. I I B to assist in the per
formance of the various summations in the expression 
for the absorption coefficient, we can show that 

nKp(Q)Qdtt = AnJl-—)Z \a(G)\2Hp, (45) 

where A is given by (5), na and n$ are the numbers of 
electrons in the bands a and /?, and 

S2m+p 

Hp= £ (n+l)™+*>(ny 
m=mi (m-\-p) \m! 

where 
X e x p [ - ( 2 n + l ) 5 ] , (46) 

S = E { 4 | < M 2 s i n 2 ( w - G / 2 ) } , (47) 

and wi=max(0 , —p) as before. S can be identified 
with the constant S in Yamashita and Kurosawa's 
article.4 

Equations similar to (27) give the mean net number 
of phonons emitted p, and the mean square deviation 
of this number from p, i.e., we have 

P=S, ((p-py\Y=s(2n+i). (48) 

Since our polaron bands are narrow in this case, the 
quantity [2%oo{{(p— p)2)av}1/2] gives a type of measure 
of the width of the envelope of the set of sharp lines for 
nQ,K predicted on our model. 

Another case of interest where some simplifications 
in the expressions for the integrated partial absorption 
coefficients can be made is that in which all the occupied 
k are so small that exp(ik- G) can be replaced by unity 
in the matrix element. For this case we shall make the 
additional assumptions that all states in 13 are empty, 
and that cross terms between different G's except equal 
and opposite ones do not contribute to the integrated 
absorption, either because all except a pair of a(G)'s 
are zero or possibly for some other reason. Since for 
electrons in thermal equilibrium the condition that all 
occupied k be small requires temperatures such that 
kT is much less than the polaron bandwidth, we shall 
restrict our considerations to T—0. Then, writing 

a(G) = b(G)+ic(G), 

where b and c are real, we can show that 

(49) 

/ 
nKp{Q)Q,dQ, 

=AnaZ' ( 1 / ^ 0 [ { | « ( 6 ) | * + | « ( - 6 ) | * } 5 * 

+ 2 { 6 ( G ) J ( - G ) + c ( G ) c ( - G ) ) f f * ] 

X e x p ( - S ) , (50) 

where £ ' denotes a sum over half the G's, and 

U=-£ {4|<fw|2 sin2(w-G/2) cos(w-G)}. (51) 
w 

We notice that U<S, and so the expression (50) reduces 
to (45), (specialized to the case T=0) if p is large, or 
for any p if 

b(G)b(-G)+c(G)c(-G) = 0. (52) 
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WAVE VECTOR 

FIG. 2. Energy band diagram for Sec. II C. 

To calculate the shapes of the individual absorption 
bands, whether or not our simplifications for the 
integrated absorption (45) to (47) or (50) and (51) 
can be used, we further subdivide Kv into KPtm's as in 
(28), and we see from the expressions for the matrix 
element and the absorption coefficient that 

ntiKp>m(tt) oc / Pa(E)pp(Q-EG-p1ia)+E) 

XCPim(E,tt)dE, (53) 

where pa and p# are the densities of states with respect 
to energy for the bands a and ft, and 

Cp,m(Q) = Av\ £ a(G) exp[>-(k+k')-G/2] 
G 

XlI{2itfw*sin(w-G/2)} 
A 

X l [ { 2 ^ w S m ( w G / 2 ) } | 2 . (54) 
B 

Here the average is over occupied k and unoccupied k', 
and sets {A}, {B} containing (m+p) and m members, 
respectively, subject to the conditions that wave-vector 
conservation holds and that k and k' satisfy 

Efr^Q-EQ'-phw+E, 

Eab=E, 

(55) 

(56) 

and /? (see Fig. 2). For large (2m+p) we can show that 
CPt7n is independent of E and 0 (see Appendix I I ) , and 
so the shape of the large p, m bands depends only on 
the density-of-states functions. 

I t is of interest to note that the expressions (45) and 
(46) for the integrated absorption for a random dis
tribution of initially occupied wave vectors are just 
the same as would have been obtained by taking 
localized polaron wave functions as initial and final 
states. Thus, when the polaron bandwidth is negligibly 
small, the actual absorption coefficient can be obtained 
by using localized functions, as we should expect. At 
temperatures above the critical temperature when the 
band picture breaks down, it seems probable, for photon 
frequencies greater than the probability per unit time 
of site jumps, that the absorption calculated by first-
order perturbation theory with localized initial and 
final states will give correct results, and so it appears 
that, except at very low frequencies, there will not be 
any sharp change in the absorption spectrum at the 
transition temperature. 

Transitions on one site. If the integral on the left-hand 
side of (41) is not zero, or if the electric quadrupole or 
magnetic-dipole contribution to the single site matrix 
element is greater than the overlap integrals a(G) of 
(43), then the main contribution to the matrix elements 
of the electron-radiation interaction between the states 
of (38) and (39) will come from R = R ' . The calculation 
of the absorption is rather simpler in this case than for 
electron transfer, and we find a set of absorption bands 
commencing at energies {Ea+pfuS) whose integrated 
absorption is proportional to a quantity defined as is 
Hp in (46), but with 6* replaced by a quantity T such 
that 

r=5D I(daw—dpw)\2 (57) 

where EQ is the energy gap between the bottoms of 
the bands, and Eak and Epv are the energies of polarons 
of wave vectors k and k' above the minima of bands a 

Hence we expect a smaller total width to the absorp
tion if transitions on one site are dominant than for 
absorption by electron transfer. 

2. Indirect Transitions via an Allowed Band 

If (41) holds under our assumption of neglect of the 
dependence of the $'s on the positions of the atoms 
about which they are localized, then the absorption due 
to the direct process considered in the last section will 
not be large, since electric dipole transitions are pre
cluded from the single-site absorption, and the quantity 
a(G) of (43) occurring in the electron transfer absorp
tion theory will be small because it is necessary that 
there be little overlap between different </>'s for our 
small polaron wave functions to be applicable. Thus, in 
some cases the main absorption may arise from a 
breakdown of the relation (41) due to changes of the 
<£'s when the atoms on which they are localized move 
from their perfect lattice positions. 

Since the change of electronic matrix elements with 
atomic position arises from a mixing in of electronic 
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states of higher bands with the original state, one may 
regard absorption arising from this change as indirect 
phonon-assisted absorption via a band to which dipole 
transitions are allowed. The effective matrix elements 
for a second-order process will be equal to an allowed 
dipole matrix element times an interband electron-
phonon matrix element, over an energy denominator 
equal to the difference in energy between the initial 
state and a state containing an electron in the inter
mediate band. Thus, we may estimate that the oscillator 
strength / for this type of transition satisfies 

/ - / o ( W , (58) 

where /o is the oscillator strength to the allowed 
intermediate band, E is a typical interband electron-
phonon matrix element, and EG is an average band 
gap. We may also deduce this result from Kubo and 
Toyozawa's work15 on this type of transition between 
impurity levels. The oscillator strength increases with 
temperature in this model. 

Since the interband electron-phonon matrix elements 
are likely to be smaller than the intraband ones, the 
width of the absorption will probably be determined 
by a quantity depending on the daw 's and dp^'s. If the 
main contribution to the matrix element between two 
states comes from <f>9s on the same atomic site, then the 
width will depend on the quantity T of (57), while if 
it comes from <£'s on different sites, then the parameter 
determining the width will be of the order of S of Eq. 
(47). 

Apart from the different constant determining the 
width, the shape of the absorption should be similar to 
that found for the direct process. 

D. Exciton Absorption 

1. Excitons from a Wide and a Narrow Band 

The problem of absorption by excitons formed from 
electrons in a small polaron band and holes in a wide 
valence band would be difficult to treat properly, since 
all the usual difficulties occurring in polaron theory, as 
to what extent the lattice polarization can follow the 
motion of the hole, will arise. However, some insight 
into the sort of thing to be expected may be obtained 
by supposing that the exciton wave functions are 
composed of linear combinations of states whose 
electron-hole part represents an electron localized on 
one lattice site with a hole moving in orbit around it, 
and that this complex is surrounded by a lattice 
polarization which depends only on the lattice point 
about which the electron is localized, and not on the 
instantaneous positions of the electron or hole. In this 
case, if we write the exciton-lattice interaction as the 
difference of two terms of the form (10), the first 
containing the electron coordinate r, and the second the 
hole coordinate r', we can show by the usual variational 

method that the oscillator displacements dj satisfy 

( r f w ' ) * = - ( - ^ ) L*(r,r')4>e{r,t') 
\no)w/ J 

X [exp (*w • r)sw (r) - exp (iw • t')sw {r'^dhdh', (59) 

where <j>e represents the electron-hole part of the exciton 
wave function when the electron is localized about the 
origin. 

If we expand the exponentials in (59) in powers of w, 
we see that the terms independent of w cancel. The 
terms linear in (w-r) and (w-r') will vanish from 
symmetry reasons if <f>e has a definite parity with respect 
to inversion about the origin and if sw(r) is even with 
respect to this inversion. [For interaction with longi
tudinal optical modes in a continuum polarization 
model sw(r) = l . ] Hence in such cases the first terms 
contributing to dj are those proportional to (w-r)2 

and (w • r')2. With an exciton of radius re the second of 
these terms will give a contribution to d^ of the order 
of (wre)

2 times that from the term unity in the ex
ponential, while the contribution from the (w • r)2 term 
will be negligible for small w, and so for w<(l/re) we 
expect | (dj/dyt) | ~ (w2re

2). 
On the other hand, for w> (l/re) the second of the 

two terms in (59) will be small, since the hole wave 
function will have small Fourier coefficients at these 
wave vectors, while the first term is approximately 
equal to dw. Thus, for w> (l/r«), | (dV/^w) | ~ 1 . 

If the phonons with which the exciton is interacting 
all have the same frequency co, then the absorption 
should consist of a series of bands commencing at 
energies (Ee+phoo), where Ee is the energy of the lowest 
exciton state of the band measured relative to the 
ground state, and p is any positive integer or zero. The 
integrated absorption for the ^th band should be 
proportional to Rp', where Rp is defined as is Rp in 
Eqs. (23) and (24), but with D and dw replaced by D' 
and dj, where dj is given by (59). From the remarks 
of the previous paragraph about the magnitude of the 
displacements dj we can see that the ratio of the width 
of the tail of the band-to-band absorption to that of 
the exciton absorption will be larger for small exciton 
radii. On the other hand, judging from a hydrogen-like 
exciton model, the ratio of the oscillator strengths of the 
band-to-band and exciton absorption should be of the 
order of (re/G)z, where G is a lattice distance.16 

If we subdivide the absorption coefficient into parts 
Kp>m due to processes in which (m+p) phonons are 
emitted and m phonons absorbed, then K0,o will be a 
line absorption, while expressions analogous to those 
for the band-to-band absorption of Sec. I I B with one 
of the bands of negligible width should be obtainable 
for the shapes of the other KPt7n bands. 

16 R. J. Elliott, Phys. Rev. 108, 1384 (1957). 
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2. Excitons from Two Narrow Bands 

Two types of excitons can be formed from states of a 
full and an empty narrow band: (1) linear combinations 
of states where an electron is transferred from one ion 
to a neighboring ion; (2) linear combinations of states 
where a single ion is excited. In both cases the system of 
excited electron and associated hole will be accompanied 
by displacements of the lattice vibration oscillators. 

Electron transfer exciton. If the bands are very narrow 
we should be able to forget about taking linear com
binations of the states where one electron is transferred 
from one site to another. The absorption problem then 
reduces to finding the absorption due to transitions 
from a polaron state localized on one lattice site with 
an electron wave function associated with one band, 
to a state localized on another site with an electron 
wave function associated with the other band. Since 
overlap integrals between anything but nearest neigh
bors will be negligible we need only consider excitons 
formed by transfer to a nearest-neighbor site. Our 
results are then formally just the same as those for 
electron transfer band-to-band absorption of Sec. II C 
in the limit of negligible bandwidth, i.e., we expect a 
set of absorption lines at energies (Ej+phco), where 
EJ is the energy to form an exciton without change of 
phonon occupation numbers, with the strengths of the 
lines given by (45), (46), and (47) with na put equal 
to the total number of electrons in the full band and 
n$=0. 

The complementarity of the exciton absorption 
described here and the band-to-band absorption of 
Sec. II C may be seen as follows. If the initial band a 
is nearly empty, then exciton states will not exist since 
formation of excitons is a manifestation of correlation 
which will be negligible for nearly empty bands. Thus, 
in this case, the absorption will be to band states as in 
Sec. II C. On the other hand, if a is nearly full, the 
requirement of orthogonality of the continuum states 
to the localized exciton states will drastically reduce 
the electron wave function of the final band near a 
hole, and hence will make absorption to the continuum 
states negligible. If a is about half-full, a localized 
electron model predicts that there will be two types of 
absorption, one at the energy at which it would occur 
if a were nearly empty and the other at a larger energy 
equal to the exciton energy for a full. The ratio of the 
strengths for absorption of these two types will be of 
the order of {na/{N—na)}, where na is the number of 
electrons in a. A band picture gives different results for 
partially full bands, but, if the bandwidth for a single 
electron in a is sufficiently small, the localized electron 
model should be best as soon as more than a few 
electrons are put into the band, since the gain of 
correlation energy by the use of localized electron states 
will easily overcome the small decrease of kinetic energy 
obtained by the use of spread out one electron wave 
functions. 

Single site exciton. If (41) holds for the relevant 
localized wave functions, electric dipole transitions to 
a single-site exciton state will be forbidden. Hence, in 
this case the absorption will probably be due to tran
sitions via a third allowed band, with the order of 
magnitude of the oscillator strength given by (58) and 
the width determined by the parameter T of (57). 
Calculation of the oscillator strength for this type of 
transition for ions in solid solutions have been per
formed by Liehr and Ballhausen.17 

III. DISCUSSION 

A. Conditions of Validity of Theory 

The conditions under which the polaron wave 
functions used for the narrow bands in Sec. I I represent 
a fair approximation to the stationary states of a system 
containing an electron in interaction with optical 
phonons may be best seen from a study of Holstein's 
articles,6 in which a one-dimensional molecular crystal 
model is studied in some detail. 

In these articles an examination is made of a set of 
differential-cum-difference equations for the amplitudes 
of electron wave functions at particular lattice sites as 
a function of coordinates describing the separation of 
nuclei in individual molecules. A first necessary con
dition for any sort of small polaron theory to hold is 
that these equations have stationary solutions, when 
nuclear kinetic energy is neglected, in which the 
electron is mainly concentrated on one site. I t is shown 
[see Eqs. (43), (46), and (36) of Part I of reference 6] 
that such solutions will exist if 

2 / « E & , (60) 

where / is the overlap integral of the electron Hamil-
tonian between nearest-neighbor molecular wave func
tions and Eb is the polaron binding energy for 7 = 0 . In 
our model for the conduction band in Sec. II B, making 
use of a general result of adiabatic polaron theory12 that 
the polaron binding energy is equal to half the increase 
of lattice energy arising from the displacements of the 
oscillators, we can show that 

Eb=±Dftw, (61) 

where D is defined by (24). 
However, Holstein has shown that the simple 

perturbation approach of using basic states consisting 
of an electron on one lattice site together with a set of 
displaced harmonic oscillators, and either forming 
linear combinations of these to form polaron bands at 
low temperatures or considering the probabilities of 
site jumps between these states by perturbation theory 
at high temperatures, is not valid except under stricter 
conditions than (60). These stricter conditions were 
found by comparing the above-mentioned perturbation 
approach in a two-site model with a different method of 

*7 A. D. Liehr and C. J. Ballhausen, Phys. Rev. 106,1161 (1957). 
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solving the differential-cum-diff erence equations for the 
amplitudes of the electron wave functions, which is 
analogous to the adiabatic method of solving 
Schrodinger's equation for a set of electrons and nuclei. 
The conditions are 

2J<(Ehyi*(tua)W, T<TC (62) 

/<7r-3 /4(^6)1 / 4(^^)1 / 4(M1 / 2 , T> Tc (63) 

where Tc is the transition temperature above which the 
band picture is replaced by the site-jumping picture. 

Although, if (62) or (63) are not satisfied, the adia
batic approach is more appropriate than the per
turbation method, the wave functions in the two cases 
do not appear to be drastically different provided that 
(60) holds. Quantities that do differ considerably in the 
two models are the relative binding energies of states of 
different wave vector at low temperatures, a greater 
bandwidth being obtained in the adiabatic approach, 
and the site-jump probability at high temperatures, 
also greater in the adiabatic theory. Thus, provided 
that we do not attempt to calculate polaron bandwidths 
by the perturbation method, we expect the theory of 
Sec. I I to give fair results for the absorption under the 
condition (60), subject to reservations noted in Sec. 
I I I C . 

B. Estimates of the Parameters D and S 

The breadth of the tail of the absorption as predicted 
in Sec. I I B and the total breadth predicted in Sec. I I C 
depend on the parameters D and S of Eqs. (24) and 
(47). Yamashita and Kurosawa4 have estimated the 
quantity 5 using a continuum polarization model and 
replacing summation over all wave vectors by an 
integration over a spherical region. We obtain their 
results and also calculate D by using (12) with the 
standard value of the continuum polarization model 
for F w (see, e.g., reference 1), which gives |dw | oc (1/w), 

1 / 1 l\#wmBX 
D=-[ ) — — , (64) 

and 
1 /•Wmax(? sin# 

(S/D) = 2 / dx. (65) 
wmaxG Jo x 

Here €«, and es are the high-frequency and static 
dielectric constants of the crystal, G is the modulus of 
the nearest-neighbor lattice vectors of Sec. II , and 
wmax is defined by 

f7 r (2£w/2^) 3 =l /F c , (66) 

where Vc is the volume of a unit cell of the crystal. If 
wm^G=Tr, then (S/D)~0.82. 

In most materials (e2wmax/fiw)^102 to 103, and so D 
and S can be quite large, 

C. Some Neglected Factors 

Leaving aside a discussion of effects connected with 
electron spins and of the difficult problem of deter
mining how far a one-electron model is valid, the fol
lowing factors neglected in the theory of Sec. I I should 
be noted. 

1. At low photon energies, the probability of induced 
emission of photons can become comparable with that 
of absorption. For a thermal distribution of electrons 
and phonons in the initial state, induced emission can 
be taken into account by multiplying the expression 
for the absorption coefficient obtained previously by a 
factor [1 — exp(—Q/kT)"]. This factor reduces to 
(Q/kT) if Q<KkT and will thus cancel any (1/12) de
pendence of the absorption coefficient in this region. 

2. The frequency spectrum of the phonons, instead 
of being concentrated at co, will normally be spread over 
a region of width Aco. We expect that the main effect 
of this dispersion on the absorption curves will be to 
spread the absorption at a particular energy for the 
p,mth. band of the theory over an energy region of 
width of the order of (2m-{-p)ll2hAo). Thus, a spread of 
fix* will be obtained if the number of phonons concerned 
is of the order of (co/Aco)2. 

3. Even when small polaron functions do represent 
a fair approximation to eigenfunctions of the Hamil-
tonian without radiation, the residual interaction which 
gives matrix elements between different small polaron 
states can modify our results slightly. If the residual 
interaction gives a lifetime r to our basic band or 
localized states, then we expect that the main effect of 
the interaction is to produce a smearing out of the 
absorption coefficient calculated at any given energy 
into a region of width (fi/r). Phonon dispersion or 
polaron bandwidth below the transition temperature 
will normally bring about a larger broadening than 
(ft/r) to all peaks except perhaps the zero-phonon one, 
and so in general the residual interaction will just add 
slight tails to the absorption round peaks which are 
sufficiently narrow not to have merged with the ones 
at energies feo above and below. The only case where 
more drastic alterations to the absorption can occur is 
at low photon energies and low temperatures. For this 
case we should note two points (1) For Q,<{%/T) any 
(1/12) dependence of the absorption will be flattened 
off if not already flattened by induced emission. (2) For 
transitions within one small polaron band in Sec. I I C 
the main absorption at low temperatures for any 
photon energy well below hoo will be due to the smearing 
out of the fictitious infinitely sharp peak at zero fre
quency. To calculate the detailed shape of the absorp
tion in this region we should have to use the second-
order perturbation approach,9 but with the residual 
interaction plus the electron-radiation interaction as the 
perturbation rather than the total electron-phonon in
teraction plus the electron-radiation interaction as used 
by Meyer in reference 9. 
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4. The effect of the interaction of the electrons in the 
wide valence band with the phonons, neglected in Sec. 
II B, would be difficult to take into account properly, 
but, since holes near the top of the valence band will 
interact quite strongly with the long-wavelength 
longitudinal optical phonons, the effective parameter 
D determining the relative magnitude of the various 
partial absorption coefficients i£p,m(Q), will be decreased 
for the absorption just above the threshold for any 
partial absorption band. This reduction in effective D 
for transitions producing low-energy holes will increase 
the absorption just above the threshold for absorption 
bands involving less than the average number of 
phonons, while the opposite will hold if the number of 
phonons contributing is above average. 

An order-of-magnitude estimate for the amount of 
the decrease of effective D may perhaps be obtained 
by assuming that we can treat the electron-phonon 
interaction in the valence band by introducing oscillator 
displacements dw for the low-energy holes as obtained 
in weak or intermediate coupling effective mass polaron 
theory. This theory gives dw's for these holes nearly 
equal to those for a small polaron band in the con
tinuum polarization model for w<u, where 
u— (2m*o)/fi)1!2, m* being the "bare" effective mass of 
holes in the valence band, and predicts a rapid decrease 
of the dw's for w>u. Thus, using the continuum 
polarization model for all our rfw's, we estimate that D 
is reduced by a factor (1—u/wmax), where wmax is 
given by (66). If m*~m, (u/wmax)~10r1 in most 
materials. 

5. Only one branch of the phonon spectrum was 
considered in Sec. II, and this branch was specified as 
an optical one for most of the section. Neglect of 
interaction of electrons with acoustical phonons is 
probably a fairly good approximation in ionic crystals 
which are not piezoelectric except perhaps for exciton 
absorption, where the effects of the electron and hole 
tend to cancel each other in the polar interaction. 

In piezoelectric crystals, if interaction with the 
polarization due to the acoustical modes is taken into 
account, one finds, using, e.g., Meijer's and Polder's 
article on piezoelectric scattering18 and Eq. (11), that 
dw depends very much on the direction of w, but that 
for directions for which it is largest 

Idvl^irg/V1'2^2, (67) 

where V is the volume of the crystal and g is a dimen-
sionless constant given by 

/V\^2 e*eij H-) . (68) 

Here e* is the effective charge on an ion, s is the velocity 
of sound in the material, e^ is a piezoelectric constant 
relating polarization and strain, es is the static dielectric 

18 H. J. G. Meijer and D. Polder, Physica 19, 255 (1953). 

constant of the crystal, and Mc is the total mass of the 
ions in a unit cell. 

Hence, an order-of-magnitude estimate of the total 
extent W of the tail of the band-to-band absorption 
which would arise for piezoelectric coupling may be 
found by putting 

I F ~ £ w M w | 2 t o , (69) 

assuming dw is given by (67) for all w in one branch of 
the spectrum, and replacing the summation over w by 
an integration over a sphere of radius wmax given by 
(66). The result is 

W~2g2(fiswmaJ. (70) 

This width should be compared with the corre
sponding quantity Dfio) for interaction with optical 
phonons, where D is given by (64) for a continuum 
polarization model. 

D. Simplifications at Low and High 
Temperatures 

It is of interest to notice that the dependence on p 
of the integrated absorption of the bands with net 
emission of p phonons, contained in the expressions for 
Rp of (23) and Hp of (46) is very simple at T=0 and 
for high temperatures. At T=0 we have 

Rp*D*/pl, (71) 

while if D is large, using (25) and (26) and an asymp
totic form for the Bessel function in (25), we can show 
that at temperatures such that kT>fio) the dependence 
of Rp on p is approximately given by 

Rpoc exp [ - (fiu/WkT) (p-D)22. (72) 

Thus, for the wide to narrow band case of Sec. II B, 
if we consider the conduction band to be of negligible 
width and replace the function F(E) of (37) by a step 
function (F is likely to start to rise as E1/2 and then 
flatten off), the dependence on energy of ntiK(ti) as 
given by (35) will be contained in the sum 

PI 

P=O 

at low temperatures, with pi defined by (36), while 
at high temperatures nttK will behave like an error 
function. 

Expressions for Hp of (46) at T=0 and at high 
temperatures are the same as (71) and (72) except that 
5 replaces D. Hence, from (45), we have a series of 
absorption peaks whose strengths have a roughly 
Gaussian envelope at high temperatures while at T=0, 
the strengths of the peaks at {Eo-Vpfio)) are propor
tional to (l/p)(Sp/pl). To obtain realistic absorption 
curves we must remember to allow for spontaneous 
emission, dispersion of phonon frequencies and residual 
interaction as discussed in Sec. I l l C. 
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To see the sort of absorption spectrum expected due 
to transitions within one narrow band we introduce the 
function g(u) by the defining equation 

g(w)== (l/u)Hull-exp(-ufio)/kT)'], (73) 

where Hu is defined as in (46) for integral u, and this 
definition is extended to nonintegral u in a natural 
manner. The function g(u) will be proportional to the 
absorption coefficient as modified by spontaneous 
emission at photon energy ufico when polaron bandwidth 
or dispersion of phonon frequencies is just sufficient to 
merge individual absorption peaks into a continuous 
curve, while when the individual peaks maintain their 
identity, g(u) for nonzero, integral values of u should be 
roughly proportional to the integrated absorption for 
the peaks at the corresponding photon energies. 

On Fig. 3 we have plotted giu) against u for two 

T 1 1 1 1 r 

FIG. 3. Plot of the function g{u) of (73) against u for the tem
peratures T=0 and T—{2ha/k)i with the parameter S of (47) 
satisfying S = 5. This function is expected to be proportional to the 
refractive index times the absorption coefficient at photon energy 
uhca due to transitions within one small polaron band (or between 
localized polaron states) when dispersion of phonon frequencies 
or polaron bandwidths are just sufficient to broaden the set of 
lines predicted with no dispersion and negligible bandwidth into 
a smooth curve, while, when individual absorption peaks are 
distinguishable, g{u) for nonzero integral values of u should be 
roughly proportional to the absorption strengths of the peaks at 
the corresponding photon energies. However, the only similarity 
between the behavior of g(u) for u<l on the T—0 curve and the 
expected absorption in the corresponding region is the fact that 
both g(u) and the absorption start to rise with decreasing u for 
some value of u<l. 

temperatures T==0 and T= (2hv/k) with the parameter 
5 of (47) given by 5 = 5 . When kT=2fio>, fcd.56, and 
the parameter Zf analogous to Z of (26) (with D 
replaced by S) satisfies Z / ~ 4 5 = 2 0 . The behavior of 
the absorption at low photon energies at T = 0 will not 
be closely related to giu) in the corresponding region. 
However, we do expect a steep rise with decreasing 
photon energies starting somewhere below the u=l 
peak and flattening off at energies 0<(ftA)> wnfre r 

is the scattering time associated with the residual 
interaction. 

The minimum in the low-temperature curve for g(u) 
would become more pronounced for larger values of S. 
I t should be noted that this minimum is of a different 
type from the minima in the absorption by polarons 
in the effective-mass model obtained by Feynman 
et at? Their minima are more analogous to those which 
we should obtain in our theory if we were to suppose 
that absorption to a polaron band of higher energy 
caused the falling absorption for large u in Fig. 3 to 
start rising again. However, even here the analogy is 
not very good, as, in the effective mass type of polaron 
theory, for strong coupling the potential well due to the 
polarization can introduce a number of bound electron 
states radically different from the states with no 
coupling, whereas in small polaron theory a deep well 
is already present, and the polarization merely effects a 
slight increase in the depth of this well, and hence is 
not likely to drastically alter the electronic part of the 
polaron wave function. 

IV. MODEL WITH INTERACTION QUADRATIC IN 
VIBRATIONAL COORDINATES 

In the last two sections we have considered optical 
absorption by electrons when the electron-phonon 
interaction is linear in the vibrational normal coordi
nates. However, for some cases, particularly for exciton 
absorption, interaction quadratic in these coordinates 
may be important. We can get some idea of what will 
happen under these circumstances by considering a 
model where the interaction is with one localized 
vibrational mode only, and is entirely quadratic in the 
coordinate describing this mode. 

For this case, if we use the adiabatic method to find 
the vibrational potential energy for two electron states 
a and b, then in general we shall have potential energy 
curves as functions of nuclear position which have 
different curvatures for the two states; thus we might 
have a configurational coordinate diagram as shown in 
Fig. 4. If we neglect the variation of the electronic 
matrix element with change of the configurational 
coordinate £, then the energy dependence of the ab
sorption may be obtained entirely in terms of matrix 
elements and energy differences between the vibrational 
energy eigenstates for the two potential curves. At high 
temperatures one may then obtain correct results for 
absorption by imagining that the lower curve is occupied 
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CONFIGURATIONAL COORDINATE 

FIG. 4. Configurational coordinate diagram with vibrational 
Hamiltonians given by (74) and (75). 

with a probability according to classical statistical 
mechanics, and that transitions take place vertically 
on the configurational coordinate diagram (i.e., with 
no change of £).15 If we choose a dimensionless \ such 
that the vibrational Hamiltonians Hva and Hvb for the 
two curves are given by 

/ i a 2 \ 
Hva=[ +J?)*co (74) 

and 
/ l a2 \ 

Hvb= + h R 2 e )fK»+E0 (75) 
\ 2 d£2 / 

(Hvb has eigenstates separated by energies Rftco), then 
the classical probability P(E)dE for the energy on the 
lower curve to have values between E and (E+dE) 
satisfies 

P{E) oc £-i/2 txp(~E/kT) (76) 

and the vertical energy difference AEV between the two 
curves at energy E on the lower one is given by 

AEv = Eo-E(l-Rz). (77) 

Hence we obtain the dependence of the absorption 
coefficient K on photon energy 12 

nSlK(V) cx CEo-O)-1/2 exp{ (Q-E0)/l(l-R
2)kT']} (78) 

for ti<E0y with a sharp drop at higher photon energies. 
At low temperatures, when the system is initially 

in the ground state on the lower curve, there should be 
one large peak in the absorption, due to transitions to 
the ground state on the upper curve, followed by peaks 

of rapidly decreasing magnitude at energies 2Rfua 
above the first one. (Matrix elements to every other 
level will be zero because the wave functions are 
alternately even and odd about the center.) 

The above arguments about the absorption should be 
valid for a quadratic interaction with a single normal 
coordinate up to a certain strength. However, for very 
strong interaction the point £ = 0 on the upper curve 
could turn into a maximum instead of a minimum; 
when we take into account some terms in the electron-
phonon interaction of higher order in £ we might expect 
a configurational coordinate diagram as shown in Fig. 
5, where the vibrational Hamiltonian for the lower 
curve is given by (74) as before, while the potential 
for the upper curve V(g) has the form 

V(Z) = E,-±eD%o>+0{e). (79) 

^ At high temperatures we can again calculate absorp
tion by assuming classical occupation probabilities on 
the lower curve and vertical transitions. If the £'s of 
importance are within the central quadratic portion of 
the upper curve we obtain 

nQK(Q) oc (E0-tt)-w e x p [ ( a - £ 0 ) / ( l + L 2 ) & r i , (80) 

for £1<EQ3 with a sharp drop at higher photon energies. 
I t is not possible to find the exact form of the ab

sorption at low temperatures without knowing the 
wave functions for the vibrational states for the upper 
curve. However, if we assume that the matrix element 
between the ground state of the lower curve and a state 
of energy Ex on the upper curve, such that Ex cuts the 
center portion of the upper curve at £i, is proportional 
to exp(—-JB£I2), where B is a constant, and also assume 
a uniform distribution in energy of the states of the 
upper curve, then the envelope K'(Q) of the absorption 
peaks at T = 0 is given by 

ntiK' (0) oc exp[ (Q/ftw) (45/L 2)] . (81) 

If we assume that the upper state wave function is 
of order unity at (•= &, and decays inwards at the same 
rate as a no-phonon harmonic oscillator wave function 
of frequency Lfco, then the overlap of the ground-state 
harmonic oscillator function xg and upper state wave 
function Xu at £ will satisfy 

X . * t t ) x « t t ) - e x p [ - i ? - H t t - { i ) 2 ] . (82) 

Hence, by integrating over all f, we may obtain an 
approximate value for B, 

Be*iL/(l+L). (83) 

This is the same as the value we obtain if we put the 
matrix element equal to the overlap at the value of £ 
at which this overlap reaches a maximum. 

The estimate (83) for B may serve as a rough guide 
for regions of photon energy such that the upper level 
reached lies well away from the maximum and minima 
in the upper state curve of Fig. 5, but detailed calcu-
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lations of wave functions would certainly be necessary 
to deal with levels near these extremes, and would be 
desirable for all levels.19 Numerical results for particular 
cases of the potentials of the form of Fig. 5 have been 
carried out by Somorjai and Hornig.20 

If an attempt to describe a combination of inter
actions linear and quadratic in the normal coordinates 
by a single vibrational coordinate were made, we should 
expect the shape associated with the linear terms near 
the peak of the absorption but that associated with the 
quadratic terms well away from the peak on the low-
energy side. 

A possible mechanism for giving a quadratic inter
action with vibrational modes which produce electric 
fields has been proposed by Toyozawa in a note on 
Urbach's rule.21 This mechanism is simply the reduction 
in energy AE of a polarizable electron or exciton state 
in an electric field of magnitude 8. This reduction 
satisfies 

AE=-%a82, (84) 

where a is the polarizability of the state. 
The relation between S and the vibrational coordinate 

£ for a localized mode will depend on details of the form 
of vibration. However, we may obtain rough estimates 
of the fields associated with localized modes in ionic 
crystals by imagining that we have a crystal composed 
of point charges, and considering a mode in which two 
nearest-neighbor ions of opposite charge move back 
and forth along the line joining them. We now suppose 
that there are no fields acting on the ions when they 
are in their equilibrium positions, and make the simple 
assumption that the field produced by the relative 
vibration of the two ions is equal to the change in 
Coulomb attractive field between them. Then, if we 
introduce the dimensionless vibrational coordinate £ for 
the mode of motion by writing £= (Mco/fi)1/2x, where 
M is the reduced mass of the ions, co is the angular 
frequency of vibration, and x is their relative displace
ment, we find that, in terms of £, the electric field at 
one ion due to the vibrational notion of the other 
relative to it satisfies 

S=(2e^^/a")(fi/M^2, (85) 

where a is the equilibrium separation of the ions. Hence, 
from (84) and (85), if we have an excited electronic 
state localized at the site of one ion, the polarizability 
a of this state required to give an upper configurational 
coordinate potential described by (79) is given by 

4a(e*)2= a6(L2+ l)Ma>2. (86) 

By putting Z = 0 in (86) we obtain the critical value 
for the polarizability at which the upper curve first 
becomes flat. The polarizability of the electron part 

19 See footnote 31 at the end of Sec. V. 
20 R. L. Somorjai and D. F. Hornig, J. Chem. Phys. 36, 1980 

(1962). 
21 Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 22, 455 (1959). 

of the exciton wave functions in the alkali halides may 
perhaps approach or exceed this value (see Sec. V), and 
so it is possible that our model will apply to exciton 
absorption in these materials. 

V. PARTICULAR MATERIALS 

A. Transition Metal Oxides 

The most striking group of ionic materials containing 
electrons in states made up from electronic functions of 
unfilled shells of ions such that the overlap integrals 
with neighboring ions of the same type are small but 
not negligible are the transition metal oxides which 
contain from 1 to 9 electrons in the 3d shell of the 
transition metal ions. A review of the properties of 
these oxides has been written by Morin.22 The five 3d 
one-electron orbitals in a cubic environment such as 
seen by the transition metal ions in the monoxides with 
the NaCl structure are split by the cubic field by an 
amount of the order of 1 eV into three lower c levels 
whose wave functions are mainly directed in between 
the anions, and two upper y levels, directed towards 
the anions. In a trigonal field there is a further slight 
splitting of one of the e levels below the other two. The 
first excited state of any ion in a cubic environment 
may be considered as produced from the ground state 
by excitation of an electron from an e to a y orbital. 
In many of the oxides there is a wide filled band formed 
from 2p oxygen wave functions a few electron volts in 
energy below the d bands. Thus, it would appear that 
the theories of absorption in Sees. II B and II C might 
both find application in these oxides. However, at 

CONFIGURATIONAL COORDINATE 

FIG. 5. Configurational coordinate diagram with an upper state 
vibrational potential of the form (79). 

22 F. J. Morin, in Semiconductors, edited by N. B. Hannay (Rein-
hold Publishing Corporation, New York, 1959), Chap. 14, p, 600, 
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present there does not seem to be any clear-cut indi
cation of absorption of the type predicted in Sec. I I C. 
This type of absorption is more likely to be noticeable 
in the oxides of the lighter transition metals Sc, Ti, and 
V, where overlap integrals are comparatively large, 
but more experimental information is available in NiO, 
and so we shall concentrate on this substance, first 
making estimates of the orders of magnitude of the 
parameters involved in the theory and then commenting 
on optical absorption results obtained by Newman and 
Chrenko.23 

We should note that the overlap integrals deter
mining the width of the d bands in these oxides are not 
simple overlaps between electron states of the tran
sitional metal ions, but involve transfer of electrons 
between the cations via oxygen ions. Complications 
would occur in our theory if we attempted to take this 
fact into account in a realistic way, but we shall not 
consider these. We shall also ignore difficulties asso
ciated with magnetic properties. 

NiO 

Taking the values €00=5.4, es = 12, and fux>—0.076 eV 
from reference 23, using the value 4.18 A for the lattice 
constant, and noting that for the NaCl structure of 
NiO there are four unit cells in a cube of the dimension 
of the lattice constant we find from (66) that 
wm a x=1.5X108 cm -1, and from (64) that on the con
tinuum polarization model Dc^9. Hence, if we take 
^maxG=7r, hoping that the error introduced by choosing 
a too small value of G will partly compensate that 
arising from taking a spherical Brillouin zone, we find 
from (65) that 3~7. 

There are eight d electrons per nickel ion in NiO and 
it is almost insulating when stoichiometric, showing, 
however, slight ^-type conduction which can be in
creased by doping. I t is thought that a filled 2p oxygen 
band lies at an energy slightly below the filled Sds 

levels, while the empty 3d9 levels lie a few electron volts 
higher in energy than the filled d states. 

According to Morin22 the mobility of d holes, deduced 
from a combination of thermoelectric power and con
ductivity data, increases sharply with temperature in 
the region investigated, i.e., room temperature and 
above, and so, if small polaron theory applies, the 
transition temperature Tc between the band and 
jumping region must be below room temperature. By 
interpreting the temperature dependence of the mo
bility according to their model24'4 Yamashita and 
Kurosawa estimate S~15 for samples with fairly small 
carrier concentrations and S~ 4 or 5 for highly doped 
material. They also find that the correct order of 
magnitude for the mobilities is obtained if the matrix 

23 R. Newman and R. M. Chrenko, Phys. Rev. 114, 1507 (1959). 
24 Holstein (reference 6) has pointed out an error in Yamashita 

and Kurosawa's derivation of the jumping mobility, but has 
shown that this error produces negligible deviations in their 
results from the true ones for most cases of interest. 

element of the electronic Hamiltonian between electron 
states on adjacent sites, which we call / , satisfies J^fiu. 
If we use the value D ~ 9 estimated above then from 
(61) E 6 ~4.5 fua. Thus, (62) is satisfied, (63) does not 
hold except at very high temperatures, while (60) is 
true if we allow a rather liberal interpretation of much 
less than. Hence, we seem to be about on the borderlines 
of applicability of small polaron theory in NiO. The 
site jump probability values at room temperature are 
of the order of 1011 sec--1, hence, the polaron energy 
levels are lifetime broadened by only about 10~4 eV at 
this temperature. 

We are now in a position to discuss the optical 
absorption results of Newman and Chrenko which are 
reproduced in Fig. 6. The rise in absorption at very 
low energies on the figure is due to reststrahlen absorp
tion, the 0.24-eV peak has been interpreted by Newman 
and Chrenko as connected with antiferromagnetic 
ordering, the peaks between 1 and 4 eV occur at posi
tions close to those for M++ ions in a cubic environment 
in MgO,25 and are thought to be due to transitions 
within one ion, while the long rise in absorption to the 
plateau above 4 eV is probably due to transitions from 
a filled oxygen p band to empty Ni + d levels. The 
various peaks between 1 and 4 eV are superimposed 
on a continuous background absorption which rises as 
1/(E-E0y, where £ 0 = 4 eV. The magnitude of the 
absorption background increases with increasing im-
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FIG. 6. Absorption spectrum of NiO at 300°K, 77°K. Dashed 
lines are interpolations. (This figure is reproduced from Fig. 2 of 
reference 23.) 

25 W. Low, Phys. Rev. 109, 247 (1958). 
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purity concentration, but, as far as the author is aware, 
the details of its origin are still obscure. 

Since there are indications that the mobilities of 
holes in the filled oxygen p band are quite large,21 this 
band is probably wide, while we have shown above that 
small polaron theory should hold for the d8 bands, and 
so may hold for the d? bands as well. Thus, the theory 
of Sec. I I B might apply to the long absorption rise 
and plateau above 4 eV in the figure. The optical 
phonon temperature corresponding to fiu—0.076 eV 
is 880°K, hence the phonon occupation numbers at 
room temperature are very small, and the theory with 
r = 0 should give approximately the correct shape of 
the curve. We can fit the observed absorption in this 
region quite well by using our theory for T= 0, assuming 
the function F(E) of (37) is a step function as suggested 
in Sec. I l l D, and adjusting the constant D, and the 
absolute magnitude and position in energy of the 
absorption to give the best fit to experiment. The energy 
gap required for this fit is 3.25 eV while the value of 
the constant D used is D= 8. This value is in reasonable 
agreement with D—9 estimated on the continuum 
polarization model. One would have expected to see 
signs of one or more exciton peaks somewhere near the 
low-energy tail of the curve, but perhaps these are too 
broad and weak to be noticeable. 

The main difficulty in accepting this interpretation 
of the absorption in this high-energy region is to 
reconcile having D~8 with the value of 5 = 1 5 for 
holes in ds shells deduced from mobility results. How
ever, the two values may not be incompatible since 
(1) D is probably associated with the oscillator dis
placements brought about by an electron in an Ni + 

d level, while S is connected with electrons in N i + + 

d levels; (2) departures from the continuum polari
zation model will affect the oscillator displacements 
for large w most, and these displacements can give a 
larger contribution to S than to D even for electrons 
in the same d states. (The maximum ratio of the 
contributions to S and D is 4, for w-G=7r.) The 
oscillator strengths of the absorption peaks between 
1 and 4 eV are of the order of 10~5, that of the narrow 
peak at 3.5 eV being slightly larger than the others. 
These peaks are probably due to transitions within 
a single Ni"1"4" ion taking place via an intermediate p 
band. The shape of the individual peaks on the 77°K 
curve can be fitted quite well by an envelope of ab
sorption lines at energies (Ei+pfiw), with fiw=0.076 
eV, of strengths proportional to (7Vy^>!), where Ei and 
Ti are energies and width constants associated with the 
ith peak. The parameters 7\- required are about equal 
to 3 or 4 for all the peaks except that at 3.5 eV for which 
Ti= 1 is better. 

This form of absorption shape is expected for single-
site excitons at low temperatures if the coupling with 
the longitudinal optical modes determines the width, 
and dispersion of phonon frequencies or lack of resolu
tion in the experiments is sufficient to smear out the 

individual lines into a smooth curve. As mentioned at 
the end of Sec. I I D the oscillator strengths for this 
type of transition should be of the order of magnitude 
given by (58) and the parameters Ti should be identified 
with T of (57) for the relevant electronic states. Values 
of T as high as four are not surprising, since, if we 
accept the value £b^l5 from mobility results, which 
value is about twice that estimated on the continuum 
polarization model, then a large fraction of the con
tribution to S must come from the short-wavelength 
modes. Thus, the short-wavelength modes are likely to 
be important in determining D too, and the dw's for 
these modes will depend on short-range forces which 
are sensitive to the details of the electron wave functions 
concerned. Hence T, which depends on differences of 
dw's for two bands, can be an appreciable fraction of D. 

We notice from Fig. 6 that the magnitude of the 
absorption at the peaks is decreased by a slight amount 
in passing from 300 to 77°K while the width is not 
noticeably altered, in agreement with the expected 
proportionality of the oscillator strength of the absorp
tion for indirect phonon-assisted transitions via an 
allowed band to (2w+l) , where n is the thermal 
occupation number of the phonons concerned. If we 
assume it is the longitudinal optical phonons which 
bring about the transitions, then the decrease of / in 
passing from 300 to 77°K should be by a factor 0.90. 

I t is of interest to try to see why electron transfer 
exciton absorption does not seem to be observed. Using 
the theory of Sec. I I C, expected to be applicable to 
electron transfer excitons as discussed in Sec. I I D, we 
can estimate the oscillator strength / for formation of 
this type of exciton on the assumption that the ratio 
of a(G) of (43) to the reciprocal of the ionic radius is 
of the same order as the ratio of nearest-neighbor off-
diagonal matrix elements / of the electron Hamiltonian 
to some energy E associated with the wave function on 
one lattice site. This gives / ~ (J/E)2. Taking the value 
J^fico estimated by Yamashita and Kurosawa and 
E~36 eV (the ionization energy of a free ion), we find 
/ ~ 4 X 10-6, which is not much less than the strengths 
of the observed single-ion exciton peaks. However, the 
larger width of the electron-transfer type of band could 
make it more difficult to see, and also the transitions 
will occur at higher energies than the free ion tran
sitions, and so may be mainly submerged under the 
large plateau above 4 eV. 

B. Alkali Hal ides 

The conduction band of the alkali halides is built 
up from alkali s states, and is thought to be quite wide, 
while there is evidence from the spin resonance work 
of Castner and Kanzig26 that the valence band, com
posed of halogen p functions, is very narrow, and 
Nettel27 has shown theoretically that this is likely to 

26 T. G. Castner and W. Kanzig, J. Phys. Chem. Solids 3, 178 
(1957). 

27 S. J. Nettel, Phys. Rev. 121, 425 (1961). 
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be the case. Hence, the theory of Sec. I I B might be 
expected to apply to the valence to conduction band 
absorption (the wide band is now the conduction band, 
but this should not affect the theory) and that of Sec. 
I I C to the absorption by holes. We should note 
however that, as for d bands in the transition metal 
oxides, one may expect modifications of the theory to 
be needed to take into account the fact that the narrow 
band is not made up entirely from functions on one 
type of ion. I t is also worth remarking that Toyozawa 
has suggested that the most important interactions in 
the valence band may be between holes and acoustical 
phonons.28 

The valence band p states in the alkali halides are 
normally all filled, and so to observe absorption 
involving transitions within the p bands requires the 
production of holes in the valence band by some means, 
such as irradiating with ultraviolet or x radiation, and 
then looking at the modification of the longer wave
length absorption by the presence of holes. The situation 
is complicated by the fact that the holes distort the 
lattice very anisotropically in their vicinity, forming a 
molecular ion with two nearest-neighbor halogen atoms 
lying in a [110] direction relative to each other. 
Delbecq et a/.29 have performed absorption experiments 
on x-ray irradiated KC1 and detect two absorption 
bands associated with holes, but we have not attempted 
to interpret their results. 

As far as the valence to conduction-band absorption 
is concerned, we find that experimentally, because of 
the high absorption coefficients in the band-to-band 
absorption region, the best absorption results have 
been obtained for the first exciton band. The absorption 
in the tail of this band can be described over many 
orders of magnitude of the absorption coefficient by 
Urbach's rule, i.e., 

K<$) oc exp[o- (a -£ 0 ) /&r] , (87) 

where EQ is a fixed energy and a is a constant of order 
unity. Departures from this law are obtained at low 
temperatures when T is replaced by a constant tem
perature To. Near the peak of the absorption the shape 
is Gaussian. 

The validity of (87) over a large energy region 
indicates, as suggested by Toyozawa,20 that the terms 
in the electron-phonon interaction quadratic in the 
normal coordinates are dominant in determining the 
shape of this absorption. As the energy of the peak is 
not far from that for free molecules, we might expect a 
localized exciton model to be a good approximation, and 
so we use our single vibrational coordinate model with 
an excited state vibrational potential energy given by 
(79) or (75). 

Extensive measurements of the absorption rise in 

28 Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 26, 29 (1961). 
29 D. J. Delbecq, B. Smaller, and P. H. Yuster, Phys. Rev. I l l , 

1235 (1958). 

KI have been made by Haupt,30 who obtains a value 
(7~0.8 in Eq. (84) and finds that T must be replaced 
by 2V^66°K at low temperatures. To explain an 
exponential rise at low temperatures we must suppose 
that the configurational coordinate model of Fig. 5 
applies with a potential energy given by (79). From 
(78) ignoring variations in {nQ) on the left-hand side 
and in (12—E0)~

1/2 on the right-hand side of the equa
tion, the value of L required to give cr=0.8 in (87) is 
L=0 .5 . If we use (81) and (&3)> then the parameter 
describing the low-temperature absorption satisfies 
kToC^.0.3 fico. Taking the frequency of the mode con
cerned as that of the long-wavelength longitudinal 
optical phonons, and using the approximate value of 
200°K for the longitudinal optical phonon temperature 
deduced from the results for KI for dielectric constants, 
refractive index, and restrahlen frequency given by 
Pekar,12 we find r 0 ^ 6 0 ° K . The agreement of this value 
with the experimental value of 66°K is better than one 
would expect in view of the many uncertainties in the 
theory.31 

If we ignore effects associated with the hole part of 
the exciton wave function, and apply (86) to the elec
tron part, using e*=e (electronic charge), a=3.53 A, 
M=30 amu (reduced mass of potassium and iodine 
atoms), and ^co=&X200°K, we find that the value for 
the electronic polarizability required to make L=0 .5 
is a= l.OXlO-22 cm3. This value may be compared with 
the potassium atom value of a = 4.6X10 -23 cm3. 

VI. CONCLUSION 

In Sec. I I use was made of the wave functions of 
small polaron theory to calculate optical absorption 
coefficients in ionic crystals due to electron transitions 
to states of a small polaron band: (1) from Bloch states 
in a band for which coupling to the phonons is neglected; 
(2) from another small polaron band. In both cases the 
squares of the moduli of matrix elements for transitions 
without change of phonon-occupation numbers are 
decreased by the electron-phonon coupling by the 
negative exponents of parameters depending on the 
temperature and on the sums of squares of the lattice-
oscillator displacements occurring in small polaron 
theory. The absorption lost because of this factor 
reappears in processes where phonons are emitted and 
absorbed, usually in such a way that the integral over 
energy of the product of refractive index, absorption 
coefficient, and photon energy remains constant, inde
pendent of coupling strength. The preferred occupation-

30 U. Haupt, Z. Physik 157, 232 (1959). 
31 Note added in proof. Use of the WKB method to find the upper 

state vibrational wave functions increases B from the value given 
by (83), and hence decreases the value of (kTQ/ncS) from that 
calculated above. For Z = 0.5 we now find that (kTQ/nco)c^.0.2. 
Thus, there is no longer good agreement with the observed T0 
in KI. This discrepancy may perhaps be understood in terms of 
a model involving interaction with two vibrational coordinates £i 
and £2, the interaction being linear in £1 and quadratic in £2, but 
with the strength of the quadratic interaction in £2 depending on 
the value of £1. 
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number changes during the absorption are of the order 
of the parameter occurring in the exponential men
tioned above. If the absorption is split into sub-bands 
for which (m+p) phonons are emitted and p phonons 
absorbed, then the shape of the sub-bands for large 
(2m-\-p) is determined by electronic matrix elements 
and density of states functions alone, while for small 
(2m+p) details of the electron-phonon interaction need 
to be known, unless one of the polaron bands concerned 
has negligible width. 

The theory of Sec. I I B for absorption due to tran
sitions from a wide band where electrons are uncoupled 
to the phonons to a small polaron band, specialized to 
low temperatures, negligible width for the polaron band 
and a step-function density of states for the valence 
band, predicts absorption roughly proportional to a sum 

E (DP/p[), 

where D is a constant given by (24) and pi increases by 
one when the photon energy increases by the phonon 
energy tua. With a value for D only slightly different 
from that estimated on a continuum polarization model 
this form of the theory appears to give a satisfactory 
account of the tail to the absorption plateau above 4 eV 
in NiO, and is likely to be applicable to the correspond
ing absorption tails in other transition metal oxides. 

The theory of absorption due to transitions between 
narrow polaron bands developed in Sec. I I C predicts 
rather weak absorption. In its simplest form, for 
negligible polaron bandwidth, it predicts a series of 
absorption lines at energy (EG+pfioo) (where EG is 
the band gap and p is an integer), such that the inte
grated absorption over these lines weighted by the 
photon energy and refractive index is proportional at 
low temperatures to [ (constant)V^Q, where the 
constant is either S of (47) or T of (57), according to 
whether electron transfer or single site processes are 
dominant. In practical cases phonon dispersion or other 
broadening mechanisms are likely to smear these lines 
into a smooth curve. This theory might apply to some 
results on absorption by holes in x-ray-irradiated KC1,28 

but no attempt has been made to interpret these results 
in detail here. 

The theory of Sec. I I does not predict absorption 
edges following a simple exponential rise with photon 
energy, and so cannot be used to explain Urbach's rule. 
However in Sec. IV a configurational coordinate model 
has been used to apply to localized excitons an idea of 
Toyozawa21 for estimating the line shape of absorption 
due to an exciton-phonon interaction quadratic in the 
coordinates of a single normal mode, and this model 
seems to be able to account for results on Urbach's rule 
in29 K I if rather large polarizabilities for exciton states 
are assumed. 

The use of approximate energy eigenstates of the 

electron-phonon system obtained from polaron theory 
to calculate the absorption with the assistance of many 
phonons offers great advantages over a many-order 
perturbation type of approach, and is conceptually 
simpler than the more sophisticated method used by 
Feynman et al.7 However, before the present method 
could be extended to polarons in a wide band, a further 
study of the stationary states of the electron-phonon 
system containing electrons of energy of the order of 
the phonon energy above the bottom of the band would 
have to be made. 

Note added in proof. The author has recently read 
some work of E. L. Nagaev [Soviet Phys.—Solid 
State 4, 1611 (1963)], who points out that, except at 
J T = 0 , wave functions of the type occurring in Eq. (7), 
with fixed numbers of phonons in each displaced oscil
lator state, are not the best small polaron wave func
tions to use. One should first form suitable linear com
binations of states containing an electron localized on 
one site together with a given total number of phonons, 
but with various occupation numbers for the individual 
oscillator states. Bloch-type combinations of these new 
localized states may then be taken. Using this approach 
a distribution of effective overlap integrals is obtained 
at any given temperature. The mean value of these 
overlaps is equal to the overlap occurring in the usual 
small polaron theory, but the mean square value in
creases with increasing temperature. Thus, in some 
sense, the bandwidth becomes larger as the temperature 
rises, instead of becoming smaller as in conventional 
small polaron theory. 

The consequences of these considerations on the work 
presented here have not been examined in detail yet, 
but it seems probable that the results of Sec. I I B will 
not be altered significantly, since the parameter D de
scribing the shape of the absorption tail there is simply 
related to the binding energy for zero overlap, which is 
not changed by the use of Nagaev's states. The present 
author is of the opinion that the results of Sec. I I C will 
not be altered much either, except perhaps at photon 
energies less than the polaron bandwidth. However, 
this matter requires further study. 
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APPENDIX A 

Any dependence on E and 12 of the average of 
H w | ^ w | 2 in (30) will arise from the dependence on k 
and k' of the sums SW of JIA,B \dw\2 over all sets 
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{̂ 4}, {B} containing (m+p) and m members and 
subject to the wave-vector conservation condition (17) 
for given k and k'. This sum SW satisfies 

S W a E d3Wi•. • dsw2m+P 

2m+p 

X I I |^w i |
23(k ' -k+EAW-ZBW-2 i rL), (Al) 

where the summation is over all reciprocal lattice 
vectors L and the integrations over w's are over the 
first Brillouin zone. We can simplify (Al) by noting that 

NZ 5(a-L) = E exp(*a-R), (A2) 
L R 

where a is any given wave vector and the summation 
on the right is over all lattice vectors R. Using (A2) the 
integration over individual w's can be performed 
independently. Writing 

j\dw\2 exp(iw-R)J3w=/(R), (A3) 

we find 

Skk' ex £ expp(k ' -k) - R ] [ / ( R ) ] 2 ^ . (A4) 
R 

Inspecting (A3) we see that 

l / (0 ) [> | / (R) | , R ^ o (A5) 

and so for large (2m+p) the main contribution to SW 
in (A4) comes from R=0. Hence SW is independent of 
k and k'. 

APPENDIX B 

Let us consider the sum TW defined by 

ZW= E ' IE«(6)expp(k+kO-G/2] 
{A},{B} G 

XlIC2«w*siii(w6/2)] 
A 

XnC2^wsin(w-G/2)] |2 , (Bl) 
B 

where Y*,'{A},{B) denotes a sum over all sets {A}, {B} 
containing (m-\-p) and m members and satisfying the 
wave-vector conservation condition (17) for given k, 
k'. Suppose we separate the sums in (Bl) into sums of 
terms for the individual G's and sums of cross terms 
between different G's we find that the ratio of magni
tudes of the contribution from the cross term between 
Gi and G2 to that from the sum of terms for Gi and G2 
separately is of the order of r, where 

r<(S'/SY™+*, (B2) 

with S defined by (47) and 

S'=T, {4|rfw|2 sin(w6i/2) sin(w-G2/2) 
w 

Xcos[w(Gi-G2) /2]}. (B3) 

Now it is apparent that \S'\ <S, and so r is small for 
large (2m+p). Thus, for large (2m+p) the terms from 
the individual G's contribute independently to 7W> 
and so the arguments used in Appendix I to show that 
Skk' is independent of k and k' for large (2m+p) can be 
applied to Tkk'. 

Any dependence of the average in (54) on E and 9, 
would come in through a dependence of Tkk' on k and 
k'. Hence we have proved our assertion that this average 
is independent of E and £1 for large (2m+p). 


