
P H Y S I C A L R E V I E W V O L U M E 1 3 0 , N U M B E R 4 15 MAY 1963 

Rate of Capture of Electrons Injected into Superconducting Lead* 
ALLEN ROTHWARF AND MICHAEL COHEN 

University of Pennsylvania, Philadelphia, Pennsylvania 
(Received 21 May 1962; revised manuscript received 1 February 1963) 

The lifetime against capture into a Cooper pair of an electron injected into a superconductor is calculated. 
The electrons are assumed to have momenta close to the Fermi momentum, and the electron-phonon inter
action, which causes a change in the momentum of the electron accompanied by emission of a phonon, is as
sumed to be responsible for the capture. Umklapp processes, in which the lattice takes up some momentum, 
seem to dominate the rate. The matrix element for umklapp processes is determined from the experimentally 
measured high-temperature resistivity. The lifetime of an electron injected into lead at 1.44°K, is calculated 
as 1.67Xl0-8sec. 

I. INTRODUCTION 

THE lifetime of an injected electron in a super
conductor is of interest in determining the tunnel

ing current to be expected in superconducting sandwich 
experiments, and also must be taken into account in 
an accurate solution of the energy gap equation.1 By 
"lifetime" we mean the time it takes for the injected 
electron to be captured into a Cooper pair and become 
incapable of tunneling. Burstein, Langenberg, and 
Taylor2 discussed the possible use of sandwiches as 
detectors of microwave and submillimeter wavelength 
radiation. They also calculated by the principle of 
detailed balance the lifetime for radiative recombi
nation, obtaining for lead at 2°K, 0.4 sec, which seems 
too long to be the dominant mode of decay. More 
recently, Schrieffer and Ginsberg3 have calculated the 
lifetime for recombination by phonon emission and 
obtained for lead 0.43 X10~7 sec at 1.44°K, a result 
consistent with the upper limit experimentally obtained 
by Ginsberg.4 The Schrieffer-Ginsberg calculation 
involves an empirical constant, the Bloch constant, 
which measures the electron-phonon interaction. 
Schrieffer and Ginsberg evaluate the Bloch constant 
by fitting a theoretical formula to the measured high-
temperature resistivity of lead. In the derivation of 
the resistivity formula, umklapp processes (in which 
the lattice takes up some momentum) are ignored. 
However, umklapp processes are generally believed5 

to be responsible for the major portion of the high-
temperature resistivity. Nevertheless, the Schrieffer-
Ginsberg calculation is consistent and probably basi
cally correct; having neglected the role of umklapp 
processes in evaluating the electron-phonon interaction, 
they also neglect the role of umklapp processes in the 
recombination of electrons. The two effects essentially 
cancel, i.e., the electron-phonon coupling is over-
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estimated by ignoring the role of umklapp processes in 
the resistivity, but the subsequent neglect of umklapp 
processes in the recombination calculation offsets the 
overestimate of the coupling. 

In this paper we calculate the lifetime, attempting 
to calculate separately the rates of recombination via 
"normal" and umklapp processes. We find that the 
umklapp process is the dominant one, and the calcu
lated lifetime is a bit shorter than that obtained by 
Schrieffer and Ginsberg. 

The matrix element for umklapp processes is esti
mated in Sec. II from the measured high-temperature 
resistivity, regarding the matrix element for normal 
processes as known from theory. The rates of recombi
nation via normal and umklapp processes are calcu
lated in Sees. I l l and IV. 

II. DETERMINATION OF MATRIX ELEMENT 
UMKLAPP PROCESSES FROM HIGH 

TEMPERATURE RESISTIVITY 

FOR 

The electron-phonon interaction can be written as 

£rel-ph= 23 
kk'K\<r 

(q=k-k'+K) 

/ W \1/2 

( ) eqX-I(k,k') 
\2Mco(qX)/ 

Xck'<r*Ck*-4qx*+Hermitian conj., (1) 

where c^ annihilates an electron of quasimomentum k 
(in the extended zone scheme) and spin a and Aq\* 
creates a phonon of momentum q (restricted to first 
Brillouin zone), polarization X, and frequency co(qX). 
We shall assume that the unit polarization vector eq\ 
is parallel to q for X=l, and perpendicular to q for 
X=2, 3. The vector K is any reciprocal lattice vector; 
K=0 f or normal processes, K$^0 for umklapp processes. 
The number density of ions is N and M is the mass per 
ion. Reliable values for the vector matrix element 
I(k,k') are hard to obtain theoretically, especially when 
k—k' is as large as a reciprocal lattice vector (which 
is just the case which arises when studying umklapp 
processes). For small values of k—k', the matrix 
elements obtained from a free-electron picture ought 
to be reasonably accurate. Bardeen6 and Bardeen and 

8 J. Bardeen, Phys. Rev. 52, 688 (1937). 
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Pines7 obtain, for small k—k', 

I(k,k') = ( 4 T T Z W ) ( k - k ' ) , (2) 

where Z is the number of conduction electrons per ion 
(which we take as 4 for lead) and ks is the inverse 
Fermi-Thomas screening length defined by ks/ko= 0.814 
rs

112; ko= Fermi momentum; r8ao= (3/47riVZ)1/3; 
#o=Bohr radius. The form of I, plus the assumption 
that e q i = q / | q | , q-eq2=q-eq3=07 implies that in 
normal processes, for which q=k—k' , only longitudinal 
phonons (X=l) can be emitted and absorbed. I t will 
shortly be seen that if Eq. (2) is even approximately 
correct, then normal processes account for only a 
negligible fraction of the high-temperature electrical 
resistivity. 

The "relaxation time" approximation8 gives an 
accurate solution of the Boltzmann equation if the 
following conditions are fulfilled: (a) the single-particle 
energy depends only on | k | , (b) the relaxation time 
r(k) depends only on | k | , and (c) r(k) is nearly the 
same as r(k') if transitions are possible between states 
k and k'. 

I t is hard to estimate the error introduced by the 
failure of assumption (a) near zone boundaries. For 
simplicity, we shall assume spherical energy surfaces 
with ni*=rn. Despite the predominance of umklapp 
processes, (b) holds within 10% or less; the abundance 
of reciprocal lattice vectors makes all directions almost 
completely equivalent. 

Note added in proof. Dr. Y. Wada has pointed out 
that r(k) may become very small on certain small por
tions of the Fermi surface, in the neighborhood of points 
k which can be connected to another point k' on the 
Fermi surface by means of a reciprocal lattice vector. 
Whether or not this phenomenon occurs depends on the 
behavior of I(k,k') when k—k' is near a reciprocal lat
tice vector, but the "pathological" region on the Fermi 
surface is so small as to have little effect on the validity 
of the relaxation-time approximation, and produces no 
divergence in Eq. (3). 

Condition (c) will be fulfilled if the equilibrium occu
pation factors are approximately equal for all states 
between which transitions are possible. Since the maxi
mum phonon energy is kB®D (kB=Boltzmann constant, 
© D = Debye temperature) and the Fermi distribution 
varies on an energy scale determined by kBT, condition 
(c) will hold if T is large compared to ®D ( ® D = 9 5 ° for 
lead). The formula for the high-temperature electrical 
resistivity, in the relaxation time approximation, can be 
written as 

m2kokBT / 1 \ 
_ _ / £ [ e q x - I ( k , k O ] 2 ( l - c o s ^ y (3) 

rfZe2lfVKco2(qX) / 

The symbol ( ) denotes that k and k' are to be averaged 
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over the Fermi surface; 0 is the angle between k and k ' ; 
for given k and k' the sum over K is restricted to values 
of K such that q = k — k ' + K is in the first Brillouin 
zone, which will be taken as a sphere of radius qn. 
Condition (b) is equivalent to the statement that for 
fixed direction of k the average over directions of k' 
yields a value essentially independent of the direction 
of k. 

I t is easy to show that if k and k' are randomly 
chosen vectors on a spherical surface of radius ko, 
then the vector p=k— k' may lie anywhere inside 
a sphere of radius 2kQ, with probability distribution 
f(v)d3p= (Sirko2p)~1dsp. Furthermore, we have 1 — cos0 
= p2/2ko2. We assume the dispersion relation co(ql) = SLq, 
co(q2) = co(q3) = sTq, where sL and sT are the longi
tudinal and transverse sound velocities (in lead9 

^ = 2 . 3 5 X 1 0 5 cm/sec, j r = 1 . 2 7 X 1 0 5 cm/sec). Thus, 
the contribution to the resistivity from normal processes 
(K=0) is 

m2k0kBT r 1 /4xZe2\2 p2 

PN= / f(j>)d?p ( ) p2 

irWZe2MJp<qD sL
2p2\ ks

2 J 2k0
2 

irm2k0Ze2 kBT /qD\A 

ms
A MsAkJ' 

Using the "free electron" values k0= (3>ir2NZ)lld=1.57 
X10-* cm-1, qD/k0=(2/Zyi*, we obtain when 
T=273°K, pN= 1.8X10-19 esu which is to be compared 
with the experimental value10 p = 2 . l X l 0 - 1 7 esu. Thus, 
if one takes the matrix element (2) seriously, only 1% 
of the high-temperature resistivity arises from normal 
processes. 

The crystal structure of lead is face-centered cubic; 
the edge of the unit cubic cell is 4.94 A and the nearest-
neighbor distance is 4.94/V2 = 3.49 A. The reciprocal 
lattice is body-centered cubic. Sitting at any lattice 
point, one sees eight nearest neighbors at a distance 
i£=2.20X108 cm -1, six second-nearest neighbors at 
distance i£=2 .54Xl0 8 cm-1, twelve at K=3.6X 108 

cm"1, twenty-four at 4.22X108 cm"1, eight at 4.4X108 

cm -1 , etc. Since the maximum value of k—k' in (3) is 
2£0=3.14X108 cm"1, and the Debye cutoff is qD=1.25 
X108 cm -1, most of the contribution to (3) comes from 
the K vectors of length 2.20X108 cm"1 and 2.54X108 

cm - 1 . If one draws the Debye sphere of radius 1.25 X108 

cm - 1 centered at a K vector of length 3.6X108 cm -1, 
less than 20% of the volume of the sphere lies inside a 
sphere of radius 3.14X108 cm - 1 centered at the origin 
in K space (see Fig. 1). Furthermore, simple theories 
suggest that the matrix element I falls off as k—k' 
increases. Accordingly, we neglect all reciprocal lattice 
vectors except the two shortest ones. About 83% of the 
volume of a Debye sphere centered at i£=2.54X108 

9 W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930 
(1956). 

10 A. N. Gerritsen, in Encyclopedia of Physics, edited by S. 
Fliigge (Springer-Verlag, Berlin, 1956), Vol. 19. 
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FIG. 1. Kinematics of Umklapp processes. The change of electron 
momentum is represented by a vector inside a sphere of radius 
2&o=3.14X108 cm-1, and must be equal to the sum of a recip
rocal lattice vector K plus a phonon momentum less than 
qD = 1.25 X 108cm-1. Only the two shortest reciprocal lattice vectors 
K=2.20X 108 cm"1 and K=2MX 108 cm"1 contribute appreciably. 

exp(—ax), and it was found that (7) differs from (6) 
by 15% or less even in the "extreme" case a=l/qD 

(note that in this case the factor I2 varies by a factor of 
25 over the region of integration). 

The total resistance arising from umklapp processes 
is obtained by summing (7) over the eight K vectors 
of length 2.20X108 cm"1 and the "five" K vectors of 
length 2.54X108 cm -1 . We assume that the matrix 
elements are equal, i.e., I(2.20X108)==7(2.54X108=J*/. 
The total resistance from umklapp processes is 

m*kBT qDKrl 1 2 1 l 
pu=U + \lv\ 

AnZftPM k0
z L3 sL

2 3 sT
2J 

(8) 

cm - 1 lies inside a sphere of radius 3.14X108 cm -1 . We 
pretend that the entire Debye sphere lies inside, but 
compensate by taking the number of reciprocal lattice 
vectors of length 2.54X108 cm - 1 as five rather than six. 
The corresponding correction for the reciprocal lattice 
vectors i£=2.20X10 8 cm - 1 would be negligible. 

If, as in the Bardeen6 theory, one approximates the 
unit cell of the crystal by a Wigner-Seitz sphere centered 
at an ion, then I must be of the form 

k—k' 
I(k,k') = / ( | k - k ' | ) . 

Ik—kM 
(5) 

With this form for I, the contribution to (3) from a 
particular reciprocal lattice vector K is 

J q ir¥Ze2M x 
<fy/(q-K)-

Q<QD 
!(qX) 

X 
/e,x-(q-JVA z 

( — — — - ) [/(|q-K|)J(q-K)V2W. 
\ q-K / 

(6) 

We follow Morel11 in replacing all "slowly varying" 
factors in the integral by their values at the center of 
the Debye sphere, i.e., q = 0 . The rapidly varying 
factors, which require more accurate treatment, are 
[oj(qX)]-2 and the polarization factor (which varies 
rapidly because of the variation of the direction of eqx; 
the vector q—K may be replaced by K). We obtain 

Pu (K)=-
m2kBT ^i>|K| 

^Ze2¥M U 

r l l 2 1 1 

+ CKIKDJ. (7) 
L3 SL2 3 sT

2 J 

One might question the accuracy of the approximations 
leading from (6) to (7) on the ground that |q— K| 
varies considerably as q ranges over the Debye sphere; 
for example, if i£=2.20X10 8 cm - 1 then |q—K| varies 
from 0.95 X108 cm"1 to 3.45 X108 cm"1. The other 
factors, especially I2, may vary considerably over this 
range. This question was investigated carefully under 
the assumption that x£l(x)J* is proportional to 

11 P. Morel, J. Phys. Chem. Solids 10, 277 (1959). 

where 13 is the number of reciprocal lattice vectors 
which contribute and i£=2 .33Xl0 8 cm - 1 is a weighted 
average of the lengths of the reciprocal lattice vectors. 
If we believe that essentially all the observed high-
temperature resistance arises from umklapp processes, 
then Eq. (8) can be used to provide an experimental 
determination of Iu2, and we find 

Ji72=6.1Xl(>-62erg2cm4. 

Pines12 has proposed the formula 

f47rZe2 |k-k'K2 

2+k; 
[J(k,k')]2=( ) 

Vlk-k'I'+JLV 
(9) 

which gives, when | k - k ' | =K, 72=8.7X10-5 2 erg2 cm4 

in good agreement with the experimentally determined 
value. 

III. THE "NORMAL" PROCESS LIFETIME 

We are interested in a process in which an electron 
(momentum and spin k f ) injected into a superconductor 
combines with an unpaired electron (-— k'J,) to form a 
Cooper pair with the emission of a phonon. Using the 
BCS13 theory of superconductivity, one can represent 
the initial state by a typical excited-state wave function 
for the temperature in question in which the states k f 
and —k'J, are definitely occupied, and — kj, and k ' f 
are unoccupied. 

*i= n c(i-^1) i /2+v /2^1*] 
ki(G) 

ki ^k ,k ' 

x n ca-fc^w-v72] 
k2(P) 

k2 5^k,k' 

x n Ck3»3*Ckt*C-k' i**o (10) 
ksCS) 

k3^k,k ' 

The first product contains ground pairs, the second 

12 D. Pines, Phys. Rev. 109, 280 (1958). Pines does not explicitly 
discuss the polarization factor, but a simple theory must give a 
matrix element of the form (5). 

13 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 



1404 A. R O T H W A R F A N D M. C O H E N 

the excited pairs in which both members of a pair state 
happen to be occupied by excited particles, the third 
product contains singly excited particles. The pair 
operators are denned by 

and 

fe^CW^+eo2)1'2], €= (h2/2m)(k2-kQ
2), 

where €o is the temperature-dependent energy gap 
parameter and e the Bloch energy measured relative 
to the Fermi energy. We assume that we will be working 
at temperatures well below the transition temperature 
so that eo= eo (0). <£0 is the vacuum state. The final-state 
wave function has a component in which the pair state 
k (kf, — kj) (a pair state is labeled by the spin-up 
member) is occupied by a ground pair and a component 
in which the pair state k is completely unoccupied. 
This is true also for the pair state k'. The final state is 

*/= n ca-^+v'W] 
ki(G) 

x n [ ( I - M I / 2 V - V / 2 ] n ck3,3*$o. (ii) 
k2(P) ksGS) 

k 2 ^k ,k ' k 3 ^k ,k ' 

The k' pair state in the third product of the initial 
state can be any pair state occupied singly by — k'J,. 
The transitions which will be possible from the initial 
to the final state with an interaction of the type c*c 
are kf to k'f or —k'J, to —kj,. In the matrix element 
these two cases are coherent. In \I>/, k and k' both 
appear in the ground pair product. 

We are assuming that transitions are due to the 
electron-phonon interaction and, since the minimum 
energy to form a pair is 2eo, the phonons will have 
energies large compared to kBT; thus only spontaneous 
emission is important for formation of ground pairs. 
For normal processes, in which q=k—k' , we use the 
matrix element (2) which allows only longitudinal 
phonons to be emitted. The transition probability per 
unit time for the injected excited electron to decay 
into a ground pair can be written as 

2TT 
WN=—A £ K * / k ' t * C k t + c - k A - k a | ^ > | 2 

ft k' 

X | k - k ' | / ' 8 ( £ + E ' - f t ^ | k - k ' | ) , (12) 
where 

A = (M/2MsL) (4wZe2/ks
2)2, E= (e2+ e0

2)1/2, 

and / ' represents the result of averaging over a sta
tistical distribution of initial states and is the proba
bility that the state k' is occupied singly in a typical 
initial-state configuration. 

In Eq. (12) the matrix element squared as evaluated 
from BCS13 is ^[l+(e0

2-eef)/EEfJ When the sum on 
k' is carried out for values of kr above and below ko, 
e' will take on plus and minus values and the term 

linear in ef drops out. We can pass from the sum to an 
integral and calculating for a unit volume we obtain 

2TT A r r e0
2 "I 

WN= / 1 + _ exp(-E'/kBT) 
ft (27r)3A'>*0L EE'J 

X\k-k'\5(E+E'-fisL\k-k'\)dW, (13) 

where we have replaced f—[exp(Ef/kBT) + l']~1 by 
exp(—Ef/kBT) since the minimum value of E' is €o 
and, for T<TC, ex-p(eo/kBT)^>l. Approximating 
|k—k'| by 2k0 sin (6/2) and integrating over angles 
removes the delta function and introduces the factors 
2w(E+E')2/(fiSL)zko2. Changing variables from k' to 
£ ' , and taking slowly varying factors out of the integral 
since exp(—E'/kBT) acts as a sharp cutoff factor, we 
obtain 

WN= (ST)~^2MA (e,kBT)1l2tr^sL-zh--1(E+e,yE-1 

Xexp(-e0/kBT). (14) 

Evaluation, with €o=1.34X10"3 eV, yields 

1 ^ = 4 . 4 5 XltfT1 '2 e x p ( - 1 5 . 5 / r ) 
X ( £ + e 0 ) V ^ o 2 s e c - 1 . (15) 

At 1.44°K and E=e0 corresponding to the Schrieffer 
and Ginsberg calculation, we obtain [Wivr(1.44°K)]~1 

= 1.2XlO~6sec. 

IV. THE UMKLAPP PROCESS LIFETIME 

The rate of recombination via umklapp processes 
involving a particular reciprocal lattice vector K and 
phonons of polarization X is 

2TT M r fflW 1 
P M K X ) = / 

ft 2M5 X J |k-k '+K|<az>(27r) 3 |k -k , +K| 

/ k - k ' \ 2 l r eo2-ee'-| 

\ I k-k'I / 2L EE' J 

Xfd(E+E,-fisx\k-kf+K\), (16) 
where an electron-phonon matrix element of the form 
(5) has been assumed. If the injection energy E is close 
to eo, and T<TC, the magnitude of the phonon wave 
vector q = k — k ' + K is close to gw(X) = 2€o/fox which 
has the value 3.4X107 cm"1 for transverse phonons and 
1.8 X107 cm - 1 for longitudinal phonons. This is small 
compared with qn or K; accordingly we can say that 
k—k' is nearly equal to — K, and the matrix element 
I2 can be treated as constant. Since energy and mo
mentum conservation restrict K to the 14 shortest 
reciprocal lattice vectors, we can set I2 equal to the 
previously evaluated Iu2. The polarization factor leads 
to extremely messy geometrical considerations, and we 
shall replace it by | with, we believe, negligible error. 
If we write dzk'=k'2 sm0'd0'd<p'dk', where 6' is measured 
from the polar axis k + K , the angular integrations are 
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easily done, removing the delta function. We get a 
nonzero answer only if 

£ 0 - g m i n ( A ) < | k + K | < & 0 + 2 m i n ( X ) . ( 17 ) 

Otherwise the argument of the delta function never 
vanishes. Strictly, the condition (17) holds only when 
the injection energy E is equal to €0, and in other cases 
#min should be replaced by (E+eo)/fts\; we assume 
throughout that T<TC which implies E '^eo . Inte
grating over dk', we obtain 

1 Iu2 1 N mi e0\ 
Wu(K\)= ( H — - 1 

12(2TT)1/2SX2 | k + K | M¥\ E/ 

X (eofelT 2 e x p ( - e0/kBT) (18) 

provided (17) is satisfied; otherwise R^^(KX) = 0. 
The total rate Wu is obtained by summing (18) over 

polarizations and over all (if any) reciprocal lattice 
vectors K which satisfy (17). Most of the contribution 
comes from transverse phonons for the following 
reasons: (1) ST^^SL, and (18) varies as s\~2; (2) the 
condition (17) is more restrictive for longitudinal 
phonons than for transverse phonons; (3) there are 
two transverse polarization vectors. Accordingly, we 
neglect the longitudinal polarization. We evaluate Wu 
numerically, for the case when the injected electrons 
have energy E=e0 ( |k|=&o) and a wide spread in 
angles, by averaging (18) over the Fermi surface and 
summing over reciprocal lattice vectors. Only the 14 
shortest reciprocal lattice vectors can satisfy (17) with 
k on the Fermi surface. We are interested in the 
average over the Fermi surface of a function which 
equals | k + K | _ 1 when (17) is satisfied and is zero 
otherwise. An elementary integration shows that this 
average is equal to qmin/koK (provided K—ko<ko—qmin 

and i£+&o>&o+#min, which is the case of interest to 
us). Taking gm i n=3.4X10 7 cm"1, and £ > 2 . 2 0 X 1 0 8 

cm - 1 (eight times) and i£=2.54X108 cm - 1 (six times), 
we obtain the total rate Wu by replacing the factor 
I k + K I " 1 in (18) by *d-1[8(3.4X107/2.20X108) 
+6(3.4X107 /2.54X108)]=2.04^0-1 , setting s=sT, and 
multiplying by 2 for polarizations. The result is 

^ = 3 . 3 X 1 0 1 2 T 1 / 2 exp( -15 .5 /T) sec"1. (19) 

For T= 1.44°K we obtain 

[ j ^ ] - i = 1 . 6 7 X l O - 8 s e c . 

V. DISCUSSION 

Despite the difference in kinematics between the 
normal and umklapp processes, we obtain a lifetime 
not very different from the Schrieffer-Ginsberg value 
4.3 X10 - 8 sec. Most of the effect of the kinematics 
"cancels out" if one uses the high-temperature re
sistivity to determine the electron-phonon coupling. 

Schrieffer and Ginsberg assume equal Bloch constants 
(essentially the average over directions of #~2 |e-I|2) 
for longitudinal and transverse phonons in normal 
processes, while we take the Bloch constant for trans
verse phonons as zero [from Eq. (5)]. I t is hard to 
estimate quantitatively how wrong the polarization 
factors might be; but the assumptions that the unit 
cell is spherical and that phonons are strictly longi
tudinal or transverse seem reasonably accurate in a 
cubic lattice. 

We have taken Z equal to the valency of lead, 
namely, 4, and k0= (3w2N Zy'z= 1.57X10* cm.-1. 
Schrieffer and Ginsberg take Z = 1.24 and k0= 1.08X108 

cm -1 , the value of Z being determined by measurements 
of the anomalous skin effect.14 If we were to adopt the 
latter value of ko, the rate of recombination via 
umklapp processes would be greatly diminished. The 
inequality (17) could not be satisfied when i£=2.54 
X108 cm - 1 and would restrict k to a very small portion 
of the Fermi surface when i£^=2.20X108 cm"1. How
ever, neutron scattering15 provides a rather direct 
measurement of ko, and indicates a value very close to 
the one we have adopted. At this point we are probably 
encountering the limitations of the free-electron 
picture, and it is doubtful whether a set of parameters 
can be found which will account for all experiments. 
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