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We investigate in the limit as the range of part of the interspin interaction becomes indefinitely great, 
but is still small compared to the size of the system, the behavior of Ising models which have, in addition, 
a residual short-range interaction. We find that the only possible type of transition in this limit is the familiar 
Bragg-Williams type. We also investigate the passage of the three-dimensional Ising model on the simple 
cubic lattice to the long-range limit from the short-range limit, dimension by dimension. 

1. INTRODUCTION 

IN this paper we extend the results of Siegert1 on the 
Ising model in the limit in which all interactions 

become long ranged to the case in which there are 
residual short-range interactions. In the fourth and 
final section of this paper we show that even in the 
presence of short-range interactions, the existence of 
any interaction of infinitely long range is sufficient to 
force the nature of the transition to be of the Bragg-
Williams type, i.e., continuous energy and a discon­
tinuity in the specific heat. 

In the second section of this paper we discuss the 
general case and reduce the limit to a certain short-
range problem plus an equal interaction between all 
spins. 

In the third section we illustrate the results of the 
second section by a number of examples and use the 
examples to discuss the dimension-by-dimension long-
range limit for the Ising model on a simple cubic lattice. 
We find that taking the long-range limit in one direction 
alone is sufficient to obtain the qualitative nature of the 
complete long-range limit. We find also that increasing 
the range of the force raises the transition temperature, 
just as with the spherical Ising model. 

2. THE GENERAL CASE 

Siegert has shown1 that the Weiss-Bragg-Williams 
approximation is equal to the limiting case of an Ising 
model in which the range of the interaction becomes 
infinite in all directions in such a way that, although 
tending to infinity, it is still small compared to the total 
size of the system. The maximum interaction energy 
per spin is held fixed as the range becomes infinite. In 
this section we extend his result to the case where part 
of the interaction becomes infinitely long ranged and 
part remains "short" ranged. We find again that the 
limits of system size tending to infinity and the range 
of the force tending to infinity may be interchanged. 

Also, the shape of the long-range part (in the infinite 
limit) is not important in leading order but only its 
total strength. 

Let us consider an Ising model with both long- and 
short-range interactions. Let the energy be given by 

E/kT= - \ Zij vMu+Bifivj, (2.1) 

where A a is the short-range and Bid- is the long-range 
interaction. Following our development in a previous 
paper2 we may write the partition function as 

Z= (2TT)~N^ 

/ 

N N 

exp(— \ Y, %t*)Wl(%i) I I dxi9 

where N is the number of spins and 

9TCfe) = I I {cosh[£ xKA+BY^j]}. 

(2.2) 

(2.3) 

We shall assume that the indices k and 1 are ^-dimen­
sional position vectors and that A^\ and B±\ are func­
tions of (k—1) only. Also, we shall assume a ferromag­
netic interaction, i.e., ^4ki>0, B^i>0. We may then 
diagonalize A and B by introducing the eigenvectors 
2q and eigenvalues a(q) and 6(q), 

zq=N-ll2T,iexp(2wi(i'l)xh 

A^N-1 E q a(q) exp[> iq- ( 1 - k ) ] , 

Bkl=N~l E q 6(q) exppTriq- ( 1 - k ) ] . 

Equation (2.3) becomes 

(2.4) 

3TC(zq) = I I {coshliV-1'2 £ z£o(q)+b(qft 1/2 

Xexp( -2« 'q - l ) ]} , (2.5) 

and Eq. (2.2) goes into 

Z = (2T)" •W/2 f •••/"«p(-isi««i*)3rcwn&,. 
* Work performed under the auspices of the U. S. Atomic Energy Commission. 
1 A. J. F. Siegert (private communication). 
2 G. A. Baker, Jr., Phys. Rev. 126, 2072 (1962). 
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Our next step, following Siegert,1 is to expand (2.6) about the Weiss field value and by bounding the error, establish 
the limit as the range of the interaction B becomes infinite. First we may break up (2.6) as 

z= (2x)-™ f f ••• f exP(-§E k h a r c W n & , 
J zQ>0 J -co J q q 

+ (2T)~W« f f •• f e x p ( - | E |2q|
2)3Tl(2q) I I &« 

J zQ<0 J-oo J q q 

= 2 ( 2 x ) - w / / • • • / e X p ( - i £ l * , l s ) S r c W I I < k q , (2.7) 
J z0>0 J-<x> J q q 

as 2HX(2q) is manifestly even in all sq together since coshx is an even function of x. Now let us introduce a change 
of variables. Let 

Hf=H-{N/La(0)+b(0)2}ll%,oy. (2.8) 

Now, writing out 9TC and Z in the primed variables and dropping the primes we get 

9TC(*q) = I I {cosh£y+N-w E *q[>(q)+Kq)]1 / 2 e x p ( - 2 ^ q - l ) ] } , 
I * 

/

+CO , ,+00 , .+00 

/ • • • / e x p ( - | E l ^ - W C ^ O H K O ) ] } 1 ' ^ , , (2.9) 

-i^y/[«(o)+6(o)])3rc(s,) n &,. 
q 

Using the addition formula for cosh (a+/3) and defining 
A(q) = [a(q)+&(q)]1 / 2-D*(q)]1 / 2 , (2.10) 

we may rewrite (2.9) as 

/

+00 , .+00 n. 

/ • • • / e x p { - { i V / [ a ( 0 ) + K O ) ] } 1 / 2 ^ o - i ^ 2 / C ^ ( 0 ) + K O ) ] - i E k l 2 

-*{Ar/[a(o)+&(o)]}i/2y_oo J ^ 
+ E In cosh^+iV"1 /2 E 2 q [a(q)+5 q ,o&(0)] 1^- 2« q ' 1 )+E In c o s h ^ - 1 ' 2 E ^ ( q ) ^ 2 - ^ 1 ) 

1 q 1 q^O 

+ E lnl l+tanh^+TV" 1 / 2 E 2q[a(q)+5q,o&(0)]1^"27r^-1) t a n n ^ - 1 ' 2 E sqA(q)ef-27r^i)]} I I &q. (2.11) 
1 q q?^0 q 

We shall now expand the last two sums in the exponent where the f q are appropriate mean values of the 3q, 
of (2.11) to second order in the variables zq. I t is simple and we have identified Z(A*) as the partition function 
to show that the terms retained form an upper bound for an interaction A* with eigenvalues 
to the actual contribution of these terms to the inte- a*(a) = fl(q)+5 b(0) (2 15) 
grand when it is remembered that the argument of 
every hyperbolic function is real. This expansion is S i n c e> say> " % o f t h e contribution to the integral 

(2.11) defining Z(A*) comes from values of | s q | <M', 
2 sech y 2^ p q | b(q). (2.12) independent of the range of the interaction B and size 

of the system TV" (fixed y^O), the integral may be 
Differentiating the integrand of (2.11) with respect to truncated with arbitrarily small error e, hence, the |fq| 
sq, we find that if y satisfies bounded by, say, M(e). The contribution of the ex-

/y=:ra(Q\ i #(YV)1 tanrrv (2 IS) P°nential factor in (2.14) will therefore be bounded, in 
the limit as N —-> °o by 

then the point £ q = 0 for all q is an extremum. If r C \ 
[ > ( 0 ) + K 0 ) ] ^ 1 . 0 , then we may easily show that it is exp %N sech2;yM2(e) / |b(q)\dq\. (2.16) 
a maximum. By the mean value theorem3 we may write I J J 

( z . l l ; as According to the arguments given in our previous 
Z=Z(A*) exp{J sechV E \U\2Kq)}, (2.14) paper,2 we may bound 

q^° a 
3 See, for instance, P. Franklin, A Treatise on Advanced Calculus 

\b(q)\<M*UCi-+Rlldqj)-\ (2.17) 
(John Wiley & Sons, Inc., New York, 1949). ' - 1 
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where qj is the jth component of q and R is a range 
parameter proportional to the number of spins in the 
range of the interaction, B. Hence the contribution of 
the exponential factor is bounded by 

exp{±N stch2yM2(e)M':[_(lnR)/R1ld2d}, (2.18) 

which goes to zero as R —» °o. Thus, 

lim lim [(lnZ)/7V]=lim {\\nZ(A*)yN} 
R-*oo JV-»oo N-+00 

= lim lim [(lnZ)/iV], (2.19) 
JV-»oo R->oo 

which is the main conclusion of this section. The second 
equality follows3 from the uniform approach as N —> oo, 
and existence of the appropriate limits. In case B is not 

We assume cyclical boundary conditions M^+I=MI- We 
recognize the quantity which is raised to the Nth power 
as simply the one-dimensional Ising model with a 
"magnetic field" vi at each site. The solution of this 
problem is well known6 to be 

M 

Tr{II#«}, (3.6) 
where the Hi are 2X2 matrices 

/exv(K+2Kh) exp(-K) \ 
Hi=[ ). (3.7) 

\ e x p ( - Z ) exp(K-2Kvi)J 
4 M. Kac, Phys. Fluids 2, 8 (1959). 
6 G. A. Baker, Jr., Phys. Rev. 122, 1477 (1961). # 6 See, for example, D. ter Haar, Elements of Statistical Mechanics 

(Rinehart and Company, New York, 1958), Sec. 12.6. 

of full dimension d, the d in (2.17) and (2.18) is replaced 
by a smaller number. While the rate is affected, the 
fact of convergence is not changed. 

3. SOME EXAMPLES OF THE LONG-RANGE LIMIT 

In this section we will work out some examples of the 
results of Sec. 2. These examples will illustrate the 
results that the free energy per spin is independent of 
the shape of the interaction B. For the first example, 
we shall consider an Ising model on a simple quadratic 
lattice (two dimensional) with nearest-neighbor inter­
actions in one direction and infinitely long range in 
the other. We will consider the equistrength case, i.e., 
the maximum interaction energy per spin is the same 
in both directions, although the nonequistrength case 
is no harder. The partition function for this model is 

The effect of the Nth power is to permit the evaluation 
of the partition function per spin by the method of 
steepest descents7 in the limit as the number of spins 
becomes infinite in the long-range interaction direction. 
Hence, we have effectively reduced the integration in 
(2.5) to finding the maxima of the quantity which is 
raised to the Nth power in (3.5). 

We shall now obtain an upper bound. First, Eq. (3.6) 
is less than 

M 

2 I I Xma*(0, (3.8) 

7 See, for instance, H. Jeffreys and B. S. Jeffreys, Methods of 
Mathematical Physics (Cambridge University Press, New York, 
1950), Chap. 17. 

[ M ( 1 2V N N | - I 

KX\-T,Z >w+E vijvi+u] L (3.1) 
i=l [N 3=1 k=l j=l J J 

where K=J/kT. We may obtain a rigorous solution for the energy, etc., for this model by the use of the method 
of aGaussian random variables" which was introduced by Kac,4 and extended by us.5 Now we know the inte­
gration formula, 

/
+0O 

exp(-KNh2-2KNvi^)dvi. (3.2) 
-00 

Thus we may rewrite 3.1 as 
Z = E {2irKN)-M* / • • - / I I (dPi) exp -KNZ i> ; 2 +2^£ ^ U L W l j L (3.3) 

allw/=-=fcl J_ao J i=l L *=1 \ 3=1 / • i,j J 

I t is to be noted that the exponent has been partially linearized. We may rearrange (3.3) as 

/

+00 r M r dvi M n N M 

' • ' / n T T ^ ^ ; e x p ( - ^ £ p?) n C E exp(iT E 2 ^ i + ^ W i i ) J (3.4) 
J i=iL(2TrKN)1/2 »-i Jy - i ai i«/-±i t-i 

The second product depends on j only as a dummy variable, hence if we rename vi3', m, then our expression for 
the partition function becomes 

/

+00 r M dvi M M 

J <-i (2*KN)m *=i w~±i <-i (3.5) 
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where Xmax(i) is the largest eigenvalue of Hi. This 
bound follows by induction from the fact that all 
elements and eigenvalues of the Hi are positive and if 
we think of moving a vector from right to left through 
the matrix products we increase its magnitude at every 
step by at most a factor of Xmax©, irrespective of its 
direction. The two comes from the Hi being 2X2 
matrices. Using (3.8) we may now factor our upper 
bound for (3.5) so that the integrations over the h 
may each be done independently. We have for 

Xma*(*) = «* cosh2i^+[>2* sinh22^+e-2*]1/2 . (3.9) 

Thus, there is either one maximum for ^ = 0 , or, two 
maxima for Vi=±v(K) of exp(—iD>i2)Xmax©. Since 
the location of the maxima is independent of i, let us 
compare the value of the upper bound obtained above 
with that of a lower bound obtained by evaluating 
(3.5) by the method of steepest descents with all 
Pi=p(K). The contribution from (3.6) is6 

f+Xn (3.10) 

where Xmin is the other eigenvalue of Hi with P{=p(K). 
Equation (3.10) is, for large M, about \ of our bound 
(3.8). Hence, the lower bound here obtained is smaller 
than the upper by a factor of 2rN because of the 
difference between (3.8) and (3.10). It may also be 
smaller by a 2~M because of the possibility of there 
being two maxima for exp (—KPi2)\m^(i). However, as 

lim 2-<N+M"NM) = l, (3.11) 
N,M-*co 

we conclude that the partition function per spin is 
given by 

X(2Q= lim ZVW^ 
N,M-*oo 

max {exp(—Kv2)(eK cosh2Zi> 
-00 < ? < + <» 

+le2K smh22Kv+e-2KJ12)}. 
(3.12) 

Physically speaking, Pi is proportional to the value of 
the molecular field and we expect equivalence (*>*= v) 
between all rows. 

The critical properties of this model follow at once 
from (3.12). The equation for the critical point, i.e., 
where the maximum is no longer at v=0, is 

l = 2Kce
2K°, (3.13) 

which has the solution 2^0.28357164. When K is 
greater than Kc we determine v by differentiating 
(3.12) with respect to P and equating the result to zero. 
We find that P satisfies 

P=eK smh(2Kv)/(e2K sinh22KP+e-2K)112, (3.14) 

which has only the solution P=0 for K less than Kc 

and db v(K) for K greater than Kc. We may calculate 
the energy. It is 

o.o, 

FIG. 1. Sketch of the specific heat for the equistrength, two-
dimensional Ising model with long-range interactions in one 
direction and short-range interactions in the other. 

E = J 
2e~ 

.smh2i£Ksinh2i^+i> cosh2iD>) 
L-P2], 

K>KC. (3.15b) 

A simple calculation shows E to be continuous and 
equal to —0.27620749/ at the critical point. The 
specific heat is discontinuous at the critical point, and 
is 

Cv(Kc~) = 8kK*(l+2Kc)-
2=0.074278l3k, 

ACv=Cv(K+)-Cv(Kc-) 
= 3k(l+2Kc)

2/l2Kc(l-3e*K°)3 
= 1.5601429*. (3.16) 

E=-Jta,nhK, K<KC, (3.15a) 

Thus, we see that this model displays a typical Bragg-
Williams singularity, with a discontinuity in the specific 
heat and no discontinuity in the energy. We have 
illustrated the specific heat in Fig. 1. Above the critical 
point, the properties are the same as those of a col­
lection of uncoupled, one-dimensional Ising models. 
This behavior corresponds to the fact that the energy 
of a system with purely Bragg-Williams-type inter­
action is zero above the critical point. At the critical 
point the discontinuity in the specific heat arises from 
the transition to an ordered state caused by the long-
range interactions. It should be noted that the critical 
point comes at much higher temperature (KC=0.2S) 
than the Bragg-Williams critical point (i£c=0.5) in 
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the absence of the short-range interaction, but at a The spontaneous magnetization, which is propor-
lower temperature than given by the Bragg-Williams tional to v, is easily shown from (3.14) to be propor-
approximation to the whole system (Kc=0.25). Even tional to (K—Kc)

112 at the critical point. 
so, the numerical value of ACV is quite close to the value The partition function corresponding to A* for the 
3k/2, obtained in the absence of the short-range force, first example [^4* is defined by (2.15)] is 

M,N M,N 

Z(A*)= £ exP{lK/(NM)-](Z vi})*+K £ vtivm,s}. 
a l l vij = zkl i,3 i,3 

(3.17) 

By use of a formula like (3.2) we may rewrite (3.17) as 

/

+00 M,N M,N 

di>exv{-KNMv2+2KMNf> £ vij/(MN)~K £ *W+i,?}, (3.18) 
which may be rearranged [as in (3.5)] as 

/

+oo M 

dp{exp(-KMv2) E explKZ (2i>fxi+wi+1)~]}N. (3.19) 
-00 /**-±l * - l 

Equation (3.19) is, however, of the same sort as 
(3.5), except now we have the same "magnetic field" 
v at every lattice site. Thus, the solution proceeds as 
before, except without the additional complication of 
Vi instead of v. Hence, (3.12) is again the solution. 
This result is in agreement with (2.19). 

For our last example we wish to consider an Ising 
model on a simple cubic lattice in which there are 
nearest-neighbor interactions in two dimensions and 
an infinitely long-range force in the other direction. 
Again we consider the "equistrength" case where the 
maximum interaction energy per spin is the same in all 
directions. As the derivation is almost the same here 
as in (3.1) to (3.12) above, we shall discuss only the 
differences. The major difference arises in (3.6) where 
the Hi are now the 2 M ' X 2 M ' matrices as discussed by 
Onsager.8 Consequently, various 2 are replaced by 2M\ 
Also where Vi was previously a number, it must now be 
treated as a Jlf'-dimensional vector. However, one 
eventually obtains a "squeezing" equation similar to 
(3.11) and thus, if A(K,H) is the partition function per 
spin for the simple quadratic lattice with K—J/kT 
and H the applied magnetic field, then 

\(K)= max 
— 00 <j> < + « 

{exp(-Ki>2)A(K,2Jj>/m)}y (3.20) 

where m is magnetic moment per spin. The equation 
for the critical point corresponding to (3.13) is easily 
derived from the requirement that the second partial 
with respect to v vanish for v~0 at that point, ft is 

2KCX(KC) = 1, (3.21) 

where X is the reduced magnetic susceptibility X0kT/m2. 
Using the Pade approximant method9 to evaluate x(K) 
we may solve for Kc. We obtain i£c~0.1889619. The 

8 L . Onsager, Phys. Rev. 65, 117 (1944). 
s G, A. Baker, Jr., Phys. Rev, 124, 768 (1961). 

energy is again continuous and the specific heat dis­
continuous. The discontinuity is given by 

a 3 

ACV=-12KC
2\ ( l n A ) - l .{ (mA)-ll/ 

L2 di>2dK M 

[• 
a4 

di>4 

-(InA) (3.22) 
Kc,T> = 0 

The third partial derivative is expressible in terms of 
X(K). The fourth partial may be computed directly by 
the Pade approximant method from a series expansion 
in terms of diagrams in which all but 4 of the vertices 
are the meet of an even number of lines.10 We have not, 
however, done so. I t should again be noted that the 
critical point comes out at a much higher temperature 
than Bragg-Williams critical point (Kc=0.5) in the 
absence of the short-range interaction, or the short-
range critical point8 (Kc~0.4406868) in the absence 
of the long-range interaction. I t is also at a higher 
temperature than the short-range limit of all the 
interactions, i.e., the Ising model on the simple cubic 
lattice9 (Kc~0.22172), but a lower temperature than 
the Bragg-Williams approximation to it C&TC~ 0.166667). 

These results, together with corresponding results 
for the spherical Ising model,2 enable us to give a 
plausible discussion of the behavior of the Ising model 
(we discuss specifically the simple cubic lattice here but 
other lattices are similar) as the range of the interaction 
varies from nearest-neighbor to infinitely long. For 
nearest-neighbor interactions,11 the specific heat is 
singular on both sides of Tc. The nature of the singu­
larity is probably logarithmic on both sides but of 
smaller amplitude above Tc. Following the results for 

10 This result corresponds to that of T. Oguchi Q . Phys. Soc. 
Japan 6, 31 (1951)] for the reduced magnetic susceptibility. 

11 G. A. Baker, Jr., Phys. Rev, 129, 99 (1963); C. Domb, Phil. 
Mag. Suppl. 9, 149 (1960). 
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the spherical model2 and the one-dimensional Ising 
model5 we think that the quantitative nature of the 
transition does not change as the (strength preserving) 
range increases, although the transition temperature 
increases. In the limit in which the range in any one 
direction becomes infinite, we obtain a typical Bragg-
Williams transition. I t probably looks much like Fig. 1. 
The infinite part of the specific heat curve is squeezed 
to the critical point and disappears in the limit as the 
range becomes infinite. The nature of the short-range 
interaction transition is thus completely obscured in 
this limit. If the long-range limit is taken in another 
dimension we obtain a nonequistrength version of Fig. 
1. If the final long-range limit is taken, the variation is 
rather minor and the standard Bragg-Williams approxi­
mation is obtained. As pointed out in Sec. 2, the shape 
remains practically unchanged and the transition 
temperature increases. 

4. LONG- AND SHORT-RANGE MODEL IN TERMS OF 
THE SHORT-RANGE PARTITION FUNCTION 

We point out in this section that many of the results 
obtained for the special examples in the previous section 
are more generally valid. From (2.19) it follows that 
we may evaluate any long-range limit of the type 
discussed by considering Z(A*). Thus, letting b=b(0), 
we have 

Z(A*)= E e x p C - i E M w + f t C ^ ) 2 / ^ ] , (4.1) 
all states i,3 i 

which may be identically rewritten as 

Z(A*)= E (IvN/b)-1** 
all states 

/

+oo 

dvtxp(-Nv2/b-2i>J^ vi) 
-CO i 

X e x p [ - J E M ^ y ] . (4.2) 
i,3 

If we introduce \(K) = [Z(A*)JIN, the partition 
function per spin, and A(K,H) = \\Z(A)21,N, then in 
the limit as N —> <*> 

\(K)=\(2TN/b)-^ 

/

+oo i 1/iV 

dv [ e x p ( - v2/b)A(K,2kTv/m)Y . (4.3) 
In the limit as N —* oo we may evaluate the integral 
by the method of steepest descents.7 Hence, 

\(K)= max {exp(-v*/b)A(K,2kTv/m)}, (4.4) 
— oo < j> < oo 

which is the same result as (3.20). The equation for the 
critical point is 

2bX(Ke)=l (4.5) 

in analogy to (3.21), where X is again the reduced 
magnetic susceptibility. A formula similar to (3.22) 
holds for the discontinuity in the specific heat. We wish 
to point out that in all models in which X is singular, 
the smallest amount of long-range force or, for that 
matter, of effective long-range force introduced through an 
approximate solution procedure forces a Bragg-Williams 
type solution. If the amount of the long-range force is 
very small, then at moderate distances from the critical 
point the specific heat will look very much as it did 
without any long-range interaction; however, near the 
critical point the presence of any long-range force is of 
overriding importance. 
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