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A theoretical estimate of the polarizabilities of ions in the alkali halides is made by means of a procedure 
based upon the product approximation which distinguishes the ionic constituents in the crystals but allows 
for their overlap and mutual interaction. Analysis by means of the Thomas-Kuhn sum rule is used allowing 
the sum representing the ionic polarizability to be represented by one effective parameter, which is calcu
lated for the free ions from the Pauling theoretical values. The change in this parameter when the ion is 
transported into the crystalline environment is estimated by an energy level analysis used previously by 
Seitz. It is shown that this procedure accounts for most of the quantitative features of the polarizabilities of 
the alkali halides. Moreover, the implications of these results are strongly at variance with the usual view 
concerning the polarizabilities of ionic crystals, since the additivity rule appears as an accidental result of 
the qualitative similarity of the interactions in many crystals, and the possibility of large fluctuations in 
the polarizability of a given ion in different crystalline environments is made evident. 

I. INTRODUCTION 

ON E of the most striking physical properties of the 
ionic crystals is the fact that the electronic 

polarizabilities of these materials very nearly obey an 
additivity rule. The fact that the ionic constituents of 
these materials appear to have polarizabilities which 
are independent of their lattice environment lends 
indirect support to a physical picture of a lattice of 
weakly interacting atomic ions as descriptive of the 
ionic crystals. Two of the most recent and extensive 
empirical investigations of the validity of the additivity 
rule in ionic crystals are those of Roberts1 and of 
Tessman, Kahn, and Shockley2 (TKS). Roberts utilized 
the Lorentz-Lorentz local field correction and found 
that the additivity rule was obeyed by a large number 
of ionic materials. Using the least squares minimization 
technique, TKS demonstrated that when the additivity 
rule is applied to the alkali halides, the Lorentz factor 
gives the best fit of the experimental data. Moreover, 
the least square polarizabilities obtained in this manner 
reproduced the polarizabilities of the alkali halides, 
with the exception of the fluorides, to within 3 % . 

These investigations lend some credence to the 
additivity rule in the alkali halides and more or less 
establish the Lorentz factor as correctly giving the local 
field correction in isotropic crystals. However, several 
questions are left unanswered. First, as was pointed 
out by Shockley,3 the least square polarizabilities differ 
systematically by rather large percentage amounts from 
the Pauling4 theoretical values for the free ions; the 
differences are such that the least square cation values 
are consistently larger than the Pauling values, while 
the least square anion values are consistently smaller. 
These differences also exist, in general, when comparison 
is made with other determinations of the polariza-

1 S. Roberts, Phys. Rev. 76, 1215 (1949). 
2 J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 

92, 890 (1953). 
3 W. Shockley, Phys. Rev. 70, 105 (1946). 
4 L . Pauling, Proc. Roy. Soc. (London) A114, 191 (1927). 

bilities of gaseous ions such as those of Born and 
Heisenberg,5 Mayer and Mayer,6 and the examination 
of ions in aqueous solutions by Fajans and Joos.7 

Second, large deviations from the additivity rule are 
observed in some materials other than the alkali 
halides. This is seen most clearly in the work of TKS 
in which the least square alkali and halide ion polar
izabilities are used to obtain the polarizabilities of 
other ions. These fail in many materials to reproduce 
the empirical polarizabilities by, in some cases, large 
percentage amounts. 

These questions confirm to a certain extent what one 
might suspect intuitively, namely, that the interactions 
among the constituents of the ionic crystals are too 
strong to enable one to consider these materials as 
being composed of lattices of weakly interacting ions. 
However, the fact that an additivity rule works at all, 
and actually works so well for a large number of 
materials, indicates that the electronic polarizabilities 
of these materials can, in an approximate sense, be 
associated with the polarizabilities of localized con
stituents in the lattice. 

I t has been the practice to discuss deviations from 
the additivity rule as well as the differences between 
polarizabilities deduced from the additivity rule and 
those calculated for free ions as due to a combination 
of a distortion of the ions in the crystal brought about 
by the interionic interactions and a transition to a 
situation in which homopolar binding plays a greater 
role. I t is the purpose of this investigation to attempt 
to replace this rather vague analysis with a systematic 
examination of this problem from a more fundamental 
point of view. Based upon an analysis of the crystal 
properties by means of a procedure which distinguishes 
the ionic constituents but allows for their overlap and 
mutual interaction, it will be demonstrated that a 
relatively simple analysis can account for the main 

6 M. Born and W. Heisenberg, Z. Physik 23, 1 (1924). 
6 J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933). 
7 M. Fajans and G. Joos, Z. Physik 23, 1 (1924). 
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quantitative features of the polarizabilities of the alkali 
halide crystals. Moreover, the implications of this 
analysis yield conclusions which are strongly at vari
ance with some of the usual concepts regarding ionic 
polarizabilities. It is hoped that these results will lend 
some insight into the problem of ionic polarizabilities 
which has hitherto not been available. 

II. SUM RULE ANALYSIS OF FREE ION 
POLARIZABILITIES 

We begin our discussion with an analysis of the 
polarizability of a system of noninteracting free ions. 
Considering one of the isolated ions for the moment, 
its static electronic polarizability may be obtained 
directly from the quadratic Stark effect since at 
ordinary temperatures the ground state of the ion is the 
only one having an appreciable probability of being 
occupied. If the electric field is in the x direction, 
second-order perturbation theory yields for the polar
izability the result8 

«=2e 2 L7' l (7 ' |X |7) | 2 /£y 7 , (2.1) 

where X=X^^> the Xi being the x coordinates of the 
individual electrons and Ey'y=E7'—E7. There is no 
first-order contribution since for free ions (7 |X|7)=0. 
Evaluation of the expression (2.1) is complicated by 
the fact that it requires a knowledge of the energies 
and wave functions of all the states of the system, 
which is generally not available. Consequently, it is 
advantageous to find some means of surmounting the 
necessity of knowing the wave functions as well as the 
specific energies of all the quantum states. 

Such a means is available in this case in the form of 
a sum rule which was discovered independently by 
Thomas9 and Kuhn10 from consideration of the disper
sion formula for optical frequencies from the standpoint 
of the correspondence principle. It follows directly from 
the commutation relations 

Lqiipil^ihSij (2-2) 

for the electronic coordinates and momenta and may 
be written in the following manner: 

(Wm/h2)Y,y'EYy\{y\X\y')\2=n, (2.3) 

where n is the number of electrons in the ion. Identical 
relations hold for F=X^ y% and Z = £ t - %i* 

The use of (2.3) enables one to express (2.1) as 

a=(2e 8 /J 1
a)Ey£y 7 |<7 |X|7 ,>l 2 

^eWn/WtnEx2, (2.4) 

where E\ is a parameter whose magnitude is determined 
by the equality of the right-hand sides of (2.1) and 
(2.4). Because the sum rule is identical for all three 

8 See, for example, J. H. Van Vleck, The Theory of Electric and 
Magnetic Susceptibilities (Oxford University Press, New York, 
1932). 

9 W. Thomas, Naturwissenschaften 13, 627 (1925). 
10 W. Kuhn, Z. Physik 33, 408 (1925). 

coordinates, the polarizability is independent of the 
direction of the field. Moreover, it may be seen that 
the expression for a has been reduced to a dependence 
upon only one unknown parameter, i.e., a<* 1/Ei2. The 
quantity E\ may be loosely referred to as being a mean 
excitation energy although this designation is not a 
precise one since the values of such quantities are 
dependent upon the sums from which they are obtained. 

This fact may be illustrated by obtaining an expres
sion for the polarizability in another way. The sum 
rule (2.3) may be simplified by taking advantage of 
the matrix sum rule, 

E KT|X|7')|2 = ( 7 | ^ i 7 ) - | < 7 | X | 7 ) | 2 , (2.5) 

to yield the following: 

(8ir2tn/h2)E2
x(y \ X217)=n, 

(Sw2m/h2)E2
Y(y \Y2\y)=n, (2.6) 

(Sw2m/h2)E2
z(y\Z2\y)=n, 

where advantage has been made of the fact that 
(y\Xly)=(y\Y\y)=(y\Z\y)=0, and where E2

X, E2
Y, 

and E2
Z are parameters whose magnitudes are deter

mined by the equality of the left-hand sides of (2.3) 
and (2.6). 

Equations (2.6) may be simplified further by the use 
of the principle of spectroscopic stability.8 According to 
this principle, sums of the form £*»,*»' | {nm\Aq\ n'm')|2, 
where m is a space quantization index, are independent 
of the axis of the quantization so that 

X) \(nm\Ax\nfm,)\2= £ \{nm\AY\nrm')\2 

nf,m/m n' ,mf ,m 

= X) \{nm\Az\nfryi')\2. 

In this case, the result is 

E i < 7 | x | y > i 2 = E K T | F | 7 ' > I 2 = I : i (7 |z |y)i2-
7's^Y 7'^7 7 V 7 

Consequently, Eqs. (2.6) reduce to 

(STr2m/h2)E2/y\ Y2 7 / = », (2.7) 

where the E2
q's have been replaced by E2. In a similar 

manner, one may define an Ez given by 

Ez=2e2(y\X2\y)/a, (2.8) 

so that we have as a second expression for a 

a=2e2nc/E2Ez, (2.9) 

where c=h2/8ir2tn. This result is again independent of 
direction in agreement with (2.4). The quantities Ei, 
E2, and Ez, which may be called the mean excitation 
energies of the first, second, and third kinds, respec
tively, satisfy the relationship 

E1
2=E2EZ. (2.10) 
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Although they are not equal, one might generally expect 
them to be of the same order of magnitude. A specific 
comparison of these quantities is made in the Appendix. 

A system of noninteracting free ions is electrically 
dilute so that the effective and applied fields acting on 
a given ion are the same. Under these conditions, the 
polarizability of the system, as, is the sum of the ionic 
polarizabilities, a^ and is equal to the total polarization 
divided by the applied field. If 

N M 

X = 2 Xi=J2 Xi, 
4 = 1 4 = 1 

where N is the number of electrons in the system and 
M is the number of ions, then 

M 

a , = E « i = 2 ^ E I ( T | X | 7 ' ) | 2 / £ 7 ' 7 
4 = 1 y' 

M M 

= 2e2 E (71X? | y)/Eu= (2t?/St.)Z <71X? 17> 
4 = 1 4 = 1 

= 2e2cT,(ni/Eu
2) (2.11) 

i 

where Ezs is the mean excitation energy of the third 
kind for the system. I t is evident that 

M / M M / M 

Ezs = 2e2 Z <71X? 1y) / E « < = E a$K / E «*. (2.12) 
4=1 / 4=1 4=1 / i = l 

Because there is some ambiguity in the value of the 
mean excitation energy, it is dangerous to attempt to 
determine polarizabilities by estimating E's. However, 
the value of (2.4) and (2.11) to our approach to the 
determination of the polarizabilities of ions in crystals 
lies in calculating Ei's directly from theoretically 
determined free ion values. Then, given a crystalline 
environment in which the ions maintain their individu
ality to a good approximation, and the crystalline 
interaction is known to the extent that the change in 
the JSi's from their free ion values may be estimated, 
values for the ionic polarizabilities may be obtained. 
The actual mechanics of such an approximate treatment 
with its application to the alkali halide crystals will 
now be discussed. 

III. TREATMENT OF THE IONIC CRYSTALS IN THE 
PRODUCT APPROXIMATION 

If the ionic picture were completely accurate, the 
electrons associated with each nucleus would be com
pletely localized in groups usually associated with the 
electrons in the ions, with no exchange of electrons 
taking place between groups. This situation cannot 
exist in the crystalline state, and can only take place if 
the ionic constituents are separated by large distances 
so that they are noninteracting. In this case, the total 
wave function for the system is a product of free ion 
wave functions. However, the properties of the ionic 

crystals, which in many ways resemble those of a lattice 
of atomic ions, strongly suggest that in an approximate 
sense, it is possible to distinguish various groups of 
electrons in these materials. These groups correspond 
to the ions of the classical model. 

The fact that the total energy of the separated ions 
is very nearly that of the ions merged into crystalline 
form prompted Mofhtt11 to adopt the view that their 
energy of mutual interaction in the crystal may be 
taken as a perturbation on the free ion system. He 
proposed that the A^-electron Hamiltonian operator of 
the system, 

e2 M ZiZj N /pi2 M Zj\ e2 N 1 

H = - £ ' +E ^ E - ) + - Z ' - (3.1) 
2 i,y=i fij i=>i\2m i^fal 2 w=i/\-y 

where Zi is the ith. nuclear charge number and M is the 
number of nuclear centers in the crystal lattice, could 
be split up into terms representing "ionic" Hamiltonians 
and terms representing ionic interaction potentials, and 
that one could express the crystal wave function as a 
linear combination of the complete set of zero-order 
(separated atom) product wave functions corresponding 
to the usual perturbation theory series expansion. 
Instead of this approach, however, a simpler but related 
analysis which distinguishes the electron groups in the 
ionic crystals will be used here, namely, that an approx
imate description of the N electron system may be 
achieved by means of a single generalized antisym
metric product12 of the group or "ionic" wave functions 
^ • ( ^ - 1 + 1 - • -ni-i+fii) of the sets {w»} of electrons of 
each ion: 

¥ (xix2 • • • x.) = (N \/m \n2l--nm I)"1'2 

X E , ( - W i ( l - -» i ) iM»i+ l - • -ni+tti)" • 

X^m{nm-V ' •nrr^.l+ftm). ( 3 . 2 ) 

In spite of interionic overlap, the generalized orthogo
nality conditions12 apply because a linear transformation 
performed on the linearly independent ^ yields a new 
set of orthogonal functions which leave (3.2) unchanged 
except for normalization, since an antisymmetric 
product of functions is invariant under linear transfor
mations of the functions.13 Implicit in this statement, 
of course, is the assumption that ionic functions are 

11 W. Moffitt, Proc. Roy. Soc. (London) A210, 245 (1951). 
12 R. G. Parr, F. O. Ellison, and P. G. Lykos, J. Chem. Phys. 

24, 1106 (1956). 
13 The effect of the orthogonality transformation is the follow

ing : The set of nonorthogonalized ionic wave functions ^ repre
sented by a row vector ity = (^1^2- • -^M) may be transformed to 
an orthogonalized set 4>i = 23- aty-fa, which may be represented by 
the row vector ^ = t|rA, where A is a nonsingular MXM matrix. 
If one designates the antisymmetrized products built from t|r and 
0 by ^ and 3>, respectively, then by a well-known theorem 3> 
= ^Det (A) . Since the <HJ are sums of overlap integrals which 
are constants in the absence of nuclear motion (Born-Oppenheimer 
approximation), the net effect of the orthogonalization transfor
mation on the antisymmetrized product function is the multipli
cation of it by the constant factor Det(A), which amounts to a 
change in its normalization, 
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chosen which are capable of being orthogonalized. In 
the orthogonalized scheme, the crystal constituents 
under consideration become the electron groups whose 
probability amplitudes are encompassed in a manner 
determined by the orthogonalization procedure, rather 
than the ionic wave functions. 

Besides distinguishing the ionic electron groups, a 
product function has the desirable property of providing 
a description of physical properties in a way which is 
physically meaningful for the ionic crystals. This is 
conveniently demonstrated by the use of the density 
matrix formalism which has been discussed in detail in 
a review article by McWeeny.14 

The one- and two-particle density matrices for the 
product function (3.2) may be expressed in terms of 
the yj n*l (x/1 xi) and the IV ni] (x/x2 ' | Xix2), the density 
matrices for the electron groups in the following way14: 

M 

7(x1'x1) = E7 s - ' - - ' (x i ' |x 1 ) , (3.3) 

M 

T (Xl 'x2 ' | xix2) = L IV ni] (xi'x2' | xix2) 

M 

+ E'7 i '
K i l (x 1 ' |x 1 ) 7yl" ' l (x2 ' |x 2 ) 

M 

- E 7i{ ni] (xi r | x2)7;< »<> (x2 ' | X l ) . (3.4) 
i, y=i 

I t may be seen that the additive separation of the 
one-particle density matrix (3.3) is consistent with the 
ionic model since it indicates that the average value 
for the ground state of a one-particle operator is the 
sum of the average values for the electron groups. In 
addition, it is shown in the Appendix that the total 
electronic energy of the crystalline system, which is the 
average value of (3.1) evaluated by means of (3.3) 
and (3.4) may be expressed as a sum of the ionic 
self-energies and interaction potentials acting upon 
each ion of the form 

Vc=VM+Vx+Vs, (3.5) 

where VM is the Madelung potential of the classical 
ionic theory, Vs is its short-range correction, and Vx 
is a short-range exchange potential. This result is again 
consistent with the ionic model and gives a realistic 
description of the interionic interactions in these 
materials. 

With regard to the polarizability of an ionic crystal, 
(3.3) and (3.4) yield results which, once again, are in 
agreement with their empirically determined properties. 
As in the case of free ions, the ground state is the only 
one with an appreciable probability of being occupied 
at ordinary temperatures, so that the static electronic 

14 R. McWeeny, Rev. Mod. Phys. 32, 335 (1960). 

polarization of the crystal, assuming that the electric 
field is in the x direction, is given by 

P=2e 2 ^EK7 |X | 7 ' ) IV^r , (3.6) 

where SL is the effective local field and X is the sum 
of the x coordinates of all the electrons in the crystal. 
In general, the following discussion will deal with 
materials which have no net electric dipole moments 
for the ground state, i.e., 

<<y|X|7>=0 (3.7) 

with identical relations for the y and z coordinates. 
This is a condition which holds for most ionic materials 
with the exception of ferroelectric or pyroelectric 
crystals. I t is also a less restrictive condition than one 
requiring the ions to have spherical or inversion 
symmetry about their nuclear centers. I t follows from 
(3.7) that since 

Mr M 

< 7 | X | 7 > = £ / x m { ^ ( x i | x 1 M x 1 = E < 7 | X , | 7 ) , 

where 

ni 

3=1 

then 
M 

E < T I * « | 7 > = 0 , (3.8) 

so that the sum of the electric dipole moments of the 
ions must vanish. Making use of this result, the polar
ization (3.6) may be written 

P= ( 2 ^ / ^ X 7 1 X217>, (3.9) 

where Ezs is the mean excitation energy of the third 
kind for the crystalline system. 

I t is now necessary to evaluate (7 |X 2 J7) . This 
quantity may be written 

<T |X» | 7 >=E<7 |« i , l 7>+ &<y\x0,\y) (3.10) 

which making use of (3.3) and (3.4) becomes 

M r 

( T | X 2 | 7 ) = E x1'yi{^(x1\x1)dx1 

<~i J 

M r 

+ £ / XiX ĴV^*) (xix2 |xix2yxidx2 

M r 
+ Z ' / XIX2Y;{ ni) (xi | xi)7y( »>') (x21 x2)dx1dx2 

M r 

- E ' / XiX27*<»<) (xi|x2)7yln'» (x2 |xi)dMxi. (3.11) 
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The first two terms of (3.11) comprise Y,MM (71X? | 7), 
the sum of the average values of the X? for the ionic 
groups. The third term is a double sum of terms of the 
form y*Xi7^n4"}(xi I Xi)^xiy*x27i{w/J(x21x2)^X2 which is a 
product of the net dipole moments of the i th and jth. 
ionic constituents. Such a sum equals zero for a material 
having no net dipole moment since in this case the 
terms are either all zero, corresponding to the situation 
where all the ionic dipole moments are zero, or can be 
cancelled pair wise, since for every term, another can 
be found having the same magnitude but opposite sign 
because of the inversion symmetry which exists in the 
crystal as a whole. The final term involves a sum of inte
gral products of the type JtXiSij(xi)dxitfx2Sij(x2)dx2J 

where Sij(xi) is an overlap integral for the ionic wave 
functions ^ and \f/j in which the integration is over all 
coordinates except the only common one, Xi. Hence, 
SxiSij(xi)dxi is analogous to an integral of the type 
yxi0i(xi)$y(xi)dxi in one-electron theory. That such 
a sum of these integral products averages out to zero 
for a material having no net electric dipole moment may 
be seen in the following way. Since the crystal as a 
whole has inversion symmetry, for every positive 
contribution to an integral for a given ion, there is an 

/ /l^-x- +x- K& \ ^IG* *• Illustration 
I g|—!—. ' fcggj J 0f j-frg cancellation 
V v v / °^ contributions to 
\ X y \ y overlap integrals in 

^ ^ ^ - — - ^ ^ » <^ crystals possessing 
inversion symmetry. 

(a) Case (a) represents 
^ — ^ ^ — ^ ^ ^ ions having inversion 

-w—*"""" fi± ^"^^^^"~"~" symmetry while case 
EVXj' . 4Xi J?U "*' . +x? ,A (b) represents ions 

^A^~ y 3 L which do not. 

(b) 

equal negative contribution to a similar integral. 
Figure 1(a) illustrates the case in which the ionic 
constituents have inversion symmetry and the nearest 
neighbors surrounding an ion are of the same type. 
Here it may be seen that points of equal overlap exist 
with ions of the same type at +x t- as well as — x». For 
materials where the ions do not have inversion sym
metry, the cancellation process involves the consider
ation of several ions as illustrated in one example in 
Fig. 1(b). 

Making use of this result, (3.9) becomes 

p=(2«yj0,.)E*«<<Y|;x?lT>, (3.12) 

where Si is the effective local field acting upon the ith 
ion. I t may be seen that (3.12) completely parallels the 
result obtained in the discussion of the free ions and 
summarized in (2.11) and (2.12). Consequently, one 
may write 

P = 2 A £,•«<«,.= 2 A £ f . Sifai/Eu*). (3.13) 

In the product approximation, then, the electronic 
polarization is given by the sum of the polarizations of 
the ionic constituents, a result which is in accord with 
experimental evidence for the ionic crystals. 

One may conclude from this discussion that this 
formalism which completely distinguishes groups of 
electrons in ionic crystals yields results which are 
physically meaningful. The one serious shortcoming of 
a description based upon a single configuration product 
wave function, namely, that it cannot include a 
description of electron transport effects since all possible 
partitions of N= ft\-\-nr\ YnM are not allowed is not 
a serious one, since these effects are negligibly if not 
immeasurably small in these materials and certainly do 
not contribute substantially to the polarizability. 

IV. APPLICATION TO THE POLARIZABILITIES 
OF THE ALKALI HALIDES 

The main motivation behind the use of this physical 
picture in the analysis of the electronic polarizabilities 
of ionic crystals lies in the attempt to circumvent, 
using (3.13), the extreme complexity of a direct solution 
of this problem. The use of (3.13) requires a means of 
determining both the local field at each ion as well as 
the Si ' s . In the case of the alkali halide crystals, the 
Lorentz local field correction seems to be well estab
lished. Moreover, the close adherence of these materials 
to the classical ionic model makes possible a rather 
simple means of estimating the effect which the crystal 
potential has upon the atomic energy levels. From this, 
one may estimate the manner in which the J57i?s calcu
lated from the Pauling4 theoretical values for the free 
ions by means of (2.4) are changed when the ions are 
transported to their crystalline environment. 

The effect of the crystal environment upon the atomic 
energy levels may be estimated by a semiclassical 
procedure which has been used by Seitz.15 The dominant 
contribution to the lattice potential (3.5) is the Made-
lung potential which at a negative ion site in an alkali 
halide crystal is given by 

VM=et3A8Q/5o, (4.1) 

where A 50 is the Madelung constant associated with the 
characteristic equilibrium separation 50 and p is the 
greatest common factor in the valences of the con
stituent ions. The potential at a positive ion is the 
negative of this. Neither the short-range correction to 
this potential nor the short-range exchange potential 
have large effects upon the ground state of an ion since 
the overlap with adjacent ions is not large. Conse
quently, it is reasonable to estimate that the ground 
state of a cation is raised with respect to the first 
ionization continuum by an amount eVM and the 
ground state of an anion is lowered by the same amount. 

Considering the cations in the crystal for the moment, 
one would expect the discrete excited states to be raised 
in a manner similar to the ground state. However, the 

15 F. Seitz, J. Chem, Phys. 6, 150, 454 (1938). 
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magnitude of the raising varies since the excited state 
probability amplitudes are much less localized than 
that of the ground state and, consequently, overlap 
adjacent sites to a much greater extent. This means 
that the short-range potentials begin to become 
appreciable in magnitude and both diminish the effect 
of the Madelung potential and, in the one-electron 
approximation, broaden the levels into quasicontinuous 
bands. The energy levels are raised less and less because 
in overlapping the adjacent ions more and more, the 
wave functions are less and less shielded by the electron 
clouds from the positive nuclei of the adjacent ions, 
and also are more strongly influenced by the positive 
charges of the next-nearest neighbor ions. The magni
tude of the broadening is approximately equal to the 
short-range interaction, and results from the fact that 
as the wave function becomes less localized, it is subject 
in the lattice to more of a periodic potential. These 
considerations apply to all of the discrete and contin
uous excited states, including those associated with 
higher degrees of ionization. 

The energy level picture for the anions is somewhat 
more complicated. In the case of the free anion, the 
first ionization corresponds to the removal of an excess 
electron, the energy required being the electron affinity 
of the free atom in the case of a singly charged ion, or 
of an anion with charge less by one in the case of a 
multiply charged ion. In the crystal, however, ionization 
corresponds to removal of the electron to a distant 
cation, von Hippel16 has shown that to a good approxi
mation, this energy which we will call A can be obtained 
from classical considerations in the case of the alkali 
halides from a circular process involving the removal 
from the crystal of a cation to a point infinitely far 
from the crystal, the similar removal of an anion 
which is distant from the empty cation site, the trans
porting of an electron from the anion to the infinitely 
distant cation, creating in the process two free atoms, 
and the transporting of these atoms back to their 
respective lattice sites. The total energy involved in 
this process is given by 

A=2e(VM-VR)+E-I+Qa (4.2) 

where eVM and eVR are the Madelung and repulsive 
energies, respectively, E is the electron affinity of the 
halogen atom, / is the ionization potential of the 
alkali atom, and Qa is the energy of interaction between 
the free atoms and the crystal environment. 

I t is evident that there are excited states which may 
be thought of as being those of the anion which are 
lower than this, energetically, speaking. These are the 
well-known excitation levels, the lowest of which 
corresponds classically to the transfer of an electron 
from an anion to a nearest neighbor cation. This state 
lies above the ground state by an amount A—e2/ro, 
where ro is the nearest-neighbor separation, since the 
magnitude of the electrostatic potential at a cation site 

16 A. von Hippel, Z. Physik 101, 680 (1936). 

is reduced by e/ro because of the absence of an electri
cally charged nearest neighbor. Other states corre
sponding to the transporting of an electron to more 
distant cations lie proportionately higher. 

Detailed discussions of these levels which exist as 
quasicontinuous bands in the solid material have been 
given elsewhere.15 For the purposes of our discussion, 
however, it is important to note the relationship which 
these states have with free ion states. First, it may be 
seen that they have no real analog in the free anion, 
since the binding of the excess electrons is accomplished 
by means of a correlation potential which diminishes 
too rapidly to allow the existence of any discrete excited 
states. Consequently, these states merge into the first 
ionization continuum if the interionic separation is 
increased to infinity, i.e., the crystal is broken apart 
into its constituent ions. On the other hand, however, 
these states are analogous to atomic 5 , P , etc., func
tions,15 so that there is a similarity between the rela
tionship of these states with the first continuum of 
levels of the anion and the lowest excited discrete 
states and the first continuum of levels of the cation in 
the crystal. 

In order to estimate the changes in the ionic mean 
excitation energies in the crystal, one must have, in 
addition to a knowledge of the relationship between the 
energy levels in the free ion and those in the crystal, 
a knowledge of the relative contribution of all the 
excited states to the polarizability. While the exact 
contribution of all the various states is not known, in 
general, a quantitative consideration of the case of the 
hydrogen atom is useful for the purpose of estimating 
these various contributions. From the work on the 
Stark effect in hydrogen of Wentzel, Waller, and 
Epstein,17 the polarizability of the ground state is 
determined8 to be 0.663 A3. In addition, a simple 
calculation reveals that the contribution of the first 
excited state is 0.43 A3, with most of the remaining 
0.23 A3 being contributed by the_ continuum states. 
The mean excitation energies Eh E2, and Ez are equal 
to 0A7e2/a0, 0.50e2/a0, and O.Ue2/a0, respectively. The 
fact that the mean excitation energies are all about 
equal to the ionization energy may be thought of as 
resulting from a situation in which, neglecting the 
contribution of the other discrete excited states, the 
first excited state, which gives about two thirds of the 
total contribution, lies below the ionization continuum 
by an amount equal to one quarter of the ionization 
energy, while the continuum levels, which contribute 
about one third of the total, may be thought of as 
balancing this contribution with a mean energy lying 
above the ionization energy by an amount equal to 
about half the ionization energy. These results are 
comparable to those for the hydrogen paramagnetic 
susceptibility,18 in which case the continuum contri-

17 G. Wentzel, Z. Physik 38, 527 (1926); I. Waller, ibid. 38, 
635 (1926); P. S. Epstein, Phys. Rev. 28, 695 (1926). 

18 L. C. Snyder and R. G. Parr, J. Chem. Phys. 34, 837 (1961). 
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bution is 4 3 % of the total and the mean excitation 
energy is 0.67e2/#o, the larger value being due to the 
somewhat larger contribution of the continuum levels. 

With these facts at our disposal, we will proceed in 
the following somewhat heuristic manner: The change 
in the character of the ionic energy levels brought 
about by their crystalline environment will be estimated 
according to the above discussed procedure and the 
result for the hydrogen polarizability will be used as a 
prototype in order to estimate the relative weights to 
assign the levels in order to estimate the E±s. The 
agreement of these results with those obtained empiri
cally will then be taken as a measure of the validity of 
these assumptions. The cation and anion polarizabilities 
will now be discussed separately. 

Cation Polarizabilities in Crystals 

The discrete cation energy levels are raised with 
respect to the ionization continua above them by the 
effect of the crystal potential in a manner discussed 
previously. The energy levels above the first continuum 
correspond to those resulting from the successive 
stripping of electrons from the cation. The calculated 
values of the Ex's for the free ions from the Pauling 
polarizabilities indicate that, in general, the levels 
above the first continuum do not contribute substanti
ally to the polarization since the E±s do not lie sub
stantially above the first ionization energy. However, the 
following considerations apply to all the energy levels. 

Since, to a first approximation, the ground state is 
raised with respect to the first continuum by an amount 
eFjif, one would expect that the continuum contribution 
to the mean excitation energy would be lessened by 
that amount. However, the contribution of the con
tinuum is greater, in addition, because of the greater 
magnitude of the appropriate matrix elements in (2.1). 
This follows since the raising of the ground state, 
energetically, results in a greater extension in space of 
the ground state probability amplitude by an amount 
which varies roughly as the inverse of the binding 
energy. In the hydrogen atom, for example, the average 
value of the radius for a given quantum state, which 
may be taken as a measure of the extention of the 
wave function, is given by19 

/ l r 7 ( /+ l ) - | \ 
fnim= (»V£)f 1+-I1 —J J (4.3) 

an expression which varies very nearly as the inverse 
of the binding energy of the state under consideration. 
Since the extension of the ground state is greater, its 
overlap with the continuum levels increases, thereby 
increasing the value of the corresponding matrix 
elements in (2.1). 

The excited discrete states are also brought energeti-

19 L. Pauling and E. B. Wilson, Introduction to Quantum 
Mechanics (McGraw-Hill Book Company, Inc., New York, 1935). 

cally closer to the ground state since they are raised by 
amounts somewhat less than eVM- The lowest excited 
states, however, are brought closer to the ground state 
by the smallest amounts since they are energetically 
raised by the largest amounts. On the other hand, these 
states experience a considerably greater relative increase 
in the extension of their probability amplitudes than 
the ground state because their binding energies are so 
much smaller and the effect of the Madelung potential 
amounts to a large fraction of the total. As a result, 
one would expect the matrix elements in (2.1) associ
ated with these states to diminish in value because the 
extremely large increase of the extensions of these states 
results in a much smaller effective overlap with the 
ground state. The higher discrete states, however, being 
energetically raised less and less, have the smallest 
change in their contribution to the polarizability, but 
are brought nearer to the ground state by an amount 
closer and closer to eVM- Since the diminishing of the 
lower discrete state contributions more or less balances 
the fact that they are brought closer to the ground 
state by an amount less than eV'M, and since the 
continuum levels, which in the crystal probably con
tribute more than half of the total polarizability, are 
brought closer to the ground state by an amount eVM, 
it seems reasonable to estimate that the mean excitation 
energy of the cation in the crystal is diminished by eVw 
Therefore, using (2.4), it may be seen that according 
to the above analysis, the relationship between the free 
cation polarizability ap

+ and the value in crystal ac
+ 

is given approximately by 

aPVac+= ( E p + - eVM)V {E+)\ (4.4) 

Anion Polarizabilities in Crystals 

The anions represent a somewhat different case than 
that previously described for the cations. First, the 
existence of the excitation levels provides a contribution 
to the anion polarizability in the crystal which has no 
counterpart in the free ion. In addition, unlike the 
condition which generally exists in the cations, quantum 
states above the first ionization continuum contribute 
substantially to the free anion polarizability. The E\$ 
calculated from the Pauling polarizabilities for the 
halogen ions usually lie considerably above the second 
ionization energy, i.e., the first ionization energy for 
the neutral atom, but somewhat below the third 
ionization energy. This means that there is a substantial 
contribution to the polarizability by the levels above 
the second continuum. The position of the E\$ suggests 
that the levels of the first continuum as one group, the 
levels of the second continuum as well as the discrete 
levels below them as a second group, and all the levels 
associated with higher degrees of ionization as a third 
group, contribute comparable amounts to the polar
izability, with the levels of the first continuum con
tributing somewhat less than one-third of the total. 

In the crystal, the ground state of the anion lies 
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TABLE I. Pauling polarizabilities and Ei's calculated from them. 

Ion 

Li+ 

Na+ 
K+ 
Rb+ 
Cs+ 

F~ 
ci-
Br+ 
I -

n 

2 
10 
18 
36 
54 
10 
18 
36 
54 

ap (A3) 

0.029 
0.181 
0.84 
1.41 
2.44 
1.05 
3.69 
4.81 
7.16 

Ep (ev) 

86.2 
77.6 
48.3 
52.6 
49.1 
32.2 
23.1 
28.4 
28.7 

below the first continuum by an amount A given by 
(4.2) rather than by an amount E, the electron affinity 
of the free atom. By an analysis similar to that for 
the cation and neglecting the excitation levels, the 
mean excitation energy for the anion is increased by 
an amount A—E. However, the excitation levels 
exercise a strong diminishing influence upon the mean 
excitation energy. Considering their atomic character, 
particularly that of the lowest level, one would expect 
that, in line with the result for the hydrogen polariza-
bility, these levels contribute an amount somewhat 
greater than that contributed by the levels of the first 
continuum or about one quarter of the total value of 
the anion polarizability in the crystal. Moreover, most 
of this contribution is from the lowest excitation level 
which lies A—e2/ro above the ground state. From this 
estimate then, the mean excitation energy of the anion 
in the crystal is given by 

Ec-=K(&-e2/ro)+3(Ep-+A-E)l (4.5) 

so that the relationship between the free anion polar
izability ap~ and its value in the crystal ac~ is given 
approximately by 

«p- /ar=[ i{(A-«yro) 
+3(Ep-+A-E)}J/(Ep-)\ (4.6) 

The alkali halide crystals provide two means of 
checking the polarizabilities theoretically determined 
from (4.4) and (4.6) with the empirical data. In 
addition to the more obvious device of comparing the 
experimentally determined molar polarizability with 

TABLE II. Calculated ionic polarizabilities for the alkali halides 
in units of A3. The first and second numbers give the cation and 
anion polarizabilities, respectively. 

Li 

Na 

K 

Rb 

Cs 

F 

0.04 
0.69 
0.25 
0.77 
1.29 
0.84 
2.04 
0.87 
3.56 
0.90 

CI 

0.04 
2.44 
0.23 
2.64 
1.21 
2.74 
1.93 
2.80 
3.34 
2.94 

Br 

0.04 
3.93 
0.23 
4.19 
1.18 
4.31 
1.90 
4.37 
3.32 
4.43 

I 

0.04 
6.38 
0.22 
6.64 
1.16 
6.74 
1.86 
6.87 
3.25 
6.96 

the sum of the anion and cation polarizabilities calcu
lated from these relations, a comparison between the 
calculated polarizabilities and those deduced empirically 
by means of the additivity rule is possible. Since the 
polarizability of an ion varies with the crystalline 
environment, the arithmetic average of the calculated 
ionic polarizabilities will be compared with least square 
polarizabilities of TKS, which are based upon the 
additivity rule. The values of the Pauling polariza
bilities and the mean excitation energies calculated 
from them which are necessary to perform the theo
retical calculations are listed in Table I. 

Table II lists the calculated ionic polarizabilities 
while Table III shows a comparison of the arithmetic 

TABLE III. Comparison of the arithmetic averages (a) of the 
calculated ionic polarizabilities in the alkali halides and the mean 
excitation energies determined from them {Ei) with the least 
square polarizabilities for infinite wavelength CKTKS and the mean 
excitation energies ETKS determined from them. 

Ion 

Li+ 
Na+ 
K+ 
Rb+ 

Cs+ 

F -
ci-
Br~ 
I -

(«> (A3) 

0.04 
0.23 
1.21 
1.93 
3.37 
0.81 
2.71 
4.25 
6.70 

«TKS (A3) 

a 
0.255 
1.201 
1.797 
3.137 
0.759 
2.974 
4.130 
6.199 

W (ev) 

76.7 
68.7 
40.3 
45.1 
41.8 
36.8 
26.9 
30.2 
29.7 

J^TKS (€ 

a 
65.3 
40.4 
46.6 
43.3 
38.0 
25.6 
30.7 
30.9 

a TKS used the Pauling free ion value for Li+. 

averages of the calculated mean excitation energies 
and polarizabilities on the one hand, and the least 
square polarizabilities of TKS and the mean excitation 
energies calculated from them on the other. The 
Madelung and repulsive energies necessary to complete 
these calculations were obtained from the results of 
Sherman,20 while the electron affinities and ionization 
potentials used are those quoted by Herzberg.21 Follow
ing von Hippel,16 the interaction energy Qa necessary 
for the calculation of A is arbitrarily set equal to — 1 ev 
for all cases. It may be seen that the average value of 
the calculated mean excitation energies all lie within 
5% of those determined from the least square values 
of TKS, while the polarizabilities differ by less than 
10%. In view of the fact that the Pauling polarizabilities 
are probably not accurate to better than 10%, the 
agreement is remarkable. Since the mean excitation 
energy is the quantity which is estimated, and since 
the polarizability varies with the inverse square of this 
quantity, so that the percent difference in the calculated 
and empirical polarizabilities is twice that occurring in 
the Eis, a comparison of the empirical and calculated 
polarizabilities doubles the percent error in the esti
mation process. This fact should be kept in mind in 

20 J. Sherman, Chem. Rev. 11, 93 (1932). 
21 G. Herzberg, Atomic Spectra and Atomic Structure (Dover 

Publications, Inc., New York, 1944). 
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TABLE IV. Theoretical and experimental molar polarizabilities 
of the alkali halides in units of A3. The first number is the sum 
of the calculated ionic polarizabilities in Table II while the 
second is the experimental value given by TKSa for infinite 
wavelengths. All of these values are for crystals with the NaCl 
structure. 

Li 

Na 

K 

Rb 

Cs 

F 

0.73 
0.909 
1.02 
1.162 
2.13 
2.007 
2.91 
2.528 
4.46 
3.604 

CI 

2.48 
2.903 
2.87 
3.263 
3.95 
4.172 
4.73 
4.712 
6.28 
6.235 

Br 

3.97 
4.137 
4.42 
4.387 
5.49 
5.294 
6.27 
5.920 
7.75 
7.328 

I 

6.42 
6.225 
6.86 
6.263 
7.90 
7.388 
8.73 
8.092 

10.21 
9.436 

a See reference 2. 

comparing the calculated and experimentally deter
mined polarizabilities. 

The theoretical and experimental molar polariza
bilities displayed in Table IV likewise show good 
agreement, with a few exceptions. These exceptions 
lend some insight in the limitations of the simple theory 
expressed by (4.4) and (4.6). For example, the calcu
lated polarizability of CsF is much too large. A glance 
at Table II reveals that this is because the calculated 
polarizability of Cs+ almost equals the empirical molar 
polarizability for CsF. The too-large calculated value 
for the polarizability of Cs+ in CsF may be attributed 
to the fact that the size of the Cs+ ion is significantly 
greater than that of the F~ ion, as measured by their 
ionic radii. This is a situation which is contrary to the 
normal condition in which the cation size is roughly 
the same or smaller than that of the anion.22 As a 
result, the Cs+ ion overlaps the nearest-neighbor F~ 
ions and the next-nearest-neighbor Cs+ ions to a much 
greater extent than is usually the case. One would 
expect this situation to result in the mean excitation 
energy of the Cs+ ion being diminished by an amount 
less than eVM SO that its polarizability is closer to that 
of the free ion. The value of the experimental molar 
polarizability seems to confirm this expectation. Simi
larly, this situation applies to a lesser extent in RbF. 

A more common situation arises when the anion size 
is significantly larger than that of the cation. This is 
true in all the lithium halides, and to a lesser degree, 
in the sodium halides. In this case, several factors 
complicate the estimation of the ionic polarizabilities. 
On the one hand, the greater overlapping of the cation 
sites by the anions results in a lessening of the amount 
by which the ground states of each are respectively 
raised and lowered in comparison to the predicted 
amount eVM- Since the cation polarizabilities in these 
cases are small relative to those of the anions, most of 
the deviation from the predicted value is due to the 

22 For a pictorial comparisons of the sizes of the various ions, 
the reader is referred to L. Pauling, The Nature of the Chemical 
Bond (Cornell University Press, Ithaca, New York, 1948). 

deviation in the anion polarizability. The effect of the 
increased overlapping is to make the quantity A smaller 
than calculated so that the anion polarizability is larger 
than predicted. This is apparently the case in LiF. On 
the other hand, when the disparity in sizes of the anion 
and cation becomes very great, as in the extreme case 
of Lil where the anions are more than large enough to 
achieve mutual contact, the anion-cation separation is 
larger than it would be otherwise, since the anion-anion 
repulsion does not allow actual contact as measured by 
the ionic radii between the anion and cation. This 
factor limits the overlap between the anion and cation 
and offsets the lessening of A according to the above 
analysis. The agreement of the calculated and empirical 
polarizabilities of Lil seems to confirm this expectation. 
The other lithium halides offer intermediate examples 
between these two extremes. I t is apparent, then, that 
Eqs. (4.4) and (4.6) give their best results in those 
cases when the ions have approximately the same 
sizes, although, in general, the deviations are most 
serious when the cation size is significantly larger than 
that of the anion. 

V. DISCUSSION 

The analysis of the previous two sections has at
tempted to arrive at a quantitative estimate of the 
electronic polarizabilities of ions in alkali halide crystals 
through a process of estimating their mean excitation 
energies. This process requires a knowledge of the free 
ion polarizabilities as well as a reasonably accurate 
means of determining the effect of the crystalline 
interaction on the ionic energy levels. In the last section, 
it was shown that this process works quite well in the 
alkali halides and is able to account for most of the 
main quantitative features of their polarizabilities. 
I t is evident from this result that the additivity rule 
works in the alkali halides because the crystalline 
interactions in these materials are qualitatively the 
same, the small variations in their magnitudes in the 
various crystals producing changes in the anion and 
cation polarizabilities which very nearly cancel each 
other. I t is only in the fluorides, where the great 
disparity in the sizes of the cations in comparison with 
the fluoride ion as well as with each other cause quali
tative changes in the interaction, that the additivity 
rule breaks down to a significant extent. 

While this analysis would not be expected to yield 
consistently good quantitative results for other ionic 
crystals, which depart somewhat more from the perfect 
ionic model, certain qualitative observations can be 
made. For example, a large class of ionic materials have 
Madelung energies which are much larger than those 
of the alkali halides because of the larger valences of 
the ionic constituents. As a result, the polarizabilities 
of the ions can be altered drastically from their free 
ion values in some cases. The relations (4.4) and (4.6) 
probably represent upper limits to the amount that the 
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cation and anion polarizabilities are raised and lowered, 
respectively, since the greater overlapping of the ions 
which occurs in these crystals in comparison with the 
alkali halides diminishes the effect of the Madelung 
potential. In particular, the anion polarizability could 
vary greatly from such a predicted value for two 
reasons. First, the greater overlapping in most crystals 
in comparison with the alkali halides involves, at least 
in part, an incomplete ionization of the cation which 
corresponds to a mixing of the excitation levels with 
the ground state of the anion. This means that these 
levels lie closer to the ground state than would be 
measured by the classical analysis of the last section. 
Second, in materials which have a considerably higher 
Madelung energy than the alkali halides because of the 
larger valences of the ionic constituents, the contribu
tions of the groups of energy levels above the first 
continuum probably differ from those assumed in the 
previous section and which seem to apply to the alkali 
halides. Since the ground state of the anion is lowered 
by an amount which is comparable to or greater than 
the energetic separation between the first and second 
continuua, the relative contributions of the higher 
excited states is lessened, and that of the excitation 
levels and first continuum increased. These factors 
would both tend to make the anion polarizability 
larger than that which would be obtained by the 
analysis of the previous section. The cation polariza
bilities are less affected in this way by the Madelung 
potential because, unlike the situation which exists in 
the anions, the separation between the first continuum 
and the higher excited states is usually large compared 
to eVM> Although the ionic polarizabilities may differ 
somewhat from the values which would be predicted by 
the considerations of the previous section, it is evident 

cVEi= z \{y\xw)\*\(y\xw>)\*, 
y',7" 

These quantities are not the same, since (Ey>7/AE7'7) 
and (Ey'KyE^v/EyyEyfy) cannot be replaced by 
unity. 

A term by term comparison of (Al) and (A2) reveals 
that 2 |<7|Z|7 ,) |2 |<7|X|y ,}|2 in (Al) corresponds to 
[ ( E y w / E y 7 ) + ( £ ^ / E y , 7 ) ] K T | X | 7 0 | 2 K 7 | X | y ' ) l 2 

in (A2). When the ratio /= (E7"7 /£7 '7) is not much 
greater than unity then t+l/t~ 2. Consequently, the 

that the larger Madelung potentials of some materials 
could cause changes in the free ion polarizabilities, 
particularly those of the cations, by a factor of two 
or three or more. 

From this, one may see the possible origin of some of 
the large deviations from the additivity rule. In some 
cases, the amounts of the raising and lowering, respec
tively, of the cation and anion polarizabilities probably 
do not cancel, even approximately, in many crystals, 
particularly if the amounts are large. Moreover, these 
amounts, themselves, probably vary to a great extent 
depending upon the quality of the interaction in the 
crystal. 

One may see that these conclusions differ greatly 
with the usual view regarding the polarizabilities of 
ions in crystals. First, the additivity rule, itself, is seen 
in the light of this analysis as an accidental result of the 
qualitative similarity of the crystalline interactions in 
various materials which influence the value of the ionic 
polarizabilities. Moreover, this analysis presents the 
possibility of large fluctuations in the polarizability of 
any given ion in different crystalline environments as 
opposed to the view, implicit in the additivity rule, 
that the polarizability of a given ion varies little from 
crystal to crystal. While the accidental validity of the 
additivity rule has been of great value in considerations 
involving the polarizabilities of ionic crystals, it is 
hoped that the conclusions of this work will be of 
similar value in future considerations of this type. 

APPENDIX A. COMPARISON OF THE MEAN 
EXCITATION ENERGIES 

A specific comparison of the mean excitation energies, 
Eh E2, and Ez defined by (2.4), (2.7), and (2.8) is 
possible since it follows from these equations that 

(Al) 

majority of the terms in the two series are approxi
mately equal. However, when t> 2, then the coefficient 
t+l/t becomes substantially larger than 2. In an 
extreme case, one might find a situation in which terms 
having a />10 give substantial contributions to the 
series. If these large contributions do not have opposite 
signs, it is conceivable that Ei2 and E2

2 could differ by 
a factor of 2 or 3, and since Ez/E2= (E1/E2)

2, E2
2 

c2/E1
2= E (EYfy/Ery)\(y\XW)\2\(y\X\y-)\2

} 

7',7" 
(A2) 

cyfii 
£ . (£7»^'V^A^)l(T|X|7')|2K7|X|7">|2|(7|X|T'")|2K7|X|7iv)|2 

: E \(y\X\y')\>\{y\X\y")\> 
7 / »7" 

(A3) 
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and Si could differ by an order of magnitude. Gener
ally, however, one would expect these quantities to 
differ by amounts smaller than this. 

APPENDIX B. THE INTERIONIC INTERACTION 
IN THE PRODUCT APPROXIMATION 

The total electronic energy equals the average value 
of the Hamiltonian (3.1), which making use of (3.3) 
and (3.4) may be expressed as a sum of the kinetic 
energy Ek, the Coulomb energy Ec, and the exchange 
energy between ions Ex, where 

(Bl) 
2m i J 

e* r 
Ec=- £ ' ZiZj/n,-* E Zi / (l/r^yji"'I (Xl|x1)dx1 

2 i , 3 i,J J 

e2 f 
H— Z ' / (lAi2)Yi{ ^ (xiI xOyj\ »'> (x21 x2)dx1dx2 

2 ij J 

e? r 
+ - E / UAiOlV n* (xix21 Xlx2)^x^x2, (B2) 

2 i J 

Ex 

• - * 

1,3 J 
E'/(i/ri07<<n<Kxi|x2) 

X7y{n/}(x2|x1)^x1^x2. (B3) 

A form of Ec more in line with the ionic picture may 
be exhibited by making the following substitution: 
Let Qi be designated as the total charge of the electrons 
associated with the ith lattice site and given by 
J*yj nti (xi | Xi)dxi; then the Coulomb potential of these 
electrons at the pointy given by f (\/ri3)y^ ni^ (xi | Xi)dxi 
may be set equal to the quantity Qi/fij— Vi(j), where 
Qi/rij is the point charge potential and Vi(j) is a 
short-range correction which accounts for the extention 
and deformation from spherical symmetry of the charge 
cloud. Making use of these relations, Ec may be written 

Ec=- T,'(Z<-Qi) (Zj-Qi)/rii+- Z'(2Zi-Qi)V1({) 
2 i.i 2 ij 

— E ' / ^ - K x l l x O F y C x ^ X ! 
2 i , 3 

~e*ZZi (l/rlt)yii^(x1\x1)dx1 

+~ E f (lAi2)IY ni] (xix21 x1x2)dx1dx2. (B4) 
2 i J 

The first term is the Madelung energy of the classical 
ionic theory, the next two terms are its short-range 

corrections, while the last two terms give the electro
static self-energy of the ions. 

The exchange energy Ex introduces a correlation 
between electrons of different ions having the same 
spin by modifying their energy of mutual repulsion. 
As in one electron theory, the short-range exchange 
integrals are non-negligible only when the overlap of 
the ionic probability amplitudes is appreciable. In this 
case, the even parity of the unperturbed ionic wave 
functions results in positive definite overlaps, yielding 
a negative exchange energy which keeps electrons of 
different ions apart. 

It is apparent that (Bl), (B3), and (B4) may be 
thought of as being composed of the sum 5Z*=iM •£<>* of 
the ionic self-energies, where 

£ « = — fpi2y^niHxl'\x1)dx1 
2m J 

-fZiUl/ruhiWixtlxOdK! 

e2 r 
• / (lAi2)r^w'}(XiX2|XiX2)^XiJx2, +- (B5) 

and the sum X^=iM Vc\ where VJ is the effective 
crystal potential acting upon the ^th ion. VJ is the 
sum of the Madelung potential VM\ its short-range 
correction Vs\ and the short-range exchange potential 
Vx\ where 

VM^-ZiZi-QiXZj-QMri,; 
2 &i 

(B6) 

Vsi=-i:(2Zi-Qi)V^) 
2 &i 

e2 r 
- - E 7^niHxl\x1)V3{x1)dxlj (B7) 

2 &i J 

(lAi2)7i{niKxi(x2) 

XTy{^}(x2|xiyxi^x2. (B8) 
2 j^i 

APPENDIX C. CORRELATION OF THE IONIC 
SIZES AND THEIR POLARIZABILITIES 

If one uses the magnitude of R for a measure of the 
extension of an ion where R2 = (y\X2\y)+(y\Y2\y) 
+(y\Z2\y), then it follows from (2.7) that 

R2 = nc/E2. (CI) 

From (2.4), it may be seen that 

a/R^ (2e2/nc) (E£/Ex
2)y (C2) 

and the ratios of the polarizabilities of two ions is 
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given by 
a i _ / t f i ^ w M l ) / ^ 2 ( . l ) \ 

o,"Ww(#(2)/ 
It is evident that if the ratio 

then 
Et\2)/E{{2) 

Oil J R I 4 ^ 2 

a2 -K24 n\ 

' i , 

(C3) 

(C4) 

(C5) 

One may conclude from (C5) that it is possible to 
obtain a rough comparison of the relative magnitudes 
of the polarizabilities of the constituents of a crystal if 
one has available an estimate of their relative extensions 
from, for example, a Fourier projection obtained from 
x-ray data. This technique has applicability even in 
crystals which are primarily molecular or covalent in 
nature which, though well represented by the product 
approximation, have crystalline potentials which are 
too complicated in nature to make possible an estimate 
of the E's. 
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Quadrupole Antishielding Factors of Ions* 
R. M. STERNHEIMER 

Brookhaven National Laboratory, Upton, New York 
(Received 3 January 1963) 

Values of the quadrupole antishielding factor YW have been calculated for the Mn2+, Fe3+, Ga3+, and Ag+ 

ions, using the method of direct solution of the inhomogeneous Schrodinger equation for the perturbed wave 
functions. For the Fe3+ ion, the present value of y^ (= —9.14) is appreciably larger in magnitude than that 
previously obtained by Burns and Wikner, resulting in a decrease of the calculated quadrupole moment of 
Fe57m as deduced from measurements using ferric compounds. The resulting value of Q(Feb7m) is 
+0.28XlO"24cm2. 

I. INTRODUCTION 

VALUES of the quadrupole antishielding factor1-3 

have been recently calculated for the following 
ions: Mn2+, Fe3+, Ga3+, and Ag+, using the method of 
direct solution of the inhomogeneous Schrodinger 
equation for the perturbed wave functions which has 
been previously employed by the author.1-3 The un
perturbed wave functions used in this work were the 
Hartree-Fock functions for the four ions considered.4-6 

As has been discussed previously,1-3 the contribution 
Too (nl. —* I) due to the radial modes of excitation of the 
nl shell is given by 

y*(nl->l) = Cn (2) J 
Jo 

Uo'ui'r2dr, (i) 

where uo is r times the radial unperturbed wave func-

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 R. M. Sternheimer, Phys. Rev. 84, 244 (1951). 
2 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev. 

93, 734 (1954). 
3 R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731 

(1956). 
4 R. E. Watson, Phys. Rev. 118, 1036 (1960); and Technical 

Report No. 12, Solid State and Molecular Theory Group, Massa
chusetts Institute of Technology, 1959 (unpublished) (wave 
functions for Mn2+ and Fe3+). 

6 W. W. Piper, Phys. Rev. 123, 1281 (1961) (for Ga3+). 
6 B . H. Worsley, Proc. Roy. Soc. (London) A247, 390 (1958) 

(forAg+). 

tion, u\ is r times the radial part of the perturbation oi 
the wave function due to the field of the nuclear quad
rupole moment Q; u\ is determined by the equation: 

[-—+ 
dr2 r2 

•7« -£ , •0 \ui'(nl—>l) 

="'(-?-0.)(2) 

and by the orthogonality condition: 

f 
Jo 

Uo'ui'dr = Q. (3) 

In Eq. (1), CH(2) represents the factor which arises from 
the integration over the angular variables and the 
summation over the magnetic substates. For a com
pleted p shell, we have Cn(2) = 48/25, whereas for a 
completed d shell, C22(2)= 16/7. For the cases of Mn2+ 

and Fe3+, where the 3d shell is half-filled, we have 
C22(2) = 8/7. The function u$ is normalized to 1: 

f 
Jo 

= 1. (4) 

In Eq. (2), VQ and E0 are the unperturbed effective 
potential and energy eigenvalue, respectively, pertain-


