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Quantum-Mechanical Calculation of the Third Virial Coefficient of He4f * 
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Using the method of binary collisions, the third virial coefficient of He4 at low temperatures is calculated 
for a potential consisting of an attractive square well and a repulsive core. The shape of this potential is 
chosen so as to optimize the fit of the second virial coefficient with experimental data. From a comparison of 
the results with the third virial data the existence of a three-body bound state is inferred. A binding energy 
of 0.26°K, calculated from the potential, brings the adjusted results and the experimental data into 
agreement. 

T 
INTRODUCTION 

HE equation of state of a dilute gas may con
veniently be written as 

pV = NkT(l+B/V+C/V2- • •), 

where B and C are the second and third virial coeffi
cients, respectively. These coefficients, and higher ones, 
have been calculated classically for a number of gases 
and a variety of binary potentials.1 

Our interest lies with He4, and for such a light gas, 
at low temperatures, the quantum-mechanical devia
tions from the classical behavior are really important. 
A correct treatment must, therefore, be developed 
within the quantum-mechanical framework. Such a 
method for the calculation of the second virial coeffi
cient was derived by Uhlenbeck and Beth,2 and by 
Gropper,3 in the 1930's, and subsequently has been used 
by Massey and Buckingham,4 de Boer and Michels,5 

and others.6 I t was only comparatively recently, how
ever, when Lee and Yang developed their binary colli
sions method,7 that a systematic procedure of calculating 
the higher coefficients became available. The first 
study of the third virial coefficient using this technique 
was that of Pais and Uhlenbeck8 who have considered 
C(T) for several limiting cases, including that char
acterized by strongly bound two- and three-body states. 

In this work we seek to determine C(T) at low tem-

f This work has been supported in part by the U. S. Atomic 
Energy Commission and in part by Pfister fellowships. 

* Submitted in partial fulfillment of the requirement for the 
degree of Doctor of Philosophy in the Faculty of Pure Science, 
Columbia University. 

J Present address: National Bureau of Standards, Washington, 
D. C. 

1 A very small sampling is: J. de Boer and A. Michels, Physica 
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peratures by evaluating terms in a binary collisions 
expansion for the third virial coefficient of He4. We 
assume a definite potential and calculate exactly the 
corresponding two-body kernels, in terms of which we 
carry out the expansion. The potential used has a 
finite, though very high, repulsive core together with 
an attractive square well. This potential was chosen 
because it possesses the essential characteristics of the 
true potential while being of such a form that the two-
body wave functions are expressible analytically. The 
associated parameters are determined through a study 
of the second virial coefficient, and a fitting to the ex
perimental data at high and low temperatures. 

For simplicity, and since it is not known whether or 
not He4 has a very weak two-body bound state,9 we 
assume that this is not the case. We admit no two-body 
bound states in our calculation. 

The numerical evaluation of the binary collisions ex
pressions for T= 1.7,4, and 8° K yield results which are 
positive and increase as the temperature decreases. 
This is in sharp contrast with the experimental be
havior of the third virial which decreases with decreas
ing temperature, becoming negative at about 4° K. 

We, then, consider a three-body bound state and 
find that by including its contribution we are able to 
bring theory and experiment into agreement. The 
value of the binding energy, 0.26° K, was obtained from 
an approximate calculation using our potential. 

FUGACITY EXPANSION 

The pressure and the density of a Boltzmann gas 
may be expressed as expansions in the fugacity z 

P/kT=Zhzl, 

N/tt^Zlbiz1, 

(1) 

(2) 

where 

h= (W!)-1 f(Xv • -Xt\ Ut\Xv • -Xl)d*Xv • -fflXi (3) 

becomes volume-independent when we let the volume 
9 J. E. Kilpatrick, W. E. Keller, and E. F. Hammel, Phys. Rev. 

97, 9 (1955). 

1426 



T H I R D V I R I A L C O E F F I C I E N T O F H e 4 1427 

0 become large. We shall always take this to be the 
case. If EN is the Hamiltonian for N particles and 

WN^exp(-HN/kT),\ (4) 

then the Ui functions are defined by 

<iWiii>=<mii>, 
<^2Mlf t | l ,2>=<l / | ^ i | l><2 / | J7 1 | 2>+<l / ,2 / | I / . | l ,2> l 

<l , ,2 , ,3 , | IT8|l ,2,3>=<l / |^1 | l><2 / | t7i |2> 

X(y\U1\3)+(r\U1\l)(2\3,\U2\2,3)+(2f\U1\2) 

X(l',3'\U2\l,3)+(y\U1\3)(l',2'\U2\l,2) 

+ <l / ,2 , ,3 / | 17s! 1»2,3>, etc. (5) 

This is a procedure that was first introduced by Ursell10 

and by Mayer11 for classical statistical mechanics and 
by Kahn and Uhlenbeck12 for quantum statistical me
chanics. We see that Ui requires us to be able to solve 
the Z-body problem. Furthermore, in the case of a Bose 
gas and symmetric statistics we are interested in bf 
and Ui\ 

These problems have been treated by Lee and Yang 
who have shown how to calculate Vf in terms of Uh 

and how to obtain Uh for Z>2, in terms of Z72.
7 

We are concerned with the calculation of Ui, U2, 11% 
and their symmetric counterparts. Knowing bis, 62s, b%a, 
we may, then, combine equations similar to Eqs. (1) 
and (2) to obtain 

p.V=NkT{l-(vob2
s)z-l2(v0h

s)-2(v0b2s)2^2" '}^ (6) 

We have also used the fact that bi=bi*=vo~1, and have 
let 

v0=(27rh2/mkiyl2^\T
z, 

where \ y is the thermal wavelength. 
Writing z as a power series in the density, 

z=vo(N/tt)-2v0*b2s(N/&¥' • •, 

we may now substitute for z in Eq. (6) to obtain 

r Vo(v0b2
8)N 

= NkT\ 1 

(7) 

pV 

[2( f loM-4( f loM 2 ]^V 
(8) 

Comparing this with the usual expansion for the equa
tion of state, we find that the second virial coefficient is 

B=-Nb2W, 

and the third virial coefficient is 

C = -iV2z;o2C2(^3s)-4(^28)2], 
C = = ~ 2 i V W + 4 i 5 2 . 

(9) 

(10) 

10 H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927). 
11 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and 

P. G. Ackerman, ibid. 5, 74 (1937); J. E. Mayer and S. F. Harrison, 
ibid. 6, 87 (1938); S. F. Harrison and J. E. Mayer, ibid. 6, 101 
(1938). 

12 B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938). 

SECOND VIRIAL COEFFICIENT 

At high temperatures the second virial is given cor
rectly by the classical expression: 

B = 2wN J 
Jo 

{1 - e x p [ - V (r)/kT~]}r2dr (11) 

while at low temperatures we use an expression first 
derived by Beth and Uhlenbeck,2 and by Gropper3 

B = -N(4nW/2mky/2T-z/22-w 

-\W2N{fi2/mkTyi2 L (2/+1) 

even 

X expi-iW/mkTWIS^ydy, (12) </. 

where the first term of the equation represents the con
tribution to the virial from a free Bose gas, and 8i(y) 
is the /th phase shift. Consistent with our intentions of 
not allowing bound states, we have not included con
tributions from discrete energy levels. 

The experimental data which we seek to fit with 
Eqs. (11) and (12) are quite old, and may be found, 
sifted and weighed, in Keesom's book "Helium"18 pub
lished in 1942. We have used his table of "Adopted 
values of second and third virial coefficients for helium/' 
as well as values given in his later paper with 
Kistemaker.14 

We found especially useful a formula given in this 
latter paper which fits the second virial coefficient data 
from 1.8 to 60° K. Expressed in units of cm3/mole, 
instead of Amagat units, it reads 

J5=-(38S.7)2^ 1 +15.2 (13) 

with an estimated uncertainty of 5%. 
Newer low-temperature data have been published 

by Keller15 who reports on five isotherms (from 2.154 
to 3.961° K), as well as reevaluates the isotherms of 
Keesom and Walstra.16 In both these cases the resulting 
values for the second virial coefficient differ by less 
than 10% from the values given by Eq. (13). 

No such agreement is to be found when we consider 
respective values for the third virial coefficient. Keller's 
results at 2.3° K, for example, differ by more than an 
order of magnitude from those of Kistemaker and 
Keesom. The determination of the third virial is, how
ever, marginal at best, and the situation is best ex
pressed by quoting Keesom13: " I t is evident that the 
curves drawn in the figure are more or less arbitrary, 
and therefore rather uncertain. Nevertheless we estimate 
that the general course might be real, so C seems to 

13 W. H. Keesom, Helium (Elsevier Press, Amsterdam, Holland, 
1942), p. 34. 

14 J. Kistemaker and W. H. Keesom, Physica 12, 227 (1946). 
15 W. E. Keller, Phys. Rev. 97, 1 (1955). 
16 W. H. Keesom and W. K. Walstra, Physica 7, 985 (1940). 
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reach large negative values below 3° K- • •." We note 
that while at very low temperatures Keller's third 
virials are smaller in magnitude than Keesom's, they 
are also negative. 

Our two-body potential has the following form 

V(r)=U, 0<r<o-

= —€, *<r<a (14) 

==0, a<r, 

where U is very large compared to e. We seek pa
rameters a> a, e, U which will fit the experimental 
second virial coefficient data of He4 at high and low 
temperatures. We do not admit the case of a bound 
state. 

In the next section we shall give an operator equation 
for Z72, and it will be seen that 1/2=0 for 0 = 0 . We also 
give expressions for the matrix elements of U2. In the 
case of an infinite repulsive core these expressions for 
the matrix elements will not go to zero when $ goes to 
zero. (This is because when U is infinite there is an 
excluded volume, and the solutions of the two-body 
problem do not form a complete set of states for all 
space, implying that the sum 

E» *»('')*»* to 
will not reduce to a 8 function.) I t is, then, convenient 
to choose U to be finite, though very high compared to 
the depth of the attractive well. The virials will not be 
very sensitive to the particular height chosen, although 
we must keep in mind that for finite U the onset of the 
bound state depends on the values of all the parameters. 
If we again let k equal Boltzmann's constant, then 
U=10*k ergs. 

We now consider the high-temperature region, which 
determines a. Helium gas behaves classically only at 
very high temperatures. Indeed, de Boer and Michels17 

have calculated the quantum-mechanical correction to 
a Lennard-Jones gas at 256° K and found them to be 
of the order of 5 % of the classical answer. We shall, 
therefore, in "fitting," consider the very highest tem
peratures listed in Keesom's table of "adopted values," 
spanning a 200° K range from 373.15 to 573.15° K. 
Within this high-temperature range, and somewhat 
lower, the classical virial derived from our potential 
has the wrong shape and does not fit well the experi
mental data. A classical expression for B, suitably 
approximated for high temperatures, reads 

JB = (27r/3)7V[V- (a?-a*) (n/T)l, (15) 

where (a3—o-3)>0, (n/T) is small. B simply becomes 
larger and larger reaching an asymptote determined 
uniquely by the diameter of the repulsive core. The B 
experimental rises in value, reaches a maximum, and 
then decreases in magnitude, which is a behavior typical 

17 J. de Boer and A. Michels, Physica 5, 945 (1938). 

of that given by gases composed of "compressible" 
molecules. The optimum value for a is 2.1 A. 

We use the data of the low-temperature region to 
determine the remaining parameters. For convenience 
we chose these to be n and S, defined by 

a-a= (7r/2)(^2 /^)1 / 2(SA)1 / 2 , 

where k is Boltzmann's constant. Were U to be infinite, 
our constraint barring the existence of two-body bound 
states would be expressed as S < 1 . 

To obtain a good agreement between our expressions 
and experiment, it is necessary that S be near 1. Further, 
this agreement is rather insensitive to the particular 
value of n chosen, hence to the depth of the well. In 
other words, the second virial is not very sensitive to the 
details of the potential but responds to its strength, 
which in our case nearly admits a bound state. In fact, 
though we obtained the lowest residuals (best fit) for 
S=0.997, n=2(°K), we were able to exhibit a fit nearly 
as good for S=0.96 and n—\. The shapes of the two 
curves Be^p(T) and Btheor(T) are different. For the 
lowest temperature Btheor is larger in magnitude than 
jBexp, for the higher temperatures the converse is true 
(all the virials in the low-temperature calculation are 
negative). The best agreement and the smallest re
siduals is, then, obtained when we allow the two curves 
to cross over near the low-temperature end. 

Theoretical and experimental values for the second 
virial coefficient are found in Table I. A detailed dis
cussion of the fitting is found in Appendix A. 

BINARY KERNELS FOR A BOLTZMANN GAS 

We wish to evaluate the following two binary 
kernels18: 

Z72(/3) = e x p ( - £ # 2 ) - e x p ( - / 3 r ) , (17) 

d 
X(fi)=-V&cp(-pnt) =—U2(0)+TU2(0), (18) 

BP 

where H2 is the Hamiltonian for two particles. 

H2=T+V=Hc.m.+HTeh 0=l/kT. (19) 

Hc.m. consists only of a kinetic energy term, and U2 

will factor into a product 

<ri',r2'| U2\ r 1 , r 2 )=(R ' | Ux\ R)(r'i U2\ r), (20) 

in which 
R = 2 ( r i + r 2 ) , t==ri—r2, 

< R ' | ^ i | R ) = < R , | e x p ( - ^ c . m . ) | R ) (21) 

= ( w A W / 2 e x p [ - ( R - R;) V * 2 0 l 

W\U2\r)=E^w(r')^W exp[ - /? (£ n ) r e l ] 

- £ p *p(O0p*(r) e x p [ - / ? ( ^ ) r e i ] , (22) 

«T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959). 
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TABLE I. Comparison between experimental and theoretical 
values of the second virial coefficient for the optimum shape of 
our potential (6' = 0.997, w = 2.0, U=10% <r = 2.1 A). Theoretical 
values at low temperatures are obtained from an equation in
volving phase shifts, while at high temperatures the classical ex
pressions are used. B's are expressed in units of cc/mole. 

r(°K) B& 
K&W, 

Keesoma Kellerb Keller0 re-ev.d 

Bth* 

1.7 
2.154 
2.2 
2.324 
2.610 
2.7 
2.862 
3.105 
3.2 
3.348 
3.7 
3.721 
3.961 
4.2 
4.245 
4.7 
5.2 
5.7 
6.2 
6.7 
7.2 
7.7 
8.2 

373.15 
473.15 
573.15 

-211.6 

-160.1 

-127.6 

-105.3 

-89 .0 

-76 .9 

-66 .9 
-58 .9 
-52 .4 
-47 .0 
-42 .3 
-38 .3 
-34 .8 
-31 .8 

11.0 
10.6 
10.1 

-176.4 -159.3 

-175.7 -140.8 

-123.6 -117.8 

-103.4 -102.4 

-83.70 -83.31 

-123.8 

-108.3 

-85.2 

-78.25 

-223.4 

-162.7 

-126.0 

-101.9 

-83 .7 

-70.7 

-60 .0 
-51 .6 
-44 .9 
-39 .4 
-34 .6 
-30 .4 
-26 .9 
-23 .9 

10.28 
10.58 
10.77 

a The low-temperature values are obtained from the formula B 
= —(385.7)T"1+15.2 proposed by Kistemaker and Keesom. The high-

temperature values are taken from Keesom's Helium. 
b Two-constant analysis. 
0 Three-constant analysis. 
d Three-constant re-evaluation of the data of Keesom and Walstra by 

Keller. 
• The theoretical values have been fitted to the data of Keesom. 

where the \pn's are the energy eigenfunctions of Hre\ 
and the 0p's are the corresponding solutions of the free-
relative Hamiltonian. Taking advantage of the fact that 
our potential is central and that we restrict ourselves to 
continuous solutions we may replace \f/n by \pyim, where 

and 

*yftn= (2ir-iyi>r-iRyl(r)Ylm(d,<f>), 

HTei\l/yim= (h2/m)y2\f/yim, 

Ryi —•» sinQyf — lir/2+5i(y)'] as r —> <x>. 

(23) 

We proceed similarly for the 0's, noting that they have 
the same asymptotic form as that of the ^'s, except 
that their phase shifts di(y) are zero. 

We now wish to obtain J72 in the momentum repre
sentation. If we let 

Fi(kr)=(kr)Mkr), 
where 

Mkr)=(ir/2kr)^JM(kr) 

is a spherical Bessel function, and we define 

K=kx+k2 , k=J (k i -k 2 ) , 

then the matrix elements of Lr
2 are 

= (27r)-35(K-K') exp(-K%2p/4m) 

XHkk')-1!! (2/+l)Pz(cos0) 
z=o 

/.OO /»00 ytOO 

X dy dr dr' Fl{kr)Fi{ltrr. 
Jo Jo Jo 

) 

XlRyiWRvWlexpi-WW/ml (24) 

where Pz(cos0) is a Legendre polynomial and 

c o s 0 = £ 4 ' , [RR*l=RR*-(RR*)iTee. 

We could now substitute in Eq. (24) the radial wave 
function obtained by solving the Schrodinger equation 
for our potential. This proves to be very cumbersome 
indeed and we seek a handier alternative.19 

Consider the following Green's function: 

i y ( r / ) = ( 2 / x ) P •f dkFi 
Jo 

(kr)F,W(p-?)ri, (25) 

where P denotes the principal value of the integral. 
Then, 

*vl(r) = Fl(yr)- f Ty
l(r,r%mV(r'W}l>yl(r')dr> (26) 

Jo 
satisfies 

\dr +f— Wto=(»/*W)*»'(r), (27) 

which is the differential equation satisfied by the radial 
function R for given angular momentum L <j>y

l{r) may 
be written as 

4>yl(r) = Fl(yr)+{2/7r)p\ dk 
Jo 

XFl{kr)k{k\Al\y){k^f)~\ (28) 
where 

*<*|i4«|y>= - im/¥) f dr' Fi{kr')V{r')<l>y
l{r'). (29) 

Jo 

We state that the following expression for Ryh 

Ryi(r) = cos8l(y)(Fi(yr)+(2/7r)P f dz 

XFl(zr)z(z\Al\y)(z*--f)A (30) 

has the correct asymptotic behavior, i.e., 

Ryi-^sm[yr—lw/2+8i(y)2 as r—><*>. (31) 
191 am indebted to Dr. Franz Mohling for suggesting this 

approach and acquainting me with theorems concerning the A 
matrix. 
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We may now express U2 in terms of the A matrix de- P (x)~lP (y)'1 = (y-x)-1[_P(x)~1-P(y)-1'] 
fined by Eq. (29). Substituting our new expression for 
Ryl(r) and Ryl{r') into <ki',k2 '| U2\k^k,), and using +7r2S(x)S(;y), (33) 

r « <A|ili|*> = tan«z(*), (34) 
/ F«(*r)iP,(yr)rff=(ir/2)fi(*-y), (32) t . 
/ 0 we obtain 

<k1
/,k2

/| U2\ ki,k2>= (27r)-35(K~K /) exp(-K%^/4m) Z (2/+l)iMcos@) 

X ^ [ ^ ( ^ - ^ ^ [ c o s ^ ^ O ^ M i l * ' ) e x p ( - * W V w ) - c o s V * ) * X * 1 ^ i | * > exp(~ft2/3&2/m)] 

- 8 ( * 8 - * ' 2 ) - 1 / dy {k'\A%\y){k\Ai\y) cos%(y)lP(k2-y2)-1-P(kf2~y2)~1'] exp(-Wf3y2/ni) . (35) 

Using Eq. (18) we determine the matrix elements of X from those of U2: " 

<ki ' ,k , ' |X| k l 7k2)= (27r)-35(K-K0 exp(-K%^/4m)(¥/m) E (2/+l)P|(cosO) 

X U T T O ^ O ^ C O S 2 ^ ^ dy {k\Al\y){k,\Al\y) cos%{y) 

X P ( ^ 2 - / ) - 1 e x p ( - ^ 2
J ( 5 / / w ) . (36) 

Equations (35) and (36) together with the expression 
for the A matrix, given in Appendix B, represent a 
complete evaluation for our potential of the binary 
kernels U2 and X. For the numerical work that ensues, 
however, we wish to eliminate all references to principal 
values. To this effect we rewrite integrals in the fol
lowing way: 

Jo 

= -P[ dyUVO-MJP-flr1 

Jo 

+f(k)P f dy (V-/T1 (37) 
Jo 

but this last integral equals zero and the integrand of 
the remaining integral no longer requires us to take a 
principal value. 

An analytical method of dealing with the limit 
k' —> k, K' —» K is given in Appendix C. 

EXPANSION OF U*> 

We wish to calculate 63*. In order to do so, and fol
lowing the prescriptions given by Lee and Yang in 
their paper,7 we express the diagonal elements of Z78* 
in terms of Ui, U2, and Uz. 

There is first the free-particle contribution which is 
obtained from terms in..UiUiUi and is symbolically 
represented in Fig. 1. There are two diagrams and they 

both give the same result. Diagram (a) gives a con
tribution to bzs equal to 

(3 SO)-1 / , ^ 1 ( k 1 , k 3 ) t / i ( k 3 , k 2 ) i / 1 ( k 2 , k 1 ) ^ 1 « 2 ^ 3 

= $m)-l(mkT/lM)w. (38) 

As diagram (b) gives the same answer, the total free 
contribution becomes 

( M f r e e ^ - S / W ) - 1 . (39) 

We shall then have terms in TJ-JJ^ one of which we 
represent by the diagram of Fig. 2. The contribution 
of this diagram to b%s is 

(3IQ)-1 ffflktffiktfPh tf2(ki,k8; k ^ k O t f ^ k a ) , (40) 

which, as shown in Appendix D, may be reduced to a 
twofold integral that must be evaluated numerically. 
There are twelve diagrams of this kind. When we ex-

(a) (b) 

FIG. 1. Diagram representation of the U1U1U1 terms arising in 
the calculation of XV. 
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h 
FIG. 2. Diagram representa

tion of a typical U1U2 term 
arising in the calculation of U%*. 

pand Z72 in spherical harmonics, we find that for even 
I's their contributions are identical and add, while for 
odd Ts they are identical in magnitude, but not in sign, 
and give a zero total. 

We next consider diagrams evolving from the ex
pansion of Us in terms of binary kernels U2 and X. 
The general matrix element of Z73, (ki,k2,k31 £731 ki,k2,k3), 
gives us the six diagrams shown in Fig. 3, which ex
haust the terms having only two binary kernels. To 
obtain (ki,k2,k3| £73

5|ki,k2,k3) we must, then, consider 
these six diagrams for k/ , k2', k3' equal in turn to each 
of the six permutations of ki, k2, k3. This will give us 
36 diagrams. However, we can take advantage of the 
fact that we are only interested in the integral over 
ki, k2, and k3 of (ki,k2,k3| £/3

s|ki,k2,k3). This will 
enable us to express our answer Z>3

S in terms of only 
two diagrams. 

Take any diagram, such as* that illustrated in Fig. 
4(a). There exists ajpermutation P such that this 
diagram may be re-expressed as a standard diagram, 
Fig. 4(b), where 

ki=k PP'P'H, (41) 

Instead of being formal about this, let us look at the 
example shown in Fig. 5. The equality obtains trivially 
as we have not changed at all the expression repre
sented by the diagram. To obtain the second step we 
consider the k's as dummy variables and in this par
ticular example apply a permutation P: (1,2,3) —» 
(2,1,3) to their indices. 

We may apply the same procedure to all the dia
grams differing in appearance from our standard dia
gram. The mapping P' —> pp'p-1 is an inner auto
morphism : it is one-to-one and isomorphic. This means 

M 
^q 

XI 
P<\ 

that any "nonstandard" diagram, and the six permuta
tions Pr associated with it, may be replaced by the 
standard diagram where ki', k2', and k / are in turn set 
equal to the six permutations of ki, k2, and k3. The 
problem has, therefore, been reduced to considering 
the standard diagram and six different sets of k's. A 
weight of six will be associated with each case. 

When we write down the expression for the standard 
diagram, taking advantage of the 8 functions inherent 
in Uh Z72, and X, as well as of the possibility of ex
changing dummy variables, we find that we may repre
sent the cases associated with the four P': (1,2,3) —> 
[(1,2,3); (1,3,2); (2,1,3); (2,3,1)] by one single diagram 
belonging to the identity permutation, subject only to 
the restrictions that in the expansion of U2 and X in 
spherical harmonics we restrict ourselves to even values 
of I and /'. We refer to this diagram as II, shown in 

FIG. 4. A typical 
diagram (a) with 
primed variables re-
expressed as a stand
ard diagram, (b) with 
barred variables. 

Fig. 6(b). It will have a weight of 24. The other two 
permutations P1 \ (1,2,3)-> [(3,1,2); (3,2,1)] may be 
represented by one of them, subject to the restrictions 
that in the expansion of Vr

2, we let I assume only even 
values. We shall then see, upon evaluating the diagram 
further, that this will imply that the odd values of /', 
belonging to X, will not contribute. We refer to this 
diagram as I, shown in Fig. 6(a). It will have a weight 
of 12. 

The contribution to (ki/,k2
/,k3

/| £/3(ki,k2,k3) from a 
standard diagram reads 

HI d»*"[^i(k1'>k1")J7i(k,',kI';k,",k,")]<i' 

X[X(ki",k2"; k i , k O C W ' ; k , ) ! w } - (42) 

If we take advantage of the fact that 

l/i(k1',ki") = *(k1 '-k1")exp(-»V*i'»/2»») 

X 
P^ 

k, k3 

XI 
p*3 

FIG. 3. Diagram representation of the terms involving two binary 
kernels which arise in the binary expansion of Uz. 

FIG. 5. A specific example of the reduction of a diagram 
to another in standard form. 
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M 
\>z\ 

(a) 

M 
^ 

FIG. 6. Diagram 
representation of the 
two terms arising in 
the binary expansion 
of Uza to which all 
terms involving two 
binary kernels re
duce. 

(b) 

(43) 

and that Ui and X are of the form: 

J/2(k2',ks';k2",k3") 

= a(k2 '+k3 ' -k2"-k3") tU2(k2 ' )k3 ' ;k2",k3"), 
X(k1",k,";ki>ks) 

= 8(k1"+k2"-k1-k2)3C(k1",k2";k1 ,k2), 

we, then, can write Eq. (42) as 

S(E k / - £ k() f dp' 
i i J 0 

Xexp(-*^'*i'»/2f»)<a,(k,',k,'; k,",k,V 

X3C(ki',k2"; k1;k2)^_r ex^-h*(fi-fi')k^/2m], (44) 

where 
k2"=k2'+k3'-k3. 

We always choose the primed variables to be a 
permutation of the unprimed ones, and hence the delta 
function has a zero argument. It is evaluated as 
12/87T3. Equation (44) is the basis of a detailed evalua
tion, given in Appendix D, which result in expressions 
involving four-dimensional integrals which must be 
evaluated numerically. 

The diagrams involving three kernels can easily be 
written. As in the previous case it is only necessary to 
calculate the two diagrams shown in Fig. 7, having 
weights 24 and 48. The integrals associated with these 
diagrams are at least six-dimensional and we shall not 
attempt to evaluate them. 

RESULTS 

The expressions given in Appendix D were the object 
of programs we wrote for the IBM 704 and 7090 of the 
AEC Computing Center at New York University. 
Resulting values for the third virial coefficients, com
pared with experimental data, are found in Table II. 

We see that Ctheor increases as the temperature de-

FIG. 7. Diagram 
representation of the 
two terms arising in 
the binary expansion 
of Uz* to which all 
terms involving three 
binary kernels re
duce. 

^ 

X 
X 

TABLE II. Theoretical values, for the third virial coefficient, 
contrasted with experimental data. The C's are expressed in units 
of cc2/mole2. 

(°K) Keesoma-b 

C-exp 

Kellerc 
K&W, 

Ctheor 
Bin. coll. 

Bin. & bound 
coll. state 

V3 
(a) (b) 

1.7 - 2 . 5 105 1.8 105 _2.2 106 

2.154 -5.231 103 

2.324 -3.855 103 

2.61 - 2 . 4 104 - 1 . 8 104 

2.862 -7.282 103 

3.105 -5 .28 103 -4.361 103 

3.348 -8 .23 102 

3.721 -7.79 102 -1.747 103 

3.961 -3 .58 102 

4.0 - 3 . 0 102 3.5 104 7.5 103 

4.245 -1 .31 102 1.013 103 

6.0 4.6 102 

8.0 5.1 102 1.0 104 5.8 103 

* The value of 1.7° K is part of a set of values determined by Kistemaker 
and Keesom through extrapolation of the data of Keesom and Walstra. 
These values are found to be in rather good agreement with the direct 
evaluation of the C's, when the JB's were extrapolated. The values for 
T =4, 6, and 8° K are taken from the table of "adopted values" from Kee-
som's Helium, and represent smoothed and interpolated values. We note 
from Fig. 6, page 36, of this book that there exists no direct measurements 
of C from about 4.25 to about 14 or 15° K. C changes very much in this 
region, however, and our values for 6 and 8° K, therefore, represent educated 
guesses at best. We have also included values for the isotherms of Keesom 
and Walstra which have been reanalyzed by Keller. 

b j . Kistemaker and W. H. Keesom, Physica 12, 227 (1946); W. H. 
Keesom, Helium (Elsevier Press, Amsterdam, Holland, 1942); W. H. 
Keesom and W. K. Walstra, Physica 7, 985 (1940). 

<-W. E. Keller, Phys. Rev. 97, 1 (1955). 
d Keller, in the above reference, re-evaluates the data of Keesom and 

Walstra and obtains the values found in this column. 

creases and remains positive throughout the range of 
temperatures that we considered.20 The experimental 
data behave quite differently and decrease with de
creasing temperature. They become negative around 
4° K. In addition, the data of Keesom indicate a sharp 
drop in the value of the virial near 2° K. 

To reconcile these results would require large changes 
in b$s. While we expect inaccuracies in Ctheor stemming 
from the use of only the leading terms in the binary 
expansion, and while we suspect that Ctheor is sensitive 
to the shape of the potential, these factors would not 
be expected to be of such a magnitude as to account 
for this great disparity. This, as well as the sharp drop 
in the experimental value reported by Keesom, sug
gests that a physical property of helium has been 
overlooked. 

In the next section we show that the inclusion of a 
three-body bound state will allow us to understand the 
experimental results at low temperatures. Further, we 
shall see that this procedure is supported by an approxi
mate calculation which shows that such a state exists 
for our binary potential. 

THREE-BODY BOUND STATE 

To estimate the contribution of a three-body bound 
state we follow a method originated by Pais and 

20 We note that in their weak binding limit which is character
ized by the presence of zero energy, virtual or real, two- and three-
body bound states, Pais and Uhlenbeck obtain an expression for 
the third virial which is large and positive below 1° K. 
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Uhlenbeck8 and we approximate the physical situation 
to that of two independent gases, helium atoms and 
triatomic molecules, in mutual equilibrium. The true 
grand partition function then reduces to the product 
of grand partition functions and its logarithm to the 
sum of logarithms. Using indices 1 and 3 to signify 
atoms and molecules, respectively, we then obtain 

= V Zz b^za)
l+ V Zi bi^ Wzw\ (45) 

where bia) and bi(s) are the fugacity coefficients of the 
gases considered separately, S(D and Z(3) their respective 
fugacities. The (e&**)1 term arises in Q(3), as the energies 
of the possible / molecule states must include I times 
the binding energy of the molecule, and is carried over 
in the fugacity expansion. 

If we now examine term by term the correct grand 
partition function, having fugacity z, and the approxi
mate one, we see that we must set 

2(1) = Z, 2(3) ==23. ( 4 6 ) 

The coefficient of zz in the fugacity expansion is, then, 
aside from the common factor V, 

i 8 ' = i 8 c l ) + J i ( 8 > ^ » , (47) 
and as21 

J i W ^ I J = 3 3 / 2 A T - 3 (48) 

we write 
h°\T*= (&3s)contAr3+33/V€*. (49) 

Similar results have been obtained by Pais and 
Uhlenbeck. 

Our next step is to form an estimate of the binding 
energy of the three-body bound state. We do this by 
considering the case of an attractive square well 
identical, in width and depth, to the attractive part of 
the potential used previously. This dropping of the core 
eases our labor prodigiously and is probably not too 
drastic an approximation for the estimate we seek. 

We, then, proceed with a variational calculation, 
using a trial wave function of a type first used by 
Feenberg22 for the study of the triton: 

-J/=0—-K(n2+n3+r23)# ( 5 0 ) 

We obtain 

# = - 3 7 0 l-e-*x[— sH—*3+2rH-2H-l J 
L \21 21 / J 

15/ ¥ \ 
+- ( —F» (51) 

1 4 W 2 / 
where 

x—Ka, V — — Vo for a radius < a. 
Inserting the appropriate constants and minimizing 
H by varying x, we find that we have a bound state 
with a binding energy of 0.26° K. 

21 Rotational or vibrational energy levels, et, in the triatomic 
molecule would have the effect of letting b^3) —» 33/2Xr~31>t gte~^€t. 

22 E. Feenberg, Phys. Rev. 47, 850 (1935). 

We now use this value23 for €3 and regard our former 
binary collisions result as representing the continuum 
part of 63s. In Table I I we show the resulting values 
for Ctheor, which may again be contrasted with experi
mental values. 

Ctheor now reproduces the most obvious qualitative 
feature of the experimental third virial in that it is 
now negative at 1.7° K and positive for our higher 
temperatures. Since this behavior represents the most 
important information to be deduced from the experi
mental data, the exact experimental values being most 
uncertain, we conclude that our new results are in 
agreement with experiment. 

Further, we take these results, together with the 
variational calculation, as support for a proposal that 
He4 has a three-body bound state. 
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APPENDIX A: FITTING TO SECOND VIRIAL DATA 

In determining the value of a we take advantage of 
the fact that the leading contribution of the virial at 
high temperatures comes from the repulsive core. 
Further, we find that when the parameters n and S 
are allowed to vary within the broad range that we 
shall consider when fitting at low temperatures, the 
classical virial at high temperatures do not vary 
appreciably. For example, if we evaluate the virial for 
w = l , 3 , 4 , S=0.99, (7=2.1, we find that it differs by 
less than 1% from the value of the virial for n=2. If 
we allow S to change to S=0.95 our results are similar. 
The high-temperature virial, then, is a function of a 
only, within the range of parameters that we consider; 
and we find that < T = 2 . 1 A . This value is well deter
mined since for o-=2.0A every theoretical virial is 
smaller than every experimental virial (for the range 
375-575° K) and for <r=2.2A the converse is true. 
Further, even if we drag all the experimental results 
down by 0.5 or increase them by 0.5, than cr= 2.0 A 
would still be too low and <r=2.2 A would still be too 
high. 

At low temperature we fit the second virial coefficient 

23 If we determine €3 by requiring that the addition of the bound 
state bring perfect agreement with the data of Kistemaker and 
Keesom at 1.7° K, then e3 = 0.4° K. 
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to the experimental data over the range 1.7 to 8.2° K. where 
These bounds stem on the one hand from the lack of 
reasonably accurate experimental information at lower ..1= t/(p + # ) d{r \j&ji\kr)ji\-i(ifir) 
temperatures, and on the other hand from the need for ~kji+i(kr)ji(ipr)D I o*, 
large number of angular momenta to evaluate accurately I I = e (K2—k2)~l 

the second virial at high temperatures. Already, at our X®{r2[KJi(kr)ji+1(Kr)-kji+i(kr)ji(i<r)~]} | *a, (55) 
highest temperatures this factor limits our accuracy to ( 

not much better than 1%, although we use phase shifts ^^— e\K —k ) 
of angular momenta / = 0 , 2, 4, 6, 8, 10. Xe{r2[/<yz(^)?7z+iM-kjl+1(kr)rJl(Kr)']} \ A 

and we have used the following formula 

/ x2Zi(ax)zi(l3x)dx 
J a 

= {x2[t3zi(ax)zi+1(f3x)-azi+i(ax)zi((3x)']} \ a
b 

X(P2-a2)-\ (56) 
where U is very large compared to e, we wish to deter
mine the appropriate radial wave functions for the case We have let z stand for any linear combination of ji 
y2< (m/h2)U. Corresponding to the three different re- and r\i with real or imaginary coefficients. 

APPENDIX B: EVALUATION OF THE A MATRIX 

Given a 2-body potential of the following form 

V(r)=U for 0<r<a 

= — € for a<r<a 

= 0 for a < r , 

gions, we have 

$3=ylcos8ljl(yr) — $m8lril(yr)~l, 
where 

(3=(fnU/h2-y2)1/2
y 

K= (tne/h2+y2)112. 

This expression for <£3 insures that 

<£3 —» y~l sm{yr—lw/2+di) 

as r becomes large. The j's and T?'S are spherical Bessel 
and Neumann functions, respectively. In terms of ordi
nary Bessel functions, they may be written a 

i J (p)=(V2p) 1 / 2 / ; + j (p) , 

^ (p) = - ( - l ) W 2 / > ) 1 / 2 / _ ( i + J ) ( p ) . 

We recall our previous definition of the A matrix 

If we evaluate a , <B, 6 by using the boundary condi
tions on the wave functions, we find that 

(52) a=(B(/c<72A;)-
1, 

<B= Aty cosSi(y)£ji(ya) — t3iDSi(y)tii(ya)2 

XlAiji(Ka)-Tm(Ka)'y-1, 

where A and f are defined by 

(2 /+ l )S ,=y , («^r )« | : f t jn (w)- ( /+ l ) i j H . 1 («r ) ] 

-i»(*r) (ifiUji-i(i(3<r)~ (1+ l)jm(ifi<r)2, 

(57) 

(58) 

(53) ^ e ̂ ° n ° t WIl^e t n e A matrix in terms of these expres
sions already at our disposal as it would not then be 
written in terms of real quantities only. Rather, if we 
look at the trigonometric representation of the spherical 
Bessel function, we will observe that if we let 

ji(ix)=(-iyUx), (59) 

= - (m/fi2) / dr rtji(kr)V(r)^[cosSi(y)lr1 then 0Z will be real for all /, whenever x is also real. The 
J ° introduction of such </>'s results in a definitive expression 

= (w/^2)[cos5z(3;)]~1(I+II+III), (54) for the A matrix in which all the terms are real. 

(k | A11 y) = - k-1 (m/¥) dr F% (kr) V (r)^1 (r) 

(k\Ai\y)=ylji(ya) — ta,n8i(y)rjl(ya)J£Aiji(Ka)-Tiril(Ka)'] l 

.X{(wtf/TOii(&rW 
+ (me/h2)Ai{ a2\jcji (ka)jw M - kji+i (ka)ji M ] - CT2ZKJI (ka)jl+1 (K<r) - kji+1 (ko)ji (ice)]} [/c2- k2~]~l 

— {me/h2)Yi{a2[KJi (ka)rji+i (KO) — kji+1 (ka)rji (KO)~] 

- a2lKJi (ka)Vl+1 (Ka) - kjl+1 (ka)m (jc<r)]> [ K 2 - k^'1}, (60) 
where 

P=(mU/h2-f)112, K={me/h2+y2)lt2, y2<mU/h2, 

( 2 / + i ) r , = 0 l ( f t O K [ y i ^ (61) 
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We also require an expression for the tangent of the phase shifts, this is derived by imposing the boundary conditions 

^ 2 / W / $ 2 W = ^ 3 , W / $ 3 « , 
where r=a. We then easily obtain 

tan5z(j) = 
l ^ / ( 2 / + l ) ] P i w ( y a ) - ( / + l ) i w ( y a ) ] - 7 i ( y ) i i W 

where 

7i 60 = 

\^/(2l+l)Thi~i(ya)-(l+l)vi+i(ya)^-yi(y)m(ya) 

K [ A Z / ( 2 / + 1 ) ] [ 0 V I M - (/+l)iz+i(/ca)] - K C r ? / ( 2 / + l ) ] [ ^ z - i M - ( / + l ) ^ i ( ^ ) ] 

ji(Ka)Ai-rji(Ka)Ti 

(62) 

(63) 

K= (me/¥+y2)^2. 

APPENDIX C 

The limit of the matrix elements of U% requires 
special mention. In evaluating the limit of 

(V-k'^f dyf{k,k',y) 

XLP(k2-y2)-1-P(k,2-y2)-12 (64) 

by ^Hospital's rule, we must be careful to recall that 
we may not with impunity commute the differential 
operator d/dk and the P (principal) value. We must 
first go into the complex plane and evaluate the 
principal-value integral by considering it to be half of 
the sum of two integrals: one taken over a contour 
skirting the singularities from the top, the other skirt
ing the singularities from the bottom. The limit will 
be given by 

(2k)- i-f 
\dkj0 

dyf(k,k',y)L(k>-f)-i-(fr >-f)-^\ 

= dy f{k,k,yW-f)-*, (65) 
Jo 

where both integrals must be understood to be evalu
ated in the manner specified above. Taking then ad
vantage that in the same sense 

f(h,k,k) ( dy[W-f •}-*=<), 
Jo 

we may, then, write our answer as 

where 

P dy L(y,k)(k2-f)-\ 

L(y,k)^\y(k,k,k)-f(k,k,y)Tk2-fl'1 

(66) 

(67) 

and where we have used the equivalence of an integral 
having a first-order singularity and the specified con
tour, and the P value of such an integral. We can now 
eliminate the need to take a principal value if, as has 
been done in the section on binary kernels, we subtract 
from the integral another principal-value integral which 

has a value of zero. We then obtain 

• / • 

dy lL(k,k)-L(y,k)-]lk2-fT\ 

where L(k,k) is the limit of L(y,k) as y—> k. 

APPENDIX D 

Ui U2 Diagrams 

We now evaluate the contribution to b%s of the U1U2 
terms, a typical term being represented by the diagram 
of Fig. 2. There are twelve of these terms and they may 
be associated with the possible configurations of the 
diagram. The free line, representing Z7i, may not be 
vertical, hence we have three positions available for 
its upper end point, and two positions for its lower end 
point, giving us six possibilities. Then, for each free-line 
configuration the interacting lines representing Z72 may 
or may not be crossed. 

Suppose that we write the equation corresponding to 
the diagram drawn. 

• / 
h°= (Q31)-1 / d*hd*k2d*h tf2(ki,k8; k1,k2)C/1(k2,k3) 

- (031)-1 / d^k^k2 

(68) 

XJ72(ki,k,; ki,k2) e x p ( - £ W / 2 m ) . 

We see that precisely half of our diagrams will look 
this way (modulo changes in dummy variables). The 
other half will give as a typical term 

(031)"1 (Phfflkt J72(k2,ki; ki,k2) exp(-^¥k2
2/2m). 

If we introduce variables k and K, by 

K = ( k x + k 2 ) , k = | ( k 1 - k 2 ) , 

then we may write 

tf8(ki>ks;k1>k,) = tfi(k,K;k,K), 

tf,(k*,ki; ki,k») = U,(- k ,K; k,K). 
(69) 
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Expanding in spherical harmonics we may then, in let K ' = K a n d k '=zbk . Cos®, which equals k-k', will 
this case, write Z72 in the form then be ± 1 , respectively. The even Legendre poly-

* nomials will give us + 1 for both terms, the odd poly-
&(2TT)-3 exp(-pK2fi2/4m) £ (2/+1) nomials will give us ± 1 , respectively. Hence, we see 

that the odd angular momenta will give us no con-
XPKcos®)/i(/3,fe), (70) tribution, while the terms add for the even angular 

where, in terms of our former nomenclature, we have momenta. 

As ^ 2
2 = i ( K - 2 k ) 2 = K 2 + ^ ~ K - k , we may write 

bz*= (2/TT) dKK2 dk k2 f; (21+ l)fi(0,k) exp(-3f3h2K2/8ni) exp(~p¥k2/2m) f dp exp(pWKkfj,/2tn) 
J J 1=0, even J —I 

= ( V T T ) ^ 1 (2m/¥) £ (21+1) J dk J dK K exp ( - 3ph2K2/Sm) 
Z=0, even J J 

X$mh((3WKk/2tn)k exp(-^ 2^ 2 /2w)/ , ( /3 ,^) , (72) 

where we have taken all 12 diagrams into account. Using 

> 
zxp(-AK*) smh(BK)KdK= ZXP(B2/4A)(B/4A)(T/A)1-12, (73) 

o 

we shall then obtain 

63
s=(64x)3-3/2(Xr3)~1 E (21+1) dk Wf^k) exp(-(3fi2k2/3nt), (74) 

Z=0, even J Q 

where 
ftQ3,k)=(2r)-*(A+B), 

A = \im4r[kp(k2-p2)yi[cos\(p)k(k\At\p)exp(-W!3pi/m)-cos%(k)p(p\Ai\k)exp(-^ 
p—»fc 

B = limS(k2-p2)~l dy 
p-+k 

•[/(&) zxp(-fi2fik2/m)-f(y) exp(-fi2t3y2/tn)1 

k2-y2 

lf(p) exp(~¥l3p2/m)-f(y) txp(-¥/3y2/m)y 

p2-y2 

where 
f(y)=f(k,p,y) = (k\Ai\yMMy)cos%(y). 

Off-Diagonal Diagrams 

This diagram, illustrated in Fig. 6(a), contributes, with a weight of 12, to 63
s. 

^tls= 12(3187T3)-1 / / / dtkxdPkdPh I d/3' <U2(ki, k2; k ! + k 2 - k 3 , k 8 V 

X5C(k3, k ! + k 2 - k 3 ; ki, k , ) ^ e x p ( - & W / 2 w ) . (75) 
Let 

k = i ( k i - k 2 ) , k x = ( k + i K ) , 

k' = | ( k i + k 2 - 2 k 3 ) , k 2 = ( - k + J K ) , 

K^kx+k, , k 3 ^ ( - k ' + § K ) . 

We switch to these variables to take advantage of the form of our binary kernels. The Jacobian equals one. 

b9^= 12(31S71*)-1 dWk'tPK f dp e x p [ - ^ ( ^ / 2 + | ^ 2 - k / - K ) / 2 w ] ^ 2 ( k , k , , K ) ^ 5 C ( - k /
? k, K ) ^ . (76) 
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We interchange k and k' in "112, taking advantage of this kernel's symmetry in the two arguments. Further, we 
factor the K dependence from ^2 and 5C by defining 

ca2(k ,,k,K)^ = exp(-^2ir2/4m)(R(k , ,k)^, 

3C(-k', k, K)^_^ = exp[ - G8-^)ft*xy4w]S(--k', k ) ^ . 
This enables us to write 

63)T*- {I2)(3\8ir*yi \dzK exp[-A2jff(-k'- K+fZ2)/2m] 

X / \&WW exp(-tiW2/2tn) f dp' <R(k',kVS(-k', k ) ^ . (77) 

Doing the K integral we obtain: 

n^Wy^tom/fflpy* \ dsk / dzk' exp(-¥l3k'2/3m) f dp <R(k',kVs(-k', k ) ^ , . (78) 

We now expand (R and S: 

& = E (2/+l)Pz(cos0)(Rz, S=f: (2/'+l)iV(cos©)Sr, cos0 = £ 4 ' . 
1=0 Z'-O 

Consistent with our previous remarks on adding diagrams, we can only allow / to assume even values. We let /' 
range over all values. 

/,^(R(k,,k)/3,S(-k,,k)^,==27r £ £ (2/+l)(2//+l) 
J 1=0, even lf=0 

/.00 ~ + l 

X ( - l W dk»\ dpPlfa)Pl,(j*)<5li(k',k)ir&i>(k'Ji)w 

= 2TT £ 2(2/+l) / <tt**(R,(*',*),rSi(*',*W. (79) 
ZM), even y Q 

We see that we obtain a contribution only for /=/ ' . 

h,is= (16T)23-V2\T-* E (2/+1)/ dk dk'k2k'2 exp(-hW2/3m) dfif &i(k',#)?&&',k)w (80) 
1=0, even Jo JO Jo 

If we do the /? integration analytically, we obtain, quite straightforwardly, the following expressions which will 
have to be treated numerically. 

X2^3>is= (16TT)23-3/2 £ (2/+1)/ <»/ dk'k2k'2 exp(-tiW2/3<m)$y (81) 
Z-0, even J 0 y 0 

where 

<F= /" ^ (Ri(*/,*)^Si(*,,ft)^/= (27r)-6(^2 /^)(I+n+IH+IV+V). (82) 
7 o 

Let h2/m=a, then, we find the following expressions for I, II, III, IV, and V: 

(I) = {±<w/kk')2(k2-V2)-1 co$%(k)k'{k'\Al\k) 

X {cos25z (k')k(k Mil k%a (k'2 - &2)]-1 {e~
a^2- *-«**'») - cos2Sz (k)k'(k' \At\ £>#r «0fc2}, (83) 

(II) = 8(4T/kk')(k2-k,2)~1 cos*6i(k)k'(k'\Ai\k) dy\\ 0f&)*-****-f(y)l — J \{k2~y2)~l 

,e-apk*_e-apk'K / e~afik^ _ e~afiyK 

[H-^^)M-7i^r)r-H <84) 
i(k'2-k2) J \ a(y2~k2) 

(III) = - 8 (finr/kV) (tf-k'2)'1 cos25z (k')k(k \Ai\V) 

X / dz\ /(*)( ) - / (») ( ) (*•-«•)-!, (85) 

file:///Ai/V
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(IV) = 8(47r/^ ,)(^2-^2) co&6i(k)k'(k'\Ai\k) / dz\ f(k)^e-^k2-f(z)( ) \(&-z*)-\ (86) 
Jo L \ a(k2-z2) /J 

Expressions III and IV should be calculated as a unit; and in fact, by changing variables from z to y, may be 
combined with expression II. 

(V)=-64(* a -* / 2 )" 1 / dzi dy{ }, (87) 

where the bracket equals 

/(*) •f(k)fie-^h,'-f(y)l(e-^k2-e-a^)/a(f-k2)^ 

f(k%(e-^k2-e-^k'2)/a(k'2-k^-f(y)l(e-^k2-e~a^)/a(yi-k2)^-\ 

-/(z)r/(fe)[(e- a^2-e- a^2)/a(^2-z2)]-/(y)[(e- a^2-e-< ,^2)A(j '2-z2)] 

^ _ 2 2 | _ ^ 2 - y ! 

/(^')C(e-"^2-e-'"3*;':!)/a(yfe'2-32)]-/(y)C(e-a^2-e-a^2)/a(/-32)]-] 

&'2-;y2 J" 
Diagonal Diagram 

This diagram, illustrated in Fig. 6(b), contributes, with a weight of 24, to bz*. 

63,ii,= 24(3!87r3)-1 J J ftPkKPk&k, f dp exp(-Wki*/2m) 

Xexp[-fts(j8-/5')W/2f»],Uj(kftk«;k,>k,)^5C(k1,k1;ki>kj)/»-*'. (88) 

We introduce new variables k, k', K, K' and new functions f(j3,k) and q(fi,kr) by: 

k = i ( k i - k , ) , k 1 = 2 k ' + k + K / 2 , 

K=k2+k3 , k2=k+K/2, 
k ' = l ( k i - k O , k 3 = - k + K / 2 , 

K'=kx+k2, 
/C8,*) = exp(+«^2P/4»t)«ll,(i8,2r,*)> 

q(fi,k') = exp{+h^K'2/4!m)5C(ff,K',k'). 

We shall take the independent variables to be k, k', K and the Jacobian of the transformation will give us a 
factor of 8. 

b,,u'= (24)(3!8ir3)"18 J f [<PKdskdW exp{-^[3^+2* ' 2 +(k+2k ' ) -K+4(k-k ' )+3Z 2 /4] /2w} 

X f dp extf.-iW<.V*-W)/in\f(0',k)q(p-ff, V). (89) 
Jo 

We can do the K integral, as well as the angular part of the k and k' integrals. 

Jd*K exp{ -ft2/3|>KV4+ (k+2k') • K]/2m) = ( 8 s w / 3 W 2 exp[(ft2/3/M (4£'2+4k- k'+jfe*)], (90) 

f fdWV e x p [ - (ffl/3m) (4fc2+£'2+4k • k')] 

= (4TT) (2ir) (3m/2¥0) f dk I dk' W sinh(4^W/3w) exp[-^2
/8(4^+^'2)/3w]. (91) 

Jo Jo 
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Expanding / and q: 

/(£,*) = ! : (2l+l)fi(j3,k), 'q(P,k') = t (2l'+l)qi,(p9k'), 

and collecting all terms, we obtain 

6t.n'=(2ir)»(2S6)3-1/2X2.-« f) (2/+l)(2/ '+l) 
i,Z/'«0; even 

,,00 -.00 

X dk dk' kk' sinh(4ft2/3*A'/3w) exp[-^(4^ 2 +^ , 2 ) /3w] 
Jo Jo 

X /" # ' exp[-»^ /(*'a-*8)/i»]/ I03 /,*)2r08-i8', ft'). (92) 
Jo 

We sum only over the even angular momenta. Performing the fi integration we have 

fd& 
Jo 

expt-WW-ty/mlfiQy&qrdi-p', V)= (2v)-*(W/m) lim(I+II+III+IV+V), (93) 
,0 *-»* 

where, if we again let hi/m=a, 

/47T\ /4jT 1 \ 
(I) = (— ) cos25,- (*') tan5r (k')e-^k'H ) 

\k'J \fyW-tf) 

cos%(p)k(k \At\p)( ) - cos2fi: (k)p{p \Ai\k)fi 
\ a(f-&) J 

f*r\ f 8 \ p rfi(k)p-fi(y)l(l~e-<'^2-W)/a(f-k*)l 

, (94) 

(II) = (—^ cos2S (̂&') tm8l.(k')<raf">n(- -\ f dy[-
ft Jo L k%-f 

/ , (#)[(l-*-*«'1-w ' )A(^-* a)]-/ ,(y)C(l-«r»«» l-* ,))/a(y»-**)]-1 / N 

— • ' > ( 9 5 ) 

pl-yi J 
where 

My^fifop^iklAtlyXplA^cosMy)-
4x 1 r re~^k'2fi'(k',k',k%(l-e-a^i-k^)/a(p2-k^ 4x i f r. 

(Ill) + (IV) = cos25, (p)k(k \A,\p)(-8) dz\ 
hpW-f J0 L &'2-z2 

e-^fv{k%k\z)[(\-e-a^k'^-k^)/a(k'*+pi-W-z>)-\-

&'2-z2 

4x 1 
+• cos%(k)p(p \A t\k) (8) 

kptf-p* 

e-a^ifi>(k',k',k')P-e-a»!'2fr(k',k',z)l(l-e-a^kn-^)/a(k',i-z2)2 
X / dz , (96) 

fc'2-Z2 

, , . , \fi'(k',k',k')e-^k'2/fl(m-Jl(y)l(l-e-"^-^)/a(f-k^2 j * \ rdz rd \fi>w,k',k')e-°»«-/] 
Ktf-f/Jo Jo I k't-z* \ •flJo Jo I k't-z* \ V-y* 

/ t (^)C( i -g- a < , ( p , -* , ) )A(P , -* ' ) ] - / i (y)C( i -g- < ' ( y , - t ' ) )A(y ' -y) ] \ 

pi-yi J 

fv{k\k\z)e-a»*Yfi{k)[(\-e-<>Kk'^)/a(Ji'*-z*)l-fi^ 

&'2-s2 L W-y* 
/K^)C( l -e"^ ( " '^^* 2 " 2 2 0/a^ ' 2 +/> 2 -^ -3 2 ) ] - /K3 ' )C( l -e -^ ( t ' ^^ i ' - j 2 0A(^ ' 2 +/ - / fe 2 -2 2 ) ] 

P*-f 
]}• (97) 

file:///fyW-tf
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APPENDIX E 

TABLE III. The contributing terms to 63
sXr3.a 

Temperature 
(°K) 

Free 
2~dim. 
4~dim. off 
4-dim. dia. 
Total 

1.7 

0.06415 
0.6075 
0.3436 

-0.6809 
0.3344 

4 

0.06415 
0.7444 
0.5808 

-3.9531 
-2.564 

8 

0.06415 
0.6278 
0.8394 

-12.10 
-10.57 

a It is estimated that the total results are accurate to within 2%, and 
that no contributing term has an error greater than 5%. 

TABLE IV. A breakdown of the contributing terms to &3sAr3 for 1.7° K. 

/ = Total 

Two-dimensional integrals 
Four-dimensional integrals (off-diagonal diagram) 
Four-dimensional integrals (diagonal diagrams) 

0.1804 
0.2475 

0.4050 
0.0940 

0.0216 
0.0021 

0.0005 
0.0000 

0.6075 
0.3436 

-0.6809 

0 
2 
4 
6 

-0.2735 
-0.0266 

0.0086 
0.0009 

-0.3493 
-0.0339 

0.0058 
0.0007 

-0.0187 
0.0051 

-0.0005 
0.0000 

0.0000 
0.0007 
0.0000 
0.0000 

TABLE V. A breakdown of the contributing terms to V A T 3 for 4° K. 

Total 

Two-dimensional integrals 
Four-dimensional integrals (off-diagonal diagrams) 
Four-dimensional integrals (diagonal diagrams) 

0.2810 
0.4009 

0,7966 
0.1532 

0.2075 
0.0267 

0.0213 
0.0000 

0.7444 
0.5808 

-3.9531 

0 
2 
4 
6 

-0.0995 
-0.6724 
-0.1805 
-0.0173 

-2.1147 
-0.0659 

0.0226 
0.0000 

-0.7129 
-0.0250 

0.0081 
0.0000 

-0.0957 
0.0000 
0.0000 
0.0000 

TABLE VI. A breakdown of the contributing terms to Z>3
sXy3 for 8° K. 

1 = Total 

Two-dimensional integrals -0.7840 0.6517 0.5894 0.1707 0.6278 
Four-dimensional integrals (off-diagonal diagram) 0.4833 0.2840 0.0588 0.0133 0.8394 
Four-dimensional integrals (diagonal diagrams) —12.10 

0 
2 
4 
6 

0.9625 
-0.9953 
-0.9466 
-0.3007 

-3.3824 
-1.0539 
-0.3403 
-0.1186 

-3.4167 
-0.9089 
-0.0067 

0.0111 

-1.2074 
-0.4014 
-0.0005 

0.0038 


