Sign of the Mixing Ratio s

L. SIMONS AND I. FORSBLOM

Department of Physics, University of Helsinki, Helsinki, Finland (Received 10 January 1963)

The sign of δ (the ratio of the reduced matrix element corresponding to multipole order L' to that corresponding to multipole order *L*) is compared for s-wave protons in (γ, γ) and (γ, γ) correlations. In both cases, Lloyd's convention gives the proper sign of 5.

 \overline{T} HE purpose of this paper is to point out some theoretical and experimental relationships in (p, γ_1, γ_2) triple correlations and (γ_1, γ_2) angular correlations which may help answer the question of the sign of the interference terms and which may give a wider basis for continued experimental investigations regarding this question of sign.

We use the usual symbols for the (γ_1, γ_2) cascade (Fig. 1) and we deal with mixtures between two multipoles of each gamma ray. The mixing ratio δ is defined as the ratio of the reduced matrix element corresponding to multipole order L' to that corresponding to multipole order *L.*

When there are interference terms in the correlation function, we prefer to discuss the actual dipole-quadrupole mixtures for which the coefficient of $P_2(\cos\theta)$ in the interference term, according to Biedenharn and Rose,¹ can be written as $f_1 f_2$, where f_1 and f_2 refer to γ_1 and γ_2 , respectively.

According to Lloyd's formalism² the coefficient of the interference term can be written as k_1k_2 , where (apart from factors nonessential to the sign)

$$
k_1 = (j||L_1||j_1)(j||L_1'||j_1),
$$

\n
$$
k_2 = (j_2||L_2||j)(j_2||L_2'||j).
$$

Consequently, the reduced matrix elements always appear in the form $(J_f\|L\|J_i)$ where J_f and J_i , respectively, refer to the final and initial states in each transition in the cascade.

Because

$$
(J_f||L||J_i) = (-1)^{J_f-J_i+L}(J_i||L||J_f),
$$

 $k_1 = (-1)^{L_1 + L_1} f_1$ and $k_2 = f_2$. Consequently, for dipole-

¹ L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 746 (1953). 2 S. P. Lloyd, Phys. Rev. 85, 904 (1952).

quadrupole mixtures $k_1 = -f_1$, $k_2 = f_2$. "The Ofer effect"³ is consistent with this, but his experiments are also consistent with $k_1=f_1$, $k_2=-f_2$.

By comparing the (p,γ_1,γ_2) triple correlation with the (γ_1, γ_2) directional correlation one can get information about the sign of δ . If we deal with the triple correlation function of the (p,γ_1,γ_2) reaction for s-wave protons, this function is the same as the (γ_1, γ_2) directional correlation function, because the proton is then decoupled. We see that we get agreement regarding the sign, if the (p,γ_1,γ_2) triple correlation function is cal-

FIG. 1. Symbols for γ radiation.

culated with Ferguson's tables⁴ with an additional correction of Huby⁵ according to which the interference terms are multiplied with $(-1)^{L_{12}-L_{12'}}$, which with our symbols is $(-1)^{L_1-L_1'}=(-1)^{L_1+L_1'}$.

This would seem to give an opportunity for an experimental confirmation of Lloyd's formalism.

4 A. J. Ferguson and A. R. Rutledge, Coefficients for Triple Correlation Analysis in Nuclear Bombardment Experiments, AECL, Chalk River report, CRP-615 (1957). 5 A. J. Ferguson (private communication).

³ S. Ofer, Phys. Rev. 114, 870 (1959).