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It is demonstrated that any scattering amplitude can formally be expressed as a sum of terms each cor­
responding to the exchange of a particular isotopic spin without requiring the concept of crossing. Employ­
ing only the optical theorem and invariance under isotopic spin rotations the following theorem is proved: 
The contribution to the imaginary part of the forward scattering amplitude arising from the exchange of 
zero isotopic spin cannot be arbitrarily small compared to contributions from the exchange of any other 
isotopic spin or spins. From the same argument follows a second theorem: If the total cross section for two 
particles is independent of their isotopic spin state, then only the exchange of isotopic spin zero contributes 
to the imaginary part of the forward scattering amplitude. In combination with the hypothesis that high-
energy scattering is dominated by the exchange of a single Regge pole, it follows that the "Pomeranchuk" 
pole must have isotopic spin zero. The relation to the Pomeranchuk-Okun' rule is discussed. 

I. INTRODUCTION 

IN 1956, Pomeranchuk and Okun'1 suggested that at 
very high energies, forward-exchange amplitudes, 

and in particular charge-exchange amplitudes, are 
negligible compared with the forward-nonexchange 
amplitude. This is equivalent to the statement that the 
elastic-scattering amplitude matrix is diagonal in a 
representation in which the z projections of the isotopic 
spins of the individual particles are diagonal. Yang2 has 
recently shown that this implies that the forward-
scattering amplitude matrix is a multiple of the unit 
matrix and that this further implies that the total cross 
section is the same in all isotopic spin states. Various 
arguments may be given to support the Pomeranchuk-
Okun' hypothesis, but none, to our knowledge, are of a 
rigorous character. On the other hand, the hypothesis 
has received increasing experimental support in recent 
years. 

The past few years have also witnessed the appear­
ance of the conjecture that the high-energy behavior of 
cross sections is dominated by the contributions of 
so-called Regge poles,3 and this hypothesis has also been 
receiving experimental support. In the language of 
Regge poles the Pomeranchuk-Okun' rule can be ex­
pressed very simply: Forward-scattering amplitudes at 
sufficiently high energy are dominated by the exchange 
of a single Regge pole, the so-called "Pomeranchuk 
pole," which is characterized by certain quantum num-

* Supported in part by the U. S. Atomic Energy Commission. 
1 1 . la. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 30, 423 (1956) 

[translation: Soviet Phys.—JETP 3, 306 (1956)]; L. B. Okun' 
and I. la. Pomeranchuk, ibid. 30, 424 (1956) [translation: ibid. 3, 
307 (1956)]. 

2 C. N. Yang, J. Math. Phys. 4, 52 (1963). 
3 T. Regge, Nuovo Cimento 14,951 (1959); ibid. 18, 947 (1960); 

R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 
(1962); G. F. Chew, S. C. Frautschi, and S. Mandelstam, ibid. 
126, 1202 (1962); S. C. Frautschi, M. Gell-Mann, and F. Zacha-
riasen, ibid. 126, 2204 (1962). 

bers, in particular isotopic spin zero. The dominance of 
this pole contribution thus ensures the dominance of 
charge-nonexchange over charge-exchange amplitudes. 
In the present note we establish a theorem on the basis 
of generally accepted premises which is closely related 
to, but weaker than, the Pomeranchuk-Okun' rule. The 
statement of the theorem is: If the imaginary part of the 
forward-scattering amplitude for two particles is 
analyzed into contributions from the exchange of vari­
ous isotopic spins, then the contribution arising from 
the exchange of zero isotopic spin cannot be negligible 
compared with contributions from the exchange of any 
other isotopic spin or spins. In particular, if only one 
isotopic spin exchange contributes, it must be isotopic 
spin zero. 

The basic premise underlying the theorem is invari­
ance of the interactions under isotopic spin rotations, 
which limits its validity to those situations where 
strong interactions at least dominate the scattering 
process. Use is also made of the optical theorem to the 
extent of employing the fact that the forward-scattering 
amplitude in any isotopic spin state must have a posi­
tive imaginary part. In order for the theorem to have 
any content, it is, of course, necessary that there exist 
circumstances in which the description of an amplitude 
in terms of exchange of systems4 of definite isotopic spin 
has some significance. Such circumstances occur in the 
conjecture that exchanges of Regge poles dominate high-
energy cross sections. This conjecture, however, is based 
on the assumption of crossing relations between different 
channels and hence requires the possibility of analyti­
cally continuing amplitudes as functions of complex 
energy and momentum transfer through unphysical 
regions. For the purpose of establishing our theorem, no 

4 To minimize ambiguities we reserve the term "particles" for 
the real entities undergoing scattering and the term "systems" for 
the entities exchanged between these. However, either or both of 
these may be "simple particles" or "complex systems." 

1585 



1586 L . L . F O L D Y A N D R . R . P E I E R L S 

C \ / D 

(a) (*) 

(a) 

X 

t 

t 
X 

X 

1 

(c) 

(e) 

f 

I t i 
i 4 

X 

H r I 

X 

k 4 \ 

FIG. 1. Description schemes 
for scattering amplitudes, (a) 
Compound system scheme; (b) 
exchange system scheme; (c) 
"crossed" exchange scheme; (d) 
elast c scattering, exchange scheme; 
(e) elastic scattering, "crossed" 
exchange scheme. 

such crossing relations are in fact needed, so we have 
avoided phrasing it in the language of Regge poles since 
it may have a wider applicability. 

The arguments which establish the above theorem 
also serve to establish a corollary>, namely: If the total 
cross section for two particles is the same in all isotopic 
spin states of the two particles, then only the exchange 
of isotopic spin zero is contributing to the imaginary-
part of the forward-scattering amplitude. 

In Sec. I I we give a formal definition of the amplitude 
for isotopic spin exchange. In Sec. I l l we prove the 
theorem and discuss possible generalizations, and in 
Sec. IV we discuss its consequences in terms of Regge 
poles. 

II. EXCHANGE DESCRIPTION OF INTERACTIONS 

Before specializing the discussion to the case of 
isotopic spin in particular, let us consider the concept of 
exchange in general in the description of a scattering 
reaction. Consider some reaction 

A+B-+C+D (1) 

where the symbols A, B,C,D represent all the quantum 
numbers of the individual particles—energy-momenta, 
spin projections, charges, etc. We can define the ampli­
tude (CD\f\AB), and this representation corresponds 
most closely to an actual measurement. For most dis­
cussions, however, it is convenient to transform to the 
representation labeled by the (total) conserved quan­
tum numbers X of the system A+B, and write 

(CD\f\AB)=T,xCx(ABCD)fx, 

i.e., independent of the exact dynamics of^the inter­
acting particles. In a certain sense this transformation 
may be regarded as expressing the amplitude as a sum 
of terms, each of which corresponds to an intermediate 
compound system with quantum numbers X, so that 
the reaction occurs in two stages [Fig. 1 (a ) ] : 

A+B - > X ; X->C+D. (3) 

The concept of an intermediate compound state is 
particularly useful in the case of reactions proceeding 
through definite resonances, but the expansion (2) is a 
perfectly general one. In some cases, however, notably 
for stripping reactions, peripheral collisions, or the 
Regge pole theory of diffraction scattering, it is more 
convenient to regard the reaction as taking place via the 
exchange of some system4 F, the reaction again occur­
ring in two stages [Fig. 1(b)] : 

>C+Y; Y+B-+D. (4) 

The system F is rather an artificial concept; for 
example, its rest mass is imaginary. However, again one 
can consider all possible sets of quantum numbers F 
consistent with (4) and work out the contributions 
KY{ABCD) to various states A BCD and write 

{CD\f\AB)^Y,YKY{ABCD)FY, (5) 

as an alternate formal expansion of the amplitude / . A 
third alternative is provided by the possibility of ex­
change in a "crossed" sense [Fig. 1(c)] : 

(2) A-~>D+Z; Z+B-^C, (6) 

where Cx(ABCD) are some "kinematic" coefficients, for which the same comments apply. If we deal with an 
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elastic scattering process with, say A = C, B = D} then F 
exchange is generally the simpler description. 

In the present note we are mainly concerned with 
isotopic spin. Let us consider a scattering process as 
discussed above proceeding via the exchange of a system 
F . The amplitude is considered to correspond to some 
definite energy, momentum transfer, and spin orienta­
tions. A, B, C, D, and Y are now the (integral or half-
integral) isotopic spins of the particles and the ex­
changed system. 

As can be seen from the diagram [Fig. 1(b)] the 
reaction (4) involves an intermediate state with three 
isotopic spins: C, B, and F.5 The initial state corre­
sponds to the coupling of C and Y in a state of isotopic 
spin A ; the final state corresponds to the coupling of B 
and Y in a state of isotopic spin D. Thus, the transition 
from the initial to final state involves a transition from 
an eigenstate of one coupling scheme to an eigenstate of 
another for the three isotopic spins. The overlap be­
tween these two eigenstates, in so far as isotopic spin is 
concerned, depends only on the total isotopic spin X for 
which the reaction occurs. Thus, the relative contribu­
tions of the exchange of isotopic spin Y to the scattering 
of different isotopic spins X are just given by the re-
coupling coefficients6 

((CY)A,BX\C(YB)D,X)= (~1)B+C+X+Y 

with 

UxY= UXY(ABCD)= (-l)hU+B+C+D+2X+2Y) 

\A C Y 
X [ ( 2 X + 1 ) ( 2 F + 1 ) ] 1 / 2 

[D B X 1 (10) 

since the orthogonality relation for the 6-j symbols7 can 
be expressed as 

^2XUXY'*UXY=8Y'Y. ( i i ) 

There is some arbitrariness in the phase factor of UXY 
reflecting the arbitrariness in the phases of the Fy. Our 
particular choice is dictated by convenience and has the 
advantage that there is symmetry under the inter­
change: A<->B, C <->£>, as well as under the inter­
change : A^C, JB <-> D\ furthermore the UXY are real, 
for A = Cy B=D. The use of the orthogonality relation 
(11) allows us to solve (9) for the FY 

FY=ZxL(2X+l)/(2Y+l)JizUxY*fx. (12) 

This equation can then be regarded as defining8 the 
amplitude for exchange of isotopic spin F . The term 
containing FY in (9) is then by definition the contribu­
tion to the amplitude fx arising from the exchange of 
systems of isotopic spin F . 

where 

[A C Y] 
X [ ( 2 4 + 1 ) ( 2 D + 1 ) ; M , (7) 

ID B X\ 

A C Y 

[D B X 
is the 6-j symbol.6 

In order to show that the transformation from the 
A BCD representation to the F representation is uni­
tary, it is sufficient to show that there is a unitary 
transformation from the X to the F representation. 
However, we must be careful about normalization: Any 
transformation must leave invariant the total transition 
probability summed over all charge states, and hence if 
fx and FY are the amplitudes in the two representations, 

E x ( 2 X + l ) | / x | 2 = E r ( 2 F + l ) | J F r | 2 . (8) 

In other words (2X+iy'2fx and (2Y+1)1'2FY must be 
related by a unitary transformation. This can be effected 
by writing 

fx=ZxL(2Y+l)/(2X+l)J^UXY(ABCD)FY, (9) 

5 Note that this exchange could also be considered in the re­
verse order: B —> Y-j-D, A-\-Y-> C. The definition of the ex­
change amplitude will, in fact, be invariant under the exchange 
A <-> B, C <-> D. 

6 See, for example, M. Rotenberg, R. Bivens, N. Metropolis, 
and J. K. Wooten, Jr., The 3-j and 6-j Symbols (Technology Press, 
Cambridge, Massachusetts, 1959), and references contained 
therein. 

III. THEOREM AND DISCUSSION 

We begin the proof of our theorem by remarking that 
the Racah coefficient W(F,C}B,X; A,D) is denned in 
terms of the 6-j symbol by9 

W(Y£,B,X)A,D)= (-1)-(B+C+X+Y) 

: ( - l ) - (B+C+X+Y) 

Y C 

X B 

A C 

D B 
, (13) 

where the last equality follows from the symmetry 
properties of the 6-j symbol. We now assume that A >C 
and that A-C> \B-D\.10 In this case A — C is the 
smallest isotopic spin which can be exchanged between 

7 Reference 6, p. 14, Eq. (2.6). 
8 This result is equivalent to the expression of a crossing matrix 

in terms of a 6-j symbol or Racah coefficient but is independent of 
any crossing assumption. See, for example, reference 2. The first 
application of Racah coefficients to crossing matrices seems to 
have been made by F. J. Dyson, Phys. Rev. 100, 344 (1955) in a 
context representative of the general situation considered here. 
See also G. C. Wick, Brookhaven Lectures, 1960 (unpublished). 

9 Reference 6, p. 13, Eq. (2.1). 
10 If this is not the case, we may use the symmetry properties of 

the 6-j symbol to rearrange the elements of the first two columns 
(P R Y] until the symbol has the form < ^ Q y > , with P>R and 

P—R>\Q—S\. In this case P—R is the smallest isotopic spin 
which can be exchanged. The argument which follows then goes 
through unchanged with the substitutions A —> P,B —> Q,C —> R, 
D->S. 
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the particles. We next make the important remark that11 

the Racah coefficient W(A — C,C,B,X',A,D) is posi­
tive for all values of its arguments for which it does 
not vanish; in particular, it is positive definite for 
A-C^X^A+C. Thus, setting Y=A-C in (13) and 
comparing with Eq. (10), it follows that 

U*XtA_c= ( - 1 ) - * ^ - * - * H > > [ ( 2 X + 1 ) (2A - 2 C + 1 ) ] 1 ' 2 

W{A-C,C,D,X\A,B) (14) 

whether real or imaginary, is of one sign for all per­
tinent X. In particular for A = C, B=D, one finds 

UZto=Ux.o*^l(2X+l)/(2A + l)(2B+l)2li2. 

If we now set Yr—A — C in the orthogonality relation 
(10), we obtain 

^L,UxtA-C*Ux,Y—?)Y,A-C' 
x 

Multiplying by (2Y-\-l)ll2Fy and summing over all Y 
except A — C, the right side vanishes and we find 

£ (2X+1) U*X,A-C 
X 

X{ E 1(2Y+1)/(2X+1)J*UXYFY} = 0. (15) 
Y96A-C 

Now since (2X+1)U*X,A-C is of one algebraic sign and 
nonzero for all values of X included in the sum, it 
follows that neither the real nor the imaginary part of 
the quantity in braces can have the same algebraic sign 
for all X, no matter what the values of the Fy. 

The preceding statement is a general theorem about 
6-j symbols, but in the context of our earlier discussion, 
with the quantities Fy representing the contributions 
arising from the exchange of systems with isotopic spin 
F, the quantity in braces in Eq. (15) will be recognized 
as fx in the case that FA-C=0. Let us now apply this 
result to forward elastic scattering described by the 
exchange scheme depicted in Fig. 1(d), so that A — C 
and B — D. Then A — C = 0 and the above theorem then 
states that if F0 is negligible compared to the other Fy, 
the imaginary part of fx cannot be positive for all X. 
Since this would violate the optical theorem, it follows 
that the contribution to the imaginary part of the 
forward-scattering amplitude arising from the exchange 
of zero isotopic spin between the scattering particles 
cannot be negligible compared to contributions arising 
from the exchange of other isotopic spins. In particular, 
the only Fy which can dominate all the others is F0 , and 
if this is the case, Eq. (9) then yields 

fx=Fo/L(2A + l)(2B+l)Ji*. (16) 

The total cross section is then the same in all isotopic 
spin states X, in accord with Yang's conclusion from the 
Pomeranchuk-Okun' hypothesis. We see further that 
since the contributions to the imaginary part of fx from 

11 L. C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. 
Phys. 24, 249 (1952), Eq. (29). For the particular case A=C, 
B = D, see reference 6, p. 16, Eq. (2.12). 

the exchange of other isotopic spins than zero cannot be 
of the same sign for all X, we have also proved that if 
the total cross section for two particles is the same in all 
isotopic spin states then only the exchange of isotopic 
spin zero is contributing to the imaginary part of the 
forward-scattering amplitude. 

As a particular example of the above results, consider 
the elastic scattering of two nucleons. In this case we 
have an explicit representation of the matrix U in the 
form 

f=hFo-W*2Fi, (17) 

where / is a matrix in the isotopic spin space of the two 
nucleons and t i and ^2 are their isotopic spin vectors. 
Letting g and G represent the imaginary parts of / and 
F, respectively, we then have 

# 0 = 2 ^ 0 + 2 ^ 1 ? 

gi=hGfi-iGu (18) 

and it is clear that we must also have the inequalities 

Go^O, G o ^ G ^ - G o / 3 . (19) 

In the general case similar inequalities may be derived. 
I t is clear from the above proof that similar theorems 

could be established for the real or imaginary part of any 
amplitude once one has independent arguments that 
these are of a definite sign in all isotopic spin states. The 
authors believe also that in the particular case of 
forward elastic scattering it is possible to define in an 
unambiguous way, and without reference to crossing 
relations, the exchange of spin, parity, and signature 
between the two scattering particles, and further, that 
with this definition one can show that the contribution 
from the exchange of zero spin, even parity, and even 
signature cannot be negligible and is the only contribu­
tion allowed to dominate. This has not yet been worked 
out in detail, however, and hence is postponed for a 
later communication. A further extension of consider­
ations of the above character to other conserved quan­
tum numbers associated with invariance under some 
other group (SU$, for example) would require the 
generalizations of the 6-j symbols for this group, an 
appropriate orthogonality relation, etc. 

Though of lesser interest, one can also consider 
elastic scattering but according to the alternate 
"crossed" exchange scheme depicted in Fig. 1(e). This 
corresponds to the identification A = D, B = C, Y—+Z, 
in Eq. (15). In this case A — B is the minimum isotopic 
spin which can be exchanged between the two particles, 
and hence if a single isotopic spin exchange is to domi­
nate the imaginary part of the forward-scattering 
amplitude in this exchange scheme, it must be the 
minimum exchangeable isotopic spin. 

IV. APPLICATION TO THE REGGE 
POLE HYPOTHESIS 

While we have expressed our theorems in a form which 
does not depend directly on crossing relations, the 
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physical significance of a general expansion in terms of 
exchanged-quantum numbers is most likely to be 
relevant to situations involving crossing. I t may, in 
fact, be the case that the applicability of the theorems 
is limited in practice to those situations where the Regge 
pole hypothesis is realized. 

We, therefore, conclude with a brief discussion of the 
implications of our first theorem for the Regge pole 
hypothesis. According to this hypothesis,3 at sufficiently 
high energies each of the contributions FY to the for­
ward-scattering amplitude has a dependence on t, the 
square of the center-of-mass energy of the scattering 
particles, of the form 

FY=iRYtaY. 

Here ay is the position on the real axis in the complex 
angular momentum plane (for zero center-of-mass 
energy in the crossed channel) of the "dominant" Regge 
pole having total isotopic spin Y (and appropriate other 
good quantum numbers). Our theorem then implies 

aY^a0 (al lF^O). 

If the inequality holds in all cases, then we have the 
dominance of the pole with isotopic spin zero in agree­
ment with the Pomeranchuk hypothesis. If the equality 
holds for one or more Y (coincidence of Regge poles 
with different isotopic spins), then we can only conclude 
that some inequalities hold between the real parts of the 

coefficients RY. In the particular case of nucleon-
nucleon scattering, for example, one would have 

R<y^Ri^> —Ro/3. 

On the other hand, our second theorem allows us to 
infer from the observed equality of n-p and p-p total 
cross sections, as well as 7r+—p and ir—p total cross 
sections at very high energies that only (one or more) 
isotopic spin zero Regge poles are contributing to the 
forward scattering in this energy range. 

Pomeranchuk has further suggested (and present 
experiments are consistent with this suggestion) that 
total cross sections are asymptotically constant at very 
high energies, implying a0— 1; our considerations shed 
no light on this point. 

If indeed we are able to extend our theorem to the 
case of ordinary spin, parity, and signature,3 then we 
will have shown that the "observed" quantum numbers 
—isotopic spin zero, even parity, and even signature— 
of the "Pomeranchuk" trajectory are the only ones 
allowed for a single dominant exchanged Regge pole. 
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