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It is shown that one of the family of "generalized energy density" definitions being investigated by 
Komar, one for which the generalized energy density is made positive definite by use of minimal surfaces, 
leads to a total "generalized energy" which (a) is undefinable for closed universes, (b) is not conserved for 
some asymptotically flat spaces, and (c) is not the correct total energy for the Oppenheimer-Snyder collaps
ing star metric where the metric in a neighborhood of infinity is identically the Schwarzschild metric. 

I. INTRODUCTION 

THE total mass, or energy, of a gravitational system 
is defined unambiguously whenever space-time is 

asymptotically flat in the sense that coordinates may be 
introduced for which g^v—^^v and all its partial deriva
tives vanish as fast as \/r on each hypersurface x° 
= const. The basic argument which leads to this con
clusion was first given by Einstein1 and Klein,2 and has 
been reformulated by Trautman3 with the necessary 
careful attention to the way in which gM„ approaches rj^ 
at infinity. Trautman assumes that, on each hypersur
face x°= const, the asymptotic conditions 

gnV-y»v=0(l/r), 

W=0(1 /V 2 ) 

(1) 

(2) 

hold, where r2 = (xl)2+ (#2)2+ (#3)2, and that these con
ditions are preserved by (linear) Lorentz transforma
tions. It is next important to realize that conditions (2), 
holding for fixed x°, do not exclude radiation, but only 
require that r be taken larger than the radius of the 
wave front.4 In fact the existence of coordinates satis
fying Eq. (1) already implies the existence of coordi
nates for which g^^ vanishes faster than \/r at fixed x°, 
and the discussion of total energy or momentum (in
cluding a contribution from all the radiation) can be 
given on the basis of Eq. (1) alone.4 An important tool in 
all recent discussions of energy are the surface integral 
forms for total energy and momentum introduced by 
von Freud.5 Under conditions (1) and (2), for instance, 
only linear terms survive in these surface integrals as 
r —•» oo and it is easily seen that the Einstein-von 
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formulas all define the same total energy-momentum 
vector. Infinitely many other "energy" formulas with a 
formal similarity to those just mentioned can be written 
down, as Goldberg9 has shown. The correct energy can 
be defined by Gedanken experiments in asymptotically 
flat spaces4 and, under the (unnecessarily stringent) 
coordinate conditions (1) and (2), can be computed 
from the surface integral formulas mentioned above, 
and many others. 

If one wishes to exclude the contribution to the total 
energy from a pulse of outgoing radiation, to obtain a 
residual total energy, then it is appropriate to think of 
the energy not as a function of the state of the system 
on a space-like hypersurface x°= const, but as a function 
of a null (or asymptotically null) hypersurface of con
stant retarded time u=x°—r. An excellent discussion of 
energy from this viewpoint has been given by Traut
man.3 Since the wave-front theorem4 should imply that 
all asymptotically flat metrics have only outgoing 
radiation in the future (and only incoming radiation in 
the past), Trautman's coordinate conditions should be 
no more restrictive than the existence of coordinates 
where gnV—rjnv and its derivatives are 0(l/r). 

If radiation is emitted not in the form of massless 
fields (electromagnetism, gravity) but as particles or in 
fields with a nonzero rest mass, then Trautman's null 
cone method will not separate the emitter from the 
emission. In this case one returns to x°= const hypersur-
faces, but in an 5-matrix limit, x° —»± oo, where the 
various pieces of the system are either bound together 
or widely separated. Then the separated bound systems 
can each be assigned an energy-momentum vector since 
interaction energies among them should asymptotically 
vanish. This viewpoint has not been explored in detail, 
but it is known that the approach to flatness can be a 
subtle limit.10-11 

In none of the foregoing summary was any meaningful 
idea of energy density implied, nor was a total energy 
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defined for a closed universe, or for any other system 
which could not be inserted into a region of previously 
flat empty space, nor was the total energy-momentum 
idea related formally to the translation symmetry of the 
asymptotically flat boundary conditions. These topics 
have been a major concern in the work of Komar12-14 

and that of Bergmann15 and Moller16-17 from which 
Komar starts. Moller's energy depends not only on the 
metric, but also on the choice of a family of hypersur-
faces (x°— const) and a congruence of curves (xl= const, 
i=l, 2, 3). Komar's modification requires only one of 
these additional elements. The curve family may be de
fined by its tangent vector field £M, in terms of which 
Komar's "generalized energy" formulas are written 
(units: 167r7 = 1 = c) 

f»*= f 2 ( ^ - r ^ ( - g ) 1 / 2 ^ . (3) 
J V 

If it is desired instead to use a family of hypersurfaces 
t(xlt) = const, then Komar takes 

£M=(U;«)-V W 
Pirani18 has attempted an interpretation of Eq. (3) as 
giving a "relative energy" depending on the 4-velocities 
£" of a network of observers. Komar has been investi
gating ways13 in which f* might be related to the time-
translation symmetry of the flat space boundary condi
tions (and the other symmetries, to give momentum and 
angular momentum integrals). One particular choice14 

where £" is orthogonal [Eq. (4)] to a family of minimal 
surfaces gives the desirable result m>0. I t is this par
ticular method of defining energy that will be considered 
in the present paper. We find that it is defective in that 
the resulting "energy" can be incorrect even for space-
times which reduce to the exterior Schwarzschild solu
tion for r larger than some r0; and that for other 
physically reasonable solutions, including BrilPs time-
symmetric wave pulse,19 it is not conserved. Thus posi
tive definiteness of the total energy of gravitational 
systems is not established except in some special 
cases.19-21 The difficulty with the Moller-Komar gener
alized energy formulas as energy formulas is that in 
surface integral form they involve predominantly g00, as 
we will see in Sec. I l l , and gm does not possess the 
asymptotic coordinate invariance properties of the 
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Newtonian field4 hT formed from the gij which appears 
in the standard surface integrals [d.. Eq. (23) and refer
ence 4 ] , Thus, exceptional care in choosing t or £* is re
quired before Eq. (3) provides a method of computing 
the total energy. Of course, one of the motivations for 
investigating the M^ller-Komar energies is the desire to 
avoid the coordinate conditions (1), and thus, for in
stance, to be able to define the energy of a closed uni
verse. This last topic is discussed briefly in the next 
section. 

II. ENERGY OF CLOSED UNIVERSES 

A closed surface cannot be covered by a single set of 
singularity-free coordinates; thus to define an integral 
over closed surfaces always involves considering changes 
of coordinates and naturally suggests the use of tensor 
quantities. The various pseudotensor definitions of 
energy could not, therefore, be used to define the total 
energy of a closed universe, although the possibility of 
reducing the energy to a surface integral form suggested 
that closed universes should be assigned total energy 
zero. The Moller-Komar energy formulas allowed this 
argument to be carried through,12-16 since Eq. (3) implies 
that 

tn*= <f 2(^>-^)(-g)1 / 2^ (5) 

by Stokes' theorem. If the hypersurface V in Eq. (3) is 
closed, i.e., if dV=bdyV=0, then from Eq. (5) evidently 
m^=0. Consequently, no restriction on the vector field £" 
which implies that m{>0 in Eq. (J) can be satisfied in a 
closed universe. In particular, then, the assumption that 
p is orthogonal via Eq. (4) to a family of minimal sur
faces, which Komar has shown14 gives m{>0 in Eq. (3) 
(apart from the case of flat space) is impossible in a 
closed universe. More precisely, Komar has shown22 that 
there exist no families of closed space-like minimal 
hypersurfaces in nonflat space-times satisfying 

R^^n^R^n^O. (6) 

(Here n» is the unit normal to a space-like surface.) This 
last condition, via the Einstein equations, is always 
satisfied; it states that negative pressures may not ex
ceed, in magnitude, one-third of the matter energy 
density [cf. Eq. (26)]. 

We have reviewed these known facts to emphasize 
that the following three properties for an energy formula 
are incompatible: (a) a surface integral or Gaussian flux 
formulation, (b) general covariance sufficient for appli
cability to closed spaces, (c) positive definiteness. 

III. CONSERVATION OF ENERGY 

All the Komar energies satisfy a formal conservation 
law; the integrand in Eq. (3) has a vanishing divergence. 

22 Arthur B. Komar, Ph.D. thesis, Princeton University, 1956, 
(unpublished), Eq. (3.21)ff. 
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The actual independence of m^ from the hypersurface V 
will, in the case of asymptotically flat spaces, depend on 
whether corresponding integrals at spatial infinity 
vanish. Moller found that his energy proposal was not 
Lorentz invariant due to the fact that such ("Poynting 
flux") integrals did not vanish properly,17 and the 
questions of conservation and coordinate invariance are, 
of course, closely related.1,2 Instead of evaluating inte
grals on time-like hypersurfaces to check the conserva
tion of m^ we will reduce the integral (3) to a form in 
which its time derivative can be computed in some 
examples. 

Let us restrict ourselves to the subclass of Komar's 
generalized energies defined in terms of a preferred 
family of space-like hypersurfaces t— const. Then we 
may for convenience choose as the time coordinate x° 
just x0=tj so 

t. j;«= (gradx0)2 = g°'= -1/N2, (7) 

where we introduce — N~2 as a convenient notational 
replacement for g00. By Eq. (4) we find 

& = - ^ ( g r a d * ° ) = ~ iV 2 ( l ; 0,0,0). (8) 

Forming the integral (3) for a / = const surface gives 

m= [2t(e>k-e->°)(-g)1,2lkd*x. (9) 

By introducing the contravariant components zgi3' of the 
metric gi3- induced on the hypersurface x°= const, 
namely, 

y ^ r ' - g 0 ^ 0 0 ) - 1 (io) 
and by using the identity 

(-g)1 / 2=^W / 2 , (H) 

where zg=detgij, we find that (8) inserted in (9) reduces 
to 

mt= UlYl(dg)ll2N,kl,id*x 

= /4iVH3s)1/2<^. (12) 

In the last line here, there appear covariant derivatives 
with respect to the spatial metric23 gij. Now the 
Einstein equations do not specify the time dependence 
of N [ADM23 7-(3.15)]; this is determined by the 
coordinate condition defining t. The Einstein equation 
for the time derivative of the trace K of the second 
fundamental form K^ of a t= const hypersurface is 

dK/dt= -N^n+NtK.i+NiKijK^+R**), (13) 

23 All (3+1)-dimensional notations follow R. Arnowitt, S. 
Deser, and C. W. Misner in Gravitation: An Introduction to Current 
Research, edited by L. Witten, (John Wiley & Sons, Inc., New 
York, 1962), Sec. 7-3.2 referred to as ADM. 

where Ni—goi and indices are raised with zgij\ [[This 
equation is easily derived from the form of the Ein
stein equations given in ADM 7-(3.15), using iril' 
= ~ (zg)1/2(Ki3-zgi3K). I t has been given by Peres,24 

and, in nearly this form, by Komar.22] This formula 
allows us to rewrite Eq. (12) as 

mt=4: INiKijKV+R**) 

+NiK, i- (dK/dt)] (zg)1/2dzx. (14) 

When we take as a condition to determine the function 
t the requirement that each t= const hypersurface be a 
minimal surface, i.e., require 

K=0, (15) 

then mt is clearly positive [cf. Eq. (6)]]: 

mt=4: HKijKV+RnWgytWx. (16) 

Thus we have rederived Komar's result14 in a different 
notation.25 This last equation will also allow us to com
pute the time derivatives of mt in some examples. 

The simplest examples to work with are empty space-
times, so we set i£** = 0 in Eq. (16). As an additional 
simplifying assumption we will require that the hyper
surface 1=0 be a hypersurface of time symmetry, i.e., 
that 

tf*y|*-o=0 (17) 

These assumptions evidently imply, from Eq. (16), that 

w*|«„o=0. (18) 

This shows that mh defined using a family of minimal 
hypersurfaces, is not the correct total energy for the 
Brill time-symmetric gravitational wave pulses,19 whose 
total energy is known to be well defined and strictly 
positive. When we inquire how Eq. (18) is compatible 
with Komar's correct proof14 that mt=0 implies that 
space is flat, we find that the proof of flatness26 involves 
not only Kij\o=0) but also (dKij/dt)o=0, i.e., that rnt 

both vanish for / = 0 and be conserved. Thus, mt cannot 
be conserved for the nonflat Brill time-symmetric waves, 
or for any nonflat empty space-time where 2=0 is a 
surface of time-inversion symmetry. 

Let us see the failure of mt to be conserved in empty, 
time-symmetric, space-times in a little more detail. 
From Eq. (16) we readily compute, using i?** = 0 and 
Eq. (17), that (dmt/dt)0=0 and 

(-~) = £f&ii&lm *gil Zg>'mN(Zg)WdZX~\ , 

24 A. Peres, Bull. Res. Council Israel 8F, 179 (1960), Eq. (46). 
25 This formula also establishes the relationship between 

Komar's work in reference 14 and that of Peres in Nuovo 
Cimento26, 53 (1962). 

26 This proof is contained in the next paragraph here, with only 
notational changes from Komar, reference 14. 
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where Kij=dKij/dt. From Eq. (13), taken at / = 0 , 
namely, N^\i=0, we have (iV)«-o=l, a n d then the 
Einstein equation for Ki3 [ADM 7-(3.15b)] gives 

Kij\ t=Q — ZRij\ t=Q, 

and, therefore, 

(20) 

(21) 

Thus mt can be conserved only if (32?*j)o=0, i.e., only if 
(with an appropriate choice of spatial coordinates) both 
(Kij)o=0 and (gij)o—?>ij, which implies that space-time 
is flat. 

IV. GAUSSIAN FLUX INTEGRALS 

One of the advantages of a surface integral formula 
for total energy is that it allows us to define the mass of 
the sun without first developing a theory of stellar 
structure and stellar evolution. For instance, the 
Landau-Lifshitz formula6 which reads27 

m~ I (-g)(T00+f°)dzx 

-I i(-g)W-W)lnd'x 

-LY3Vi)ludsx 

gives the surface integral form 

m=-^lYi(3g)ljdSi, 

(22) 

(23) 

which depends explicitly only on the spatial components 
gij of the metric in the neighborhood of infinity. Im
plicitly of course, this formula depends also on the 
choice of coordinates, but the coordinate conditions (1) 
and (2) are more than sufficient to guarantee that Eq. 
(23) yields the correct total energy,4 independent of the 
choice of coordinates within these asymptotically rec
tangular restrictions. An energy computation is, thus, 
possible without knowing the matter distribution T00, or 
the metric g^ in the strong-field central regions because 
there are surface integral formulas where both the 
integrand and the coordinate conditions depend only on 
the asymptotic metric. 

The Komar generalized energy formulas also provide 
surface integral forms, as we have seen in Eq. (5); or 
from Eq. (12) we have 

tt-*f ww^Si. (24) 

When the function t is chosen by the requirement that 
each hypersurface t= const be a minimal surface, how
ever, we will see that a computation of mt requires more 
than the asymptotic metric, and can depend, in fact, on 
some details of the stellar interior. If the interior of a 
spherically symmetric star is assumed to be static, then, 
as Komar has shown, mt is equal to the Schwarzschild 
constant m. As a different, but simple, description of the 
stellar interior, let us assume that it consists of pressure-
less fluid (dust) of uniform proper rest density, col
lapsing radially, maintaining its spherical symmetry. 
This is described by the metric of Oppenheimer and 
Snyder.28 As a further simplification, we compute mt 

only for the hypersurface of time inversion symmetry, 
2 = 0, at which instant the radial velocity of the matter 
is zero, and Kij=0. To determine N we use the coordi
nate condition i T = 0 = dK/dt in Eq. (13), always now at 
2=0, to get 

-N\\i+NR*. = Q. (25) 

The Einstein equations give [cf. Eq. (6) and g**^nfXgIJiVnp 

= ~ 1 ] 

R**=\(T**+m = \(T**+YjTi3) = l{p+3p) (26) 

with the stress-energy tensor 

T*»=(p+p)uHi,v+pg»% (27) 

and the initial condition u^—n^. I t is then already evi
dent that for the same initial conditions on p, u*, gij, and 
Kij—0, the collapsing star, p=0, and the static solution 
p9^0 will give different functions N at / = 0 . We com
plete the computation of N to show that, not sur
prisingly, these different functions N, in fact, yield 
different values of mt in Eq. (24). 

The solution of Eq. (25) or iV'*|»=0 in the exterior 
region where 

dP= [ 1 - ( m / 8 7 r r ) ] - W + r W , 

dQ?=dd2+sm2ddcl>2, (28) 
is 

^=l-€+€[ l-(m /87rr)]1 /2 
(29) 

with the boundary condition N=lior r= <*>. From the 
surface integral (24) we see that the constant 

e=mt/m (30) 

is the total generalized energy mt in units of the total 
energy m. The value of e will be determined by matching 
Eq. (29) to a solution of Eq. (25) in the interior region. 
The metric here is the Friedman metric,29 which at t=0 

27 A. Peres, Nuovo Cimento 15, 351 (1960), Eq. (25)ff. 

28 J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939). 
For a clear geometrical presentation of this metric by matching 
together pieces of the Schwarzschild-Kruskal metric and the 
Friedman cosmological models, see D. L. Beckedorff, senior thesis, 
Mathematics Department, Princeton University, 1962 (un
published). Only the initial conditions, not the complete solution, 
are actually used in the computations which follow, and we include 
a verification of the initial value equations. 

29 L. Landau and E. Lifshitz, reference 6, Sees. 11-13 and 11-14. 
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has the same ga as the interior Schwarzschild solution,80 

namely, 
d P = 4 a ( ? [ ^ + s i n 2 x d a » ] . (31) 

Matching this metric at X0 to the exterior Schwarzschild 
metric (28) at 

r=f0==2#osinXo (32) 

gives, as a matching condition, 

m=167raosin3X0. (33) 

The Einstein (initial value) equation for T** gives 
ZR= T**=p or29 p=6/(2<z0)2. Then by Eq. (26) we have 
£**=ip=3/ (8a 0

2 ) , and Eq. (25) for N becomes 

1 d dN 
sin2

x—+iN= 0 
sin2x dx dx 

with the solution 
v2 

N=NQ sinhi 
sinx (§> 

(34) 

(35) 

Since iV*|»=0 in the exterior region, the integral (24) 
can also be evaluated on the boundary surface (32) and 
gives, from Eq. (35), 

€ = /wi/m=2iVo(sinXo)-3[sinXoCOsh(Xo/v2) 

-y/2 cosXo sinh(X0/v2)]. (36) 

This serves as the matching condition on the normal 
derivative of N. Matching the values of N from Eqs. 
(35) and (29) at the boundary (32) gives another rela
tion; upon eliminating No between these two, we find 

30 C. Miller, The Theory of Relativity (Oxford University Press, 
New York, 1952), Sec. 124. 

e ( l — e+ecosXo) 

2v2sinh(X0/V2) 

sin3X0 

r /x°\ 
coshl — ]-

L W 

-V2sinhf— JcotXo 

This equation allows e= 1 (i.e., m%-=m) only in the limit 
X0—> 0, which from 

sin2X0=m/8irro^ 2ym/c2fo, (37) 

we see corresponds to the weak field (dilute matter) 
limit. For nonzero m/ro we see that the generalized 
energy mt defined by minimal hypersurfaces, and the 
Schwarzschild mass m of the exterior metric, disagree at 
*=0. 

In both Sees. I l l and IV the computations of mt are 
based on the assumption that the initial minimal hyper-
surface, 2=0, can be imbedded in a family of minimal 
surfaces t= const. This assumption is supported by the 
fact that Eq. (25), which is actually a linearized form of 
the equation for a minimal hypersurface, can be solved 
in each case. However, Bergmann and Komar31 have 
pointed out that this by no means guarantees that the 
true nonlinear equation for the family of minimal hyper
surfaces has a solution, even for small finite t. Thus, a 
possible alternative to the conclusions reached in Sees. 
I l l and IV (that mt is not conserved and is not the total 
energy) is that mt may not be defined at all. 
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