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In treating the electric dipole approximation of a charged particle undergoing self-interaction, it is shown 
how, in the cases of a charged free particle and a charged oscillator, the same equations of motion may be 
derived from two inequivalent Hamiltonian formalisms. The first formalism is the Dirac formalism of 
Schiller and Schwartz, which must be satisfied by all configuration space solutions generated by the total 
Hamiltonian. It is pointed out that in order to ensure that the configuration space solutions are consistent 
with the latter formalism, one must recognize that the constraints impose modifications on the commutation 
rules satisfied by averaged field variables. While the first formalism is general, the second formalism can be 
constructed only after one has solutions expressed in terms of a Fourier decomposition of the radiation field. 
The second formalism is an interaction picture formalism where the radiation field part of the total 
Hamiltonian is the generator of time translations. The latter formalism is used to give a new derivation of 
Kramers' integral for the zero-point level shift of an oscillator. We also discuss some asymptotic boundary 
conditions and comment on a recent paper by Sokolov and Lysov. 

I. INTRODUCTION 

IN two previous papers1 we have dealt with the 
equations of motion of a charged particle in an 

external radiation field and under the influence of an 
additional external force field. The electric dipole 
approximation1,2 was made and self-interaction was 
taken account of in a standard fashion to put the 
equations of motion in structure-independent form. In 
paper I, solutions for the free particle and the harmonic 
oscillator were discussed. The aforementioned solutions 
were expressed in terms of solutions to the homogeneous 
particle equations of motion and the homogeneous wave 
equation (free-field solution). In I, we raised the 
question of the existence of constraints among the 
dynamical variables because the solutions discussed 
did not reproduce the canonical commutation rules. 
We also discussed certain ambiguities which arise in 
connection with solutions based on a plane wave 
decomposition of the free field. 

In paper I I , it was shown that the canonical scheme 
associated with the equations of motion and field 
equations mentioned above contains relations among 
the canonical variables. Instead of two canonical vector 
pairs, there are three pairs with two vector constraint 
equations between the variables. The constraints 
turned out to be what Dirac has classified as second-
class.8 I t was pointed out how the canonical formalism 
may be replaced by the Dirac formalism—which 
reflects the fact that the constraints prevent the solu-
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1M. Schwartz, Phys. Rev. 123, 1903 (1961). Referred to as I. 
R. Schiller and M. Schwartz, ibid. 126, 1582 (1962). Referred 
to as II. 

2 H. A. Kramers, in Collected Scientific Papers (North-Holland 
Publishing Company, Amsterdam, 1956), see "Nonrelativistic 
Quantum Electrodynamics and Correspondence Principle.'' 

3 P. A. M. Dirac, Can. J. Math. 2, 129 (1950); 3, 1 (1951). 
First-class constraints commute among themselves and second-
class constraints do not. 

tions from satisfying the full set of canonical commu­
tation rules. Thus, paper I I gives a theoretical basis 
for a structure-independent Hamiltonian formalism in 
the electric dipole approximation. 

In the present note, we return to the discussion of 
the free-charged particle and the charged harmonic 
oscillator. We impose the Dirac formalism on the 
solutions and thereby uncover some previously un­
realized effects of the constraints on commutators 
involving averages of field variables over the charge 
distribution. 

The above remarks pertain to the case where one 
does not utilize Fourier decompositions of the free field. 
We will show that if one uses solutions for the dy­
namical variables which are based on a Fourier de­
composition of the free field, and if the Fourier com­
ponents are treated as oscillator variables, then such 
solutions are generated by the free-field part of the 
Hamiltonian. The total Hamiltonian may then be 
interpreted as an interaction picture Hamiltonian. 
This offers a Hamiltonian formalism which is different 
from and not canonically equivalent to that of I I . This 
new formalism presents a suitable framework for the 
procedure followed by Sokolov and Tumanov4 in 
calculating the Lamb shift for the oscillator. The latter 
situation contrasts with the Kramers,2 Van Kampen,5 

Steinwedel6 treatment where one makes an approxi­
mation based on embedding the solutions in a large 
sphere and which has the effect of reducing the Hamil­
tonian to a sum over decoupled oscillators. The Lamb 
shift may then be calculated by Kramers2 technique of 
quantizing phase-shifted oscillators. However, in using 
the Sokolov-Tumanov technique, one need not subtract 
the free-particle shift, while in using the Kramers 
technique, one must. 

4 A. Sokolov and I. Tumanov, Soviet Phys.—JETP 3, 958 
(1956). 

5 N. G. Van Kampen, Kgl. Danske Videnskab. Selskab, Mat. 
Fys. Medd. 26, No. 15 (1951). 

6 H . Steinwedel, Ann. Phys. (N. Y.) 15, 207 (1955). 
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In a discussion of our results, we indicate some 
reasons for the existence of the different formalisms. 
We also comment on a recent paper by Sokolov and 
Lysov7 and discuss its relation to our present results 
and those in I. 

II. THE HAMILTONIAN AND THE 
DIRAC FORMALISM 

In the section we write the Hamiltonian in terms of 
the canonical variables appearing in Sees. I l l of I I . We 
also write down the Dirac commutation rules for those 
variables since they are the ones which the solutions 
must satisfy. 

The Hamiltonian is (in units where fi=c=l) 

X = |mV 2 +[/ (R)+eV-2t i 

The equation of motion for R(/) is 

mR+edMi=-VU, 

while Ai satisfies the field equation, 

e / l J3R\ 
• Ai= ( v * - d # A i = — T ( ). 

4TT \r dtzJ 

(6) 

(7) 

In all the above equations, self-interaction has been 
taken into account so that m is the observed mass and 
Ai plays the role of an external field. 

The constraints Ci and C2 are 

C^Ps-wV-eSt^O, 

C,=P,+«8i. 

(8) 

(9) 

+ - / d*x [EM-Hx'J+Cr V+C-K, (1) 

where Ci and C2 are constraints to be defined below, 
U(R) is an external potential, and 

e R(0 
E i ( x , 0 = - d i A i ( x , 0 T ; 

4TT r (2) 

Hi(x,0 = VXAi(x,0-

Ai(x,0 is a transverse vector potential so that 

V-Ai=V-Ei=0 . (3) 

The letter T preceding any vector means "transverse 
part of." 3li=Ai(0,£) and represents an average over 
a point charge distribution. In fact, hereafter, all field 
variables averaged over a point-charge distribution 
are denoted by a boldfaced German capital. 

The canonically conjugate pairs are 

The equal-time commutators between the canonical 
pairs are 

[R(0 ,P B (0]=CV(/ ) ,P . (0]=*1 , 

[A1(«,/),P ii1(x',0]=*| S(x-x')l 

VV'f ) 
4T \\X—X'\/. 

(10) 

(11) 

R(/)«-»Ps=*»V+c«i> 

V ( 0 « - P . = - « 8 i , 

Xi(x,t)*-*¥Ai=—'Ei, 

(4) 

where 

and 
8i=Zi(o,o 

all others being zero. Here I is the unit dyadic. 
The equal-time commutator between the constraints 

is 
[ C 1 , C 2 ] = - i m 0 I , (12) 

so that the constraints are second class.3 m^—m—hm 
is the unrenormalized mass and dm = l im^o e2/ (6wr) is 
the electromagnetic mass. 

As developed in paper II , the modified variables in 
the Dirac formalism are 

R * = R C , P * * = P * , 

1 m 
V*=V+—C1; P/=P, C2 , 

m0 m0 

Zi(x,0 = = — d?x' 
4TTJ 

£i(x ' ,0 
(13) 

(5) 

is a Hertz potential satisfying d{L\— Ai. The coordinates 
are represented by the variables on the left of the double 
arrows in Eqs. (4), while the momenta are represented 
by the variables immediately on the right. R(J) is the 
particle position variable and Y(t) is its velocity 
operator. 

Ai*=Ai ®(*)-Ci, 

PA1*=P^-^-T«(X)+-
moL 47r 

1 X l 
- v v - -c2, 
lr7T rJ 

r A. A. Sokolov and B. A. Lysov, Phys. Rev. 128, 2422 (1962). 

where @(x)= (e/4ir)T(L/r) with I being the unit dyadic, 
and the dot following the dyadic & means contract © 
with Ci. The equal-time commutation rules satisfied by 
the modified variables are the same as those satisfied 
by the solutions of the equations of motion and the field 



H A M I L T O N I A N F O R M A L I S M S I N E L E C T R O D Y N A M I C S 1597 

equations. These commutation rules are 

[R* ,P B *]=; l , [R*,V*]=(»/«o)I, 

C R * ^ ! * ] = - ( * / « 0 ) ® , [A1*P,*] = «(»/«o)@, 

CA1*(x,0,Px1*(x' ,0]=J"*(x-x')I V V ' f — — - ) 
L 4TT \ x—x' / 

eir 1 1"1 
[V*,P 4 l *]= S(x)I+—VV-

f»oL 4x rJ 

ei r 1 1 
+ — © ( * ) • 8(x')-\ V ' V -

m0 L 4x f' 

, [V*,P,*]=-(5»»/f»o)»L 

(14) 

Those equal-time commutators not appearing in 
Eqs. (14), such as for example commutators with YR*1 

are zero. 

III. CONFIGURATION SPACE COMMUTATORS 

The solution of Eq. (7) for A will depend on the 
boundary conditions imposed on the self-field. The 
discussion below is based on the following solution for 
An 

Ai(x,/) = A(x,*)-®(x)-V(0, (15) 

where ®(x) has been defined below Eq. (13) and A(x,/) 
satisfies 

UHx,t)=-eT8(x)V(t). (16) 

For A(x,/) we write 

A(x50 = A , ( x , 0 + i ® ( x ) - [ V ( / + r ) + V ( / - r ) l (17) 

where Xh(x,t) is a solution of the homogeneous wave 
equation, DA/ l=0. In particular, we write kh(x,t) in 
the form 

A*(x,0 = A o f c ( x , 0 + i ® ( x ) - [ V ( / - f ) - V ( / + f ) ] , (18) 

where Ao& is an arbitrary solution of the homogeneous 
wave equation. Thus, we have used the Dirac separation 
in Eq. (17).8 I t then follows from Eqs. (15) and (17) 
that 

2d=2l . . (19) 

A. Oscillator 

For the oscillator, U— %KR2, so that Eq. (6) becomes 

R+ko2R=-(e/m)dMh} (20) 

where ko2=K/m. We write the characteristic function 
of the homogeneous part of Eq. (20) in the form 

D(co) = a>2+ko2, 

and introduce the Green's function 

sin&or 
G ( T ) = € ( T ) -

2ko 

(21) 

(22) 

where T=t—t', and 

«(T) = 1, T > 0 

= - 1 , T<0. 
(23) 

G(t,t') satisfies 

dt
2G+ko2G=d(r). (24) 

The general solution of Eq. (20) will now be written 

R ( 0 = (2w*0)-*[Ro<r*ol+RoV*o«]+»(0, (25) 
where 

m> 
e r00 

•• / dtf e{t-tf) sin&0(/-Od*'2WO. 
2mk0 J-oo 

(26) 

Note, however, that when Eq. (18) is taken account of, 
Eq. (25) becomes an integrodifTerential equation. The 
solution of the latter equation will not concern us here. 
Our main concern is to find a configuration space 
representation of different time commutation rules 
consistent with Eqs. (14). As indicated below, Eq. (25) 
suffices for the latter purpose. 

Now the average of a field function is a function of 
the particle variables. Therefore, we may question if 
we are properly taking account of the constraints if we 
assume that AA(X,£) satisfies free-field commutation 
rules and simply interchange the order of integration 
and commutation in the calculation of such commu­
tators as [9 t (0 ,A*(x/ ) ] and [8fJ(0,A(x/)]. In fact, if 
such an interchange were made, we would not be able 
to reproduce all of Eqs. (14). For example, the above-
mentioned prescription leads to 

eC«*(0,8KO] = P ( r ) - i c ( r ) * o sin&or]I. (27) 
3irm 

Now 

8 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938). 

pL p" /»oo p2 

dm=lim = — / dk = \im—8(r)9 (28) 

so that e[%h(t)$i(t)~} = i§m/m. However, from Eqs. (14), 
we may use either [ R ( / ) , P ( 0 ] = i or [R(0,A(x,0] = 0 
[the latter commutator arising from Eq. (15)J to con­
clude that [%h(t)^{t)~\=ibm/m^ Moreover, Eq. (27) 
is consistent with 

(^2+*d2)[»*(0,»(O]= ~ (*A»)[«*(0 A » * ( 0 ] 
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and because that would lead to [ d ^ ^ R ^ ) ] ] ^ , while 
(dt,*+ko2)lWh(t),R(t')-m')l=Q ed&=ed&h+8mR9 Eq. (20), and [ d « ( 0 , R ( * ) > O 

so that we mav write i m p l y t h a t [ * * * W > R ( ' ) > ° - B 7 u t i l i z i n S ^ (29) i n 

so that we may write t h e c o m m u t a t i o n m l e [R(/)>R(<)]=f/Wo , We may 
r j[ 1 -. calculate [TRojRo1"]]. The latter commutator enables us 

e[yth(t),R(t')2 = i5ni\ cos&0rl to calculate [R(/), V ( / ' ± r ) ] . [A*(x,0,R(OD is calcu-
Lm0 mJ lated in the same fashion as Eqs. (27) and (29) con-

+er$lh(t)ifi(t')~\ (29) sistent with the requirement that •[A/ l(x,t),.R(/')]=() 
W ' and l im^oCA,(x ? 0,R(0]=C2lUO,R(0] . Finally, we 

A term proportional to sin&or is excluded from Eq. (29) find 

i [ dm2 1 
[R( / ) ,A(x / ) ] = -@(x) [ s i n ^ 0 ( r + ; ' ) - s m ^ o ( r - r ) ] + - [ e ( r + f ) cosk0(r+r)-e(r-r) c o s * 0 ( r - r ) ] 

2 i e2mmoko m 

/ 1 dm\ dm2 1 
+ ( }[cos^0(T+r)+cos^o(T—r)~] [_h(j-\-r) sin^o(r+f)+^o(r—r) sin^0(r—r)~] \ 

\MQ m2/ 2m2m0 J 

+ - ^ - ® ( x ) { 5 ( r + f ) + f i ( r - f ) - i * o e ( r + f ) [ f an* 0 (T+r )+§*o( r+r ) cos&0(r+r)] 
6xw2 

— |^oe(r—r)[§ s in* 0 ( r—r)+p 0 ( r—r) cos&0(r—r)]}. (30) 

By letting r —> 0 in Eq. (30), we arrive at a contradiction with Eqs. (14). As pointed out above, we must have 
ER (/), A (#, /)]=0. But the right-hand side of Eq. (30) involves an even function of r. Hence, we can get zero only 
by cancellation of terms. As may be seen from inspection, however, the cancellation of terms comes about only 
if we also allow r —> 0. Thus, in the above case, the order of performing the processes of commutation and aver­
aging is not interchangeable. 

With the above remarks in mind, we will now proceed to find different-time commutation rules subject to the 
following requirements: (1) The commutators shall be invariant under time translation. (2) The different-time 
commutators shall be solutions of a set of differential equations to be specified below, with Eqs. (14) to be imposed 
as boundary conditions. 

The above-mentioned differential equations are 

• [A f c (x ,0 ,R(O>0 , (31) 

( ^ 2 + W ) [ A * ( x , 0 , R ( O ] = - - H : A * ( x > 0 , d « « A ( O l (32) 
m 

W + W ) [ R ( 0 , R ( O ] = — [ * * « * ( 0 , R ( O l (M) 
m 

( ^ , 2 +^o 2 ) [A(x , / ) ) R( /0 ]=- -CA(x ,0 , a^ / i ( / / ) ] 
m 

= --ZAh(x,t),dtWh(01 (34) 

m 

D [ A ( x , 0 , R r a = -ieT8(x)l(y(t+r)+\(t-r)), R ( f ) ] , (35) 

W + * « 8 ) [ R ( 0 , ® « - ( V « ' + r ) + V ( / ' - f ) ) ] = 0 > (36) 

• [A(x ,0 ,A(x ' / ) ]= - * [ T « 8 ( * ) ( V ( H - r ) + V t t - r ) ) , A(x', *')]• (37) 
In writing down Eqs. (34)-(37), we have taken account of the difficulty which arose in connection with Eq. 

(30). In other words, we are not assuming that the average of a commutator involving field functions is necessarily 
equal to the corresponding commutator of the averaged field functions. In particular, it should be noted in con­
nection with Eqs. (34)-(37) that we are treating ®(x)*\y(t+r)+Y(t—r)2 as a field function. In the treatment 
leading to Eq. (30), the latter function was not treated as a field function. 
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In solving Eqs. (31)—(37) we use Eq. (22) and the § [advanced+retarded] Green's functions for solving the 
inhomogeneous equations. The solutions which reproduce Eqs. (14) may now be written 

ie 
*[A*(x,/),R(0] = ®(x) [e ( r+ r ) cos f t 0 (T+r ) -€ ( r - r ) cos& 0 ( r - r ) ] , (38) 

2nto 

ie2 

*Ca fc(0,R(O] = LHr)-h(r)h sin*0r]I, (39) 
37rm0 

i sin^or ^ 2 

[ R ( 0 , R ( O ] = e(r)[cos£07—Por sinft0T]I, (40) 

i 
[A(x, / ) ,R(0] = ® ( x ) [ € ( r + r ) c o s ^ 0 ( r + r ) - € ( r - - r ) c o s i f e o ( r - r ) - c o s ^ o ( r + f ) - c o s * o ( r - r ) ] , (41) 

2wo 

I ^o 
[A(x ,0 ,A(x , / ) ] = * r R ( T + | X - X ' | ) - 5 ( T - | X - X ' | ) ] + ®(x ) -®(x ' ) [€ ( r+ r+ r ' ) smk0(r+r+r') 

47r|x—X'| 2W0 

— e(r—r~rf) smko(r—r—r')~sm&o(r+r+r/)~sm&o(r—r—r')], (42) 

where in Eq. (42) we have set 

I 
[A fc(x,0,AA(x70] = *T [ 5 ( T + | X - X ' | - S ( T - | X - X ' I ) 1 (43) 

4TT|X—X'| 

ik0 

[A f c (x ,0 ,®(x / ) - (V(^+r , )+V( / / - f ' ) ) ] = ® ( x ) - ® ( x 0 C 6 ( T + f - r 0 s i n ^ o ( r + r - f 0 
4w0 

— e(r—r—r') sin&o(7"—r—r') + e(t+r+r') smko(r+r+rf) 

— e(r—r+r') sm&0(r—r-\-r')~], (44) 
and 

i[®(x)-(V(/+r)+V(/-r)),®(xO-(V(^+rO+V(r-rO)] 

= ®(x)-®(x')[sin&o(r+r—r') — sini0(r—r—r')+sin&0(T—HV) — smk0(T+r+r') — smko(r+r—r') 
4w0 

— sin^0(r—f—rO~sm^o(r—f+fO_ s m ^ o ( r + r + f O ] - (45) 

The first four terms of Eq. (45) represent a solution which is a solution of the homogeneous equation and 
of the homogeneous wave equation while the latter four where zh\s\ represent the limits of a time integration. 
are a solution of the inhomogeneous wave equation. The latter term is cancelled by adding an appropriate 
Equation (45) represents a solution of the homogeneous solution of the homogeneous equation. We then have 
wave equation with respect to (xyt) and the inhomo­
geneous wave equation with respect to (x'/)« The / e2k0

2 \ 
reverse of the latter case is true for [©(x)-(V(H-r) [R0,Ro+]==f( 1 lim \s\ II. (47) 
+ V ( / - r ) ) , AUxV')]. The latter commutator is added X 127rW° |s|"°° ' 
to Eqs. (43)-(45) to produce Eq. (42). 

In solving Eq. (33) for Eq. (40), or alternatively, in ^ U P o n c o m P a ™ g ^q. (38) with Eq. (32), one finds 
using the derivative of Eq. (39) in Eq. (25), we have t h a t w e m u s t s e t 

implied that m 
[A,(x ,0 ,«*(O] = ^ - ® ( x ) P ( r + f ) - « ( r - f ) ] . (48) 

[A f c(x,0,Ro]=[W*(0,Ro>0. (46) mo 

Moreover, in calculating the particular solution of Eq. Note that Eq. (43) does not reduce to Eq. (48) upon 
(33), one encounters a term of the form setting x ' = 0 so that in this case the order in which 

averaging and commutation are performed is not 
sin^orlimisj^oo \s\, interchangeable. 
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I t is seen from Eqs. (34), (38), and (41) that 

i[®«-(V(<+r)+V(/-r)),R(0] 

= ©(x ) [ cos^o ( r+ r )+cos^ 0 ( r - r ) ] (49) 

and 
[®(x).(V(/+f)+V(<-f)), a««*(0]=o. (50) 

If we set ®(x')=l in Eq. (45) and compare the re­
mainder with the time derivative of Eq. (49), we see 
that in this case, the order in which averaging with 
respect to x' and commutation are performed is inter­
changeable. However, if we average with respect to x 
in Eq. (49) and compare the result with the time 
derivative of Eq. (40), we see that the above type of 
interchange is no longer possible. If we average Eq. 
(50) with respect to x and compare the result with the 
second time derivative of Eq. (39), we see that here too, 
the order in which averaging and commutation are 
performed is not interchangeable. We may also compare 
Eq. (50) with the time derivative of Eq. (44) and again 
conclude that the above-mentioned interchange of order 
is not allowed. 

Equations (38)-(50) represent the basic set of com­
mutation rules from which all others may be derived. 
A similar set of equations could have been developed 
utilizing the average of Eq. (18) in Eq. (20). The latter 
procedure would yield the usual third-order equation, 

dm-ad?R-ah2R= (ea/m)dt%>h, (51) 

where a = 6irni/e2. 
We could again follow the procedure which led to 

Eq. (30) and we would again arrive at the same problem 
with regard to interchangeability of the order of 
averaging and commutation. There is also the addi­
tional problem that one must use solutions of the 
homogeneous part of Eq. (51) in following the pro­
cedure leading to Eq. (30). In fact, we have not been 
able to arrive at a set of different-time commutation 
rules satisfying equations such as (16) and (51) without 
utilizing solutions of the homogeneous equation. Thus, 
we cannot, in the latter circumstance, impose sub­
sidiary conditions to eliminate the "run-away" terms 
in solutions. However, if we relax the requirement that 
equations such as both (16) and (51) are satisfied by the 
different-time commutation rules, it is possible to write 
down a set of commutation rules which will reproduce 
Eqs. (14) and which do not utilize solutions of the 
homogeneous part of Eq. (51); but such rules will also 
relax the requirement of interchanging the order of 
averaging and commutation. Equation (51) will be 
discussed further in Sec. IV. 

B. Free Particle 

For the free particle, Z7(R) = 0. If the free particle 
is treated in the same manner that we treated the 
oscillator, one need only set £ 0 =0 and Eqs. (38)-(46) 
would be taken over as free-particle commutators. 

(Ro+Ro1") coalesces into a single constant operator, so 
that Eq. (47) would be dispensed with. However, 
Eqs. (48)-(50) would be retained with £o=0. 

An alternative approach may be based on utilizing 
the fact that 

V=mk+e9ih= const, (52) 

when ko=0. Consider the following soluton of Eq. (52): 

R(*) = Ro—— f dt' e{t-mh{tf)+{Y/m)t. (53) 

If we set ^0=0 in Eq. (25) and integrate parts, then 
Eqs. (25) and (53) will be equivalent if we absorb the 
resulting infinite constant of integration into Ro and set 

P=-[»*(«)+«A(-<*>)] . (54) 
2 

Equation (54) also arises from using Eq. (25) to calcu­
late R(0 and comparing the result with Eq. (52). 
Since [ P , R ] = [ ? ,«* ] = 0, it follows from Eqs. (52)-(53) 
that 

[Ro,P]=fl . (55) 

In concluding this section, we remark that if we set 
£o=0 and follow the procedure which led to Eq. (30), 
we again come to the conclusion that the order in which 
averaging and commutation are performed is not 
interchangeable. 

IV. FOURIER-DECOMPOSED SOLUTIONS 

In this section, we discuss other solutions of Eqs. 
(24) and (51) which lead to commutation rules that 
are inconsistent with Eqs. (14). In each case, a Fourier 
decomposition of the free field is introduced and in each 
case, the Fourier components will be assumed to satisfy 
the usual oscillator commutation rules. In the next 
section we show that the above Fourier-decomposed 
solutions are associated with a canonical formalism 
which is not equivalent to the one in paper I I via a 
canonical transformation. 

Note that in each case considered, we do not impose 
the requirement that the inhomogeneous solution 
vanishes in the limit t —» db °o. The latter point is 
discussed further in Sec. VI. The Fourier decompositions 
will be based on plane waves and dipole waves. We 
treat the plane waves first. 

A. P lane Waves 

Suppose we introduce a plane wave decomposition 
for AA(x,*), 

1 
Ah(x,f) = 

(2ir)8'2 

C d*k 
X / r [ a ^ k - x - ^ + a ^ ( k - * - * o ] (56) 
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where ak and a^ satisfy the usual commutation rules. 
Insert Eq. (56) into Eq. (26) and interchange the order 
of integration. The result is 

«(fl= — 
m (2w)zl2 

X 
r d*k /&\1/2 

/ ( - ) [ra*6T«*«-
J V-hA2/ 

• r a * V * a (57) 

where Pfdzk f(k) denotes Cauchy principal value 
integration and rafc=limx_>0 r a ^ k x = k X (afcXk)/&2. 
Using Eq. (57) to calculate commutators is equivalent 
to using Eq. (26) and interchanging the order of com­
mutation and integration. Therefore, the discussion 
leading to Eq. (30) is applicable here. 

With the above remarks in mind, we turn to solving 
Eq. (51). The characteristic function of the homo­
geneous equation is 

D(co) = co3-aco2-a£0
2. (S8) 

Following I, we introduce the Green's function 

9W= 
e(-•T)e"or 0(r) 

H-
2wo2L v* v J 

(59) 

where 0(r) = J ( l + e ( r ) ) , r=t— t', j>=co0+/3, P=a>i+icc2 
and the asterisk denotes complex conjugation; coo, —#, 
and —-£* (with coo>0 and coi>0) are the zeros of D(<a). 
Q(r) satisfies 

dT
zQ-adSS-ako2<§= - « ( r ) . (60) 

Omitting the runaway exponentials which arise from 
the homogeneous part of Eq, (51), we write as a par­
ticular solution of Eq. (51) 

ea 

R(0= — 
m 

dt' %{t-t')dM,h(t'). (61) 

Upon introducing the plane wave decomposition and 
interchanging orders of integration, Eq. (61) becomes 

R(0=-
m (2ir) 3/2 

X <Pk-
ake 

D(-ik) D(ik) ] • (62) 

If one now uses Eq. (62) to calculate [R(/)>V(2)], the 
resulting integral is convergent and since nto appears 
nowhere, we find [R(/),V(^)]^i/-mo. The latter in­
equality contradicts Eqs. (14). 

B. Dipole Waves 

Dipole wave expansions may be either of two types. 
One type arises from expanding the plane waves in 
terms of multipole waves and cutting off after the 

dipole term. The other type arises from embedding the 
system of charge plus radiation field in a perfectly 
reflecting sphere. The latter type involves a normali­
zation different from the former type. Because of the 
electric dipole approximation, the former type will 
reproduce the results of the plane wave expansions. 
Consequently, we turn directly to the second type of 
dipole wave expansion. The latter type of expansion 
has previously been used by Kramers,2 Van Kampen,5 

and Steinwedel.6 The afore-mentioned authors have 
assumed that the radius of the embedding sphere is of 
sufficient magnitude to impose an approximate 
boundary condition on the dipole wave.9 As a result of 
the approximation, it becomes possible to decompose 
the Hamiltonian into a sum of decoupled oscillator 
Hamiltonians. We will dicuss Kramers solutions first. 

In writing down solutions, Kramers utilizes only the 
solutions of the inhomogeneous equations of motion of 
the particle. Kramers solution for R(/) is of the form 

1 / 3 V'2 

e h \kdL/ 
(63) 

where L is the radius of the embedding sphere. For a 
free particle, 

sini7=*/(*2+/32)1/2, (64) 

where 13=a/AT. For the oscillator, 

s in t ? =^/C^ 6 +^ 2 (^-^o 2 ) 2 ] 1 / 2 , 

where as above, ko2=k/m. 

1 / 3 V'2 

R « — Z ( — J *(sini7)p*(0, 
e k \VLJ 

(65) 

(66) 

where we have used dqk/dt=kpk in Eq. (66). Since 
[qfc,Pfc]|==i, it follows from Eqs. (63)-(66) that 
i[R(£),R(/)]<0. The latter inequality contradicts Eqs. 
(14) since dm>0 and w 0 < 0 . Therefore, according to 
Eqs. (14), i [ R ( 0 , R ( 0 ] > 0 . 

The Van Kampen-Steinwedel form of the solution 
utilizes solutions of the homogeneous particle equations 
of motion. For the free particle we have10 

and 

R(0= 

R ( ' ) = 

R' 1 / 3 \1 / 2 

y . I ) (sirwf)qfc 
(m) 1/2 

• I , , 
e h \ksL/ 

/ 3 y 
Z — k(smri)pk, 

(my* e k \ksL/ 

(67) 

(68) 

9 The requirement that the tangential component of the electric 
field must vanish on the surface of the embedding sphere imposes 
certain conditions on the dipole wave functions. However, if the 
radius of the sphere is sufficiently large it becomes approximately 
true that the trigonometric part of the dipole wave function 
vanishes on the surface of the sphere. In the latter approximation, 
the normal component of the electric field will vanish also. 

10 In writing Eqs. (68)-(69), we used Kramers' oscillator vari­
ables, which are related to Steinwedel's by the transformation 
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where R ' = ( w ) 1 / ^ and P ' ^ P / f a ) 1 ' 2 . Since R' and F 
commute with q^ and p& and [R',P'[] = i, we again 
arrive at the contradiction with Eqs. (14) which we 
have discussed above in connection with the calculation 
of i[R(t),lk(t)2 using Kramers solutions. 

For the oscillator we have 

/3\1'2 R' 1 / 3 V 2 

R(0 = ( - ) E ( — ) (sin^)q/c, (69) 
\L'J eh e k \k*L/ 

and 
/3\1'2 F 1 / 3 V'2 

R(0 = ( - ) L ( — ) *(sinu)p*, (70) 

where L'=L+3tn/e2ko2 and JR' and P ' are oscillator 
variables associated with the Hamiltonian, i ( P ' 2 

+£o2R'2). The conditions of the preceding paragraph 
obtain well here as well so that we again arrive at a 
contradiction with Eqs. (14) when calculating 

V. ALTERNATIVE CANONICAL FORMALISM 

Suppose we consider as canonical variables the 
oscillator variables introduced by Fourier decomposing 

Therefore, when we use Eqs. (71)—(73) to re-express 3C 
in Eq. (1) and use the Sokolov-Tumanov technique4 

to calculate the zero-point level shift of the charged 
oscillator, we find 

3 a r dkkz(k2-3k0
2) 3 

Note that the zero-point energy of the charged 
oscillator is f so that we have subtracted it from the 
integral in Eq. (74) in denning (Ae)0. Note also that 
the integral in Eq. (74) is the same one obtained by 
Kramers.2'11 

11 The above integral is obtained from Kramers' (reference 2) 
Eq. (32) after integrating by parts and going to the limit of large 
cutoff. The difference between the above integral and that ob­
tained by Sokolov and Tumanov (reference 4) results from their 
substituting solutions into a standard oscillator Hamiltonian 
rather than Eq. (1). 

the free field. Then the results of I and Sec. IV show 
that the Fourier-decomposed solutions discussed in 
that section cannot be considered as a canonical trans­
formation from one set of canonical variables to another. 
The generator of time translations [and of Eqs. (6) 
and (7)] may now be taken to be the free-field Hamil­
tonian. It, therefore, becomes possible to introduce an 
interaction picture as follows. We insert the Fourier 
decomposed particular solutions of Sec. IV into the 
Hamiltonian defined by Eq. (1). The Hamiltonian may 
then be separated into a sum of two parts, 3C=3Co+3Ci. 
3C0 is the free-field Hamiltonian and 3Ci is the remainder. 
The time derivatives of all operators and in particular, 
Eqs. (6) and (7) are determined by forming commu­
tators with 3Co- If we now consider 3Ci, as an interaction 
Hamiltonian, the above-mentioned interaction picture 
is defined. I t is essential to remember, however, that 
before one can define such an interaction picture, one 
must first know solutions of Eqs. (6) and (7) which are 
functional of 9U00 and d$U(/). 

As an illustration of the above scheme, we will apply 
it to the oscillator solution represented by Eq. (62). We 
introduce a Fourier decomposition for e±ikr/4irr and 
l /4xr and write 

Now, apart from the zero-point energy sums, 

3Z,= fdzk k(kXa^)'(kXak) (75) 

will be the only single sum over k in JC. The other sums 
will be double sums of the form fcPkcPk'. We treat 3Co 
as the free-field Hamiltonian so that the remaining 
terms may be interpreted as the time-dependent inter­
action Hamiltonian in the interaction picture. If we 
now transform to a Schrodinger picture at time / = 0 , 
the Schrodinger operators are identical with the inter­
action picture operators evaluated at time / = 0 . 

VI. DISCUSSION 

Reference 1 raised the question of the relationship 
between the assumption of certain asymptotic boundary 
conditions, the assumption that the free field may be 
decomposed into uncoupled field oscillators and the 

1 r d3kdW 
A!(x,0 = A0*(x,0+ / { ^ ( ^ & ) [ £ ' X ( a * X & 0 > ^ ^ (71) 

(2w)^2J (2kyi2 

where k = k/1 k |, 

- E i ( x , 0 = a*Ao*(x,0 *— /d*kdW (k/2y/2{TR(k\k)tk'X(akXk0yk'-xe-ikt 

(27r)3'2 J 
- TR*(k',k)tk'X (a*tx&')>-*k' ' xem}> (72) 

where 
k2 

FR(k',k) = —TB(k',k), 
V2 

(73) 
3k2 1 

TR (k\k) = . 
(2TT)2 (k'2-k2-ie)DR(-ik) 
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possible existence of constraints among the canonical 
variables. Reference 2 showed how constraints are 
introduced as a result of mass renormalization. A 
Hamiltonian formalism was then developed in I I which 
is general and which must be satisfied by all configu­
ration space solutions generated by the total Hamil­
tonian. In the present paper, we utilize the formalism 
of I I to return to the above-mentioned question raised 
in I. 

In order to understand the results obtained in the 
preceding sections, it is necessary to make two points. 
The first point is that once the dynamical variables are 
identified and their commutation rules are established, 
any expressions of the dynamical variables in terms of 
other operators must be made to conform to the estab­
lished commutation rules. If the expressions for the 
dynamical variables are determined by solving dif­
ferential equations with a linear homogeneous part, 
then the commutation rules for the operator solutions 
of the homogeneous equations must be determined so 
that dynamical variables satisfy the commutation rules 
established for them. Eqs. (14) represent the established 
commutation rules to be satisfied in Sees. I l l and IV. 
In the latter sections, we showed that for the examples 
discussed, the assumption that the averages of free-field 
commutators are equal to the commutators of free-field 
averages is inconsistent with Eqs. (14). In Sec. I l l , we 
exhibited commutation rules for the averaged free field 
which removed the inconsistency. 

The second point referred to above is that the 
particular solutions of the inhomogeneous differential 
equations are linear in the free field. Thus, if one 
assumes that the free-field oscillator variables satisfy 
canonical commutation rules, the time derivatives of 
the particular solutions may be generated by the 

free-field Hamiltonian. The latter was the situation 
described in Sec. V. There, the field oscillators are 
chosen as the basic dynamical variables and all other 
variables are expressed as functions of the field 
oscillators. 

As a final item, we comment on a recent paper by 
Sokolov and Lysov7 (hereafter referred to as SL). As 
pointed out above, the use of Eq. (61) is equivalent to 
the use of Eq. (62) in calculating commutators if one 
can interchange the order of commutation and inte­
gration. In SL, the latter interchange was made, while 
in I, such an interchange was not performed in the 
calculation of certain commutators. In particular, it 
was claimed in I that [R(/),V(£)]=0 if one uses Eq. 
(61). SL has questioned the latter result as well as the 
interpretation on which it is based. Therefore, it is 
hoped that the following remarks will serve to clarify 
the situation. 

The discussion which follows will be concerned only 
with the particular solution of Eq. (51) as represented 
by Eq. (61). Equation (2) of SL assumes the asymptotic 
condition 

Km R ( 0 = l i m V(0 = 0. (76) 
t—>—oo t—»—oo 

Classically, we may apply L'Hospital's rule12 to Eq. 
(61) and find 

ea 
R ( _ O O ) = a ^ - o o ) , (77) 

wco0|/3|2 

7 ( _ o o ) = 0. (78) 

Equations (76) and (77) then imply that d$L0h(— oo) = 0. 
Moreover, the first of Eqs. (17) in SL is obtained from 
Eq. (61) by integrating by parts. The result is 

ea 
R(0= 

r0(-*-«>) 
_g«0( «+<»). 

2io)9 

For finite t, the integrated part vanishes in Eq. (79). 
But if we first take the limit as t —> — oo and apply 
L'Hospital's rule to the integral in Eq. (79), we find 

) «o*(«o) 
2io)2 \ v* v / J 

( J KM-«>)+- - / *' ̂ S ( ' - O W ) . (79) 

R ( - o o ) = -
ea 

m\v\2 * ( - « ) . (80) 

Equations (76) and (80) then imply that2W(— oo) = 0. 
If we differentiate Eq. (79), or equivalently, integrate 
the derivative of Eq. (61) by parts, and take the limit 
as t —> — oo ? we find 

ea coo 
V ( - o o ) = - — « « ( - o o ). (81) 

Comparison of Eqs. (78) and (81) again leads us to 
conclude that 2lo/l(—°°) = 0. The point to be remem­
bered in connection with Eqs. (80)-(81) is that the 
limit t —* — oo is taken in Eq. (61) and its derivative 
before integrating by parts. 

12 For example, a typical limiting process would involve 

lim e<*ot[ d? e-^'dt^htt') 
t-»±« J t 

= lim f (K dtf e-^'dt'Wohit')! /e~^ 

e-ootdtWonit) — lim 
t—>±« 03^e 

= d«S(0A(±oo)/«. 

m 

The relationships between the zeros of Eq. (58) and the constant 
coefficients therein must also be employed to obtain the final 
answers. 
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If the dynamical variables mentioned above are 
considered as operators in a Hilbert space, then the 
limiting processes leading to Eqs. (76)-(81) may be 
applied to matrix elements. 

Another argument leading to d$Loh(— °°) = 0 is that 
it follows from the requirement that the solution of 
Eq. (51) must reduce to a solution of the homogeneous 
equation in the limit / —> — oo. I t reflects the vanishing 
of the coupling with the external radiation field in the 
limit / —> — oo. 

However, lim^-oo Ao/l(x,^)^0 and 

lim^oo d*A0A(x,*)-7*0. 

Moreover, if one introduces a plane wave decomposition 
of AOA in terms of creation and annihilation operators, 
then lim^-oo SloUO^O and \imt-+-00dMoh(t)7*0 if one 
assumes that the average of the Fourier transform of 
Aoft is equal to the Fourier transform of SIOA. The latter 
result contradicts Eqs. (76). Therefore, if one insists 
on requiring Eqs. (76) to be satisfied, one may conclude 
that Eq. (62) does not represent the Fourier transform 
of Eq. (61). Under such circumstances, the use of Eq. 
(62) is not necessarily equivalent to the use of Eq. (61) 
in calculating commutators. 

Another argument leading to the above conclusion 
runs as follows. Suppose one assumes that Eqs. (61) 
and (62) are equivalent and calculates [R(0 ,V(0] 
using Eq. (61). The resulting double integral contains 
(d$Loh(t),dt'%oh(t')l m the integrand. Under the 
assumptions made, the preceding commutator reduces 
to — (i/3w) d T

35(r), which is zero inside the light cone 
and at the vertex of the light cone. But, the commutator 
is multiplied by a function of r possessing a nonzero 
third derivative so that the integral is nonvanishing. 
As noted in Sec. IV, the result contradicts Eqs. (14). 
However, upon calculating the different-time com­
mutator, one finds 

l im^_w [ R ( 0 , V ( O ] = l i m ^ _ o o [R(0 ,F( / ' ) ]=O 

if one of the variables is held fixed while the limit is 
taken with the other. A nonvanishing result is obtained 

only when t, tr —» — <x> simultaneously.13 Moreover, 
if one requires R(— oo) = V(— °°) = 0, one expects 
[R(— °°),V(— oo)]=0. Of course, the latter results 
prevent the possibility of obtaining R(/) and \(t) from 
a unitary transformation with the Hamiltonian as 
generator of time translations. In fact, if £R(/),V(0] 
is continuous, it must vanish for t> — oo if it vanishes 
for t —> — oo unless it violates time-translation in-
variance and is a function of time. In any case, it seems 
that the plane wave decomposition of Ao^ as used 
above, leads to a contradiction of Eqs. (76). 

In I, the position was taken that the vanishing of an 
operator when t —> ± <*> requires equal-time commu­
tators involving the operator to vanish or be time 
dependent. Since V(— oo) was assumed to vanish, the 
above requirement was imposed on [R(0>V(tf)]. In 
particular, [d$Loh{t),dt'i$l§h{t,)~] was not replaced by 
— (i/3w)dt2d(T) in the integrand of the resulting double 
integral and was considered to vanish everywhere in 
the region of integration. However, it was not assumed 
that R ( - o o ) = P ( - o o ) = 0. Since R ( - o o ) = 0, 

P ( - ° o ) = «80 f c(-oo). (82) 

Therefore, in view of Eqs. (77) and (82), we are also 
not assuming that dMoh(—°°)=^loh(—00) = 0. Con­
sequently, [R(0>P(0] w a s calculated from [R(0 , 
e9W(0]. But as with [R(0 ,V(O] , we have 

l im^oo [ R ( 0 , e « o * ( 0 ] = l i m ^ . ^ [R(* ) , e«o*(0>0 . 

Regardless of how one performs limiting processes, 
the main point we have tried to emphasize in the above 
discussion is that the calculation of commutators 
should be consistent with the boundary conditions 
assumed for the operators. 

In Sec. I l l , we did not assume the asymptotic 
vanishing of Eq. (26) or of %h and its derivatives. 
Therefore, since A& contains the particle's own radiation 
field, the particle is never decoupled from it. 
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