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A gas of one-dimensional Bose particles interacting via a repulsive delta-function potential has been 
solved exactly. All the eigenfunctions can be found explicitly and the energies are given by the solutions of 
a transcendental equation. The problem has one nontrivial coupling constant, 7. When 7 is small, 
Bogoliubov's perturbation theory is seen to be valid. In this paper, we explicitly calculate the ground-state 
energy as a function of 7 and show that it is analytic for all 7, except 7 = 0 . In Part II , we discuss the 
excitation spectrum and show that it is most convenient to regard it as a double spectrum—not one as is 
ordinarily supposed. 

I. INTRODUCTION 

IN comparatively recent times, as the history of 
quantum mechanics goes, a vast body of literature 

has developed on the quantum-mechanical problem of 
a gas or liquid of particles interacting via a two-body 
potential. To attack this problem, perturbation theory 
has been refined and developed in many elegant forms, 
too numerous and well known to attempt to summarize 
here. These results have been mainly of two kinds: 
attempts, based on summing series to all orders, to 
make exact statements about the true solution of the 
problem; and attempts to develop approximation 
schemes to yield quantitative results. I t is fair to say, 
however, that few of these results may claim to be 
mathematically rigorous. They are accepted because 
they agree with our intuitive understanding of the 
problem. 

Faced with such a situation it would seem desirable 
to find a local, time- and velocity-independent, two-
body potential (the sort of potential that actually 
exists in a gas) such that, starting from the Schrodinger 
equation, and without introducing any approximations, 
one could derive the energy levels and wave functions 
of the system. I t would also be desirable that such a 
model problem be three dimensional. 

While there do exist several model many-body 
Hamiltonians in the literature, which are solvable, with 
one exception, none of them corresponds to having 
a simple potential of the character mentioned above. 
The one exception is the work of Girardeau1 on a gas of 
impenetrable bosons in one dimension. He showed that 
the energy spectrum of such a gas is identical with the 
spectrum of a noninteracting Fermi gas. I t is, indeed, 
unfortunate that, due to the inability of the particles 
to get past one another, Girardeau's model can only 
be thought of as an extreme high-density situation— 
even though the actual density of his gas may be low. 
By this is meant that if we attempt to draw a parallel 
between the one-dimensional hard-core model and the 
three-dimensional hard-core model, then the former 
resembles the latter only at very high densities when a 

1M. Girardeau, J. Math. Phys. 1, 516 (1960). 
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cell model becomes applicable. In consequence of this 
fact, the model cannot be used to check any known form 
of perturbation theory. 

Another drawback of Girardeau's model is that it is 
essentially a zero-parameter model. I t might have been 
hoped that varying the density, p, or the hard-core 
radius, a, would modify the spectrum in some essential 
way, but this is not true. If En(p) is any energy level 
of a state having momentum p, then En(p) is of the form 
[p/(l—pfl)]27n([(l"~ pa)/p~]p)' I n other words, the hard 
cores simply play the role of an excluded volume. 

We shall propose here a model that in many respects 
is similar to Girardeau's, but which overcomes the two 
difficulties mentioned above. We consider a gas of 
bosons in one dimension interacting via a repulsive 
5-function potential, whose Hamiltonian is given by 
Eq. (2.1) below. As we show, this problem has one non-
trivial parameter, namely, y=p~1c, where 2c is the 
strength of the 8 function. When 7 = oo we obviously 
obtain Girardeau's results since the particles then are 
impenetrable. When 7 = 0 we have the noninteracting 
Bose gas. 

A useful feature of this model is that for small 7 
Bogoliubov's perturbation theory2 is valid. This is 
discussed in Sec. IV. The model agrees with all the pre­
dictions of that theory except in one important respect: 
For all values of 7 the most convenient and natural way 
to view the spectrum of the gas is in terms of a double 
elementary boson excitation spectrum—not a single one 
as previous calculations have suggested. Bogoliubov's 
single spectrum agrees quite well with one of the spectra 
we obtain, but the other is totally unaccounted for in 
his theory. The principal value of this model perhaps 
lies in this startling fact. The whole question of the 
excitation spectrum, as well as some heuristic reason 
that this duplicity of the spectrum might have been 
anticipated, and why it might also exist in three dimen­
sions, are discussed in the following paper.3 

We may summarize the results of this paper as 
follows: 

2 See, for example, The Many Body Problem, edited by C. De 
Witt (John Wiley & Sons, Inc., New York, 1958), pp. 347-355. 

3 E. Lieb, following paper [Phys. Rev. 130,1616 (1963) (referred 
to here as I I ) ] . 
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(i) We obtain explicitly the eigenfunctions of the 
problem and show how they may be derived from the 
solution of a transcendental algebraic equation. This 
is the content of Sec. I I . 

(ii) In Sec. I l l we find the ground-state energy as a 
function of y and show that in the limit of a large system 
it is analytic in 7 except at 7 = 0 . This shows that 
perturbation theory can at best hope to give an 
asymptotic series for the ground-state energy. 

Most quantities of interest, such as the ground-state 
energy, the velocity of sound, the excitation spectra 
and others, derived both here and in I I , have been 
calculated explicitly and numerical graphs are given. 
These quantities are derived from solutions to certain 
integral equations which cannot be found in closed form. 
The numerical work thus entailed was performed on an 
IBM 7090 computer. At the end of Appendix B, an 
outline of the numerical procedure is given. All of the 
properties of the solutions claimed above, however, such 
as their analyticity for 7 ^ 0 , have been rigorously 
proved. 

II. THE PROBLEM AND THE NATURE 
OF ITS SOLUTIONS 

We begin with the Schrodinger equation for TV 
particles in one dimension interacting via a 5-function 
potential.4 

{-i:iNWdx?)+2c^u)K^-oc3))^E^ (2.1) 

where 2c is the amplitude of the 5 function. The region 
of space under consideration is 

R: a l l O < ^ < L . (2.2) 

The wave function \p satisfies periodic boundary condi­
tions in each variable. We are interested in the repulsive 
case so that 

c>0. (2.3) 

While the attractive case, c<0 , has a solution, it is 
not physically meaningful because there is no saturation. 
I t is easy to demonstrate that in this case, for a fixed 
density, the ground-state energy is proportional to 
—N2 instead of to —N. 

I t is well known that a 5-function potential is equiva­
lent to the boundary condition 

= 2 e * | ^ „ ; (2-4) 

i.e., \p is continuous whenever two particles touch, but 
the jump in the derivative of \j/ is 2c. Moreover, since 
we are interested in symmetric (Bose) wave functions, 
the two terms on the left side of Eq. (2.4) are by defini­
tion equal. 

4 # = 1 , 2m=l . 2<t,/> means summation over pairs. 

We can go one step further than this, however, and 
observe that if we define the region Ri by 

Rx\ 0<X!<X2<'"<xN<L9 (2.5) 

then knowledge of \f/ in Ri is equivalent to knowledge 
of \{/ in R. Equations (2.1) and (2.4), thus, become 

-T.iN(d2/dx*)\P=E\P insideUi, (2.1a) 

(d/dxj+1-d/dxj)ip\ xj+1=Xj=c\l/1 Xj+l-Xj. (2.4a) 

The original Schrodinger equation, (2.1) is thus re­
placed by a Helmholtz equation (2.1a) together with a 
mixed boundary condition (2.4a) on the boundary of R\, 

The last step is to interpret the periodic boundary 
conditions on R in terms of \f/ defined in Ri. The periodic 
boundary condition reads in part 

^ ( 0 , a v -,xN)=\l/(L,X2,- - -9XN), (2.6) 

with a similar condition for the derivatives. The argu­
ment of the right-hand side of Eq. (2.6) is not in 2?i, 
but by definition 

^(L,flV • -,SiO=^0&2,aV -,%N,L). (2.7) 

Hence, the original periodic condition is equivalent to 
the following boundary condition on Ri: 

^ ( 0 , a v ',XN)=IK%29' * ',xsr,L), (2.8a) 

d d 
^(#,#2, * ' ' ,%N) I z=0 = *A(#2,' ' ' ,%N,%) i *=L- (2.8b) 

dx dx 

Equations (2.8), together with Eq. (2.4a), now com­
pletely cover the entire boundary of Ri. 

We now make the following ansatz for \(/: Let {k} = ki, 
- • •, &iv be an ordered set of N numbers and define 

lK*i,« • • , ^ ) = Epf l ( i > ) -Pexp(fEi - i^* i« i ) , (2.9) 

where the summation extends over all permutations of 
{k}, and a(P) are certain coefficients depending on P . 
The wave function \f/ is thus a generalization of the one-
component Fermi function for which a(P) would be 
(—)p. I t is to be understood that Eq. (2.9) defines \f/ 
only in Ri, the extension to the rest of R following from 
the requirement of total symmetry under all particle 
permutations. 

Can we choose a(P) so that \p satisfies the Schrodinger 
equation in R±? Obviously Eq. (2.1a) is satisfied with 

E=ZiNkj2. (2.10) 

Let us now examine Eq. (2.4a) when # i=# 2 . If all the 
k's are distinct (as will prove to be the case), then the 
TV"! terms in Eq. (2.9) are linearly independent. Let P 
be the permutation that takes {k} into p, q, kas, • • •, 
kan and Q be the permutation that takes {k} into q, p, 
kav " -, kan, where q=kai and p=ka2- If Eq. (2.4a) is 
to be satisfied, there must be a relationship between 
a(P) and a(Q) depending on p and q, and not involving 
the other a(P)'s. Denote by y the common value of x\ 
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and x2 and substitute the two terms of \f/ corresponding 
to P and Q into Eq. (2.4a). We must be able to satisfy 

i(q-p)[a(P)-a{Q)-] exp(i(p+q)y+Zi^N kajxj) 
= c exp(i(p+q)y+i E ; ^ kajXj) 

XZa(P)+a(Q)-] (2.11) 

for all values of y, #3, • • •, %N. This is, indeed, possible if 

<Q) = -a(P)C— = -a(P) exp(««lfl2), (2.12) 
c+t(q-p) 

where 
dij=d(ki-kj), (2.13a) 

and 

6(r) = -2teiYr1(r/c). (2.13b) 

Assuming r to be real we have 

ir>d(r)>-w. (2.13c) 
Thus, by regarding \f/ as the sum of § (N!) pairs of terms 
corresponding to permutations such as P and Q above, 
we can satisfy Eq. (2.4a) for x±=x2 for each pair sepa­
rately when the coefficients are given by Eq. (2.12). 

The reader will easily verify that we can satisfy 
Eq. (2.4a) simultaneously for all N— 1 possibilities 
Xj=Xj+i if we choose the a(P) in the following way: Let 

a(I) = l. (2.14) 

Rule. If P takes {k} into {k}' = kav • • •, kaN, then re­
arrange {k}f into {k} by the process of transposing 
only adjacent &'s. For each transposition, write down 
the factor — ei6st where ks and kt are the transposed 
&'s in question, ks lying to the left of kt before the trans­
position. The product of all such factors thus obtained 
is a(P). There are, in general, many different ways to 
get {k}' into {k} but they all give rise to the same set 
of factors. For example, if 

P=(123) \ 3 2 1 / ' 

then for both the paths (321) -> (231) -> (213) -> (123) 
and (321) - * (312) -> (132) - » (123) we obtain the re­
sult a (P) = — exp^(032-r"#3i-i"02i). 

An alternative definition of the above rule which 
makes it evident that a(P) is indeed independent of the 
path is the following: Write down ki, • • •, k^ in a line. 
Under it write down kav • • •, kaN. For each kj draw a 
straight line between the two points at which it occurs 
in the two rows. For each crossing point of two lines 
corresponding to ka and kp, a(P) contains the factor 
— eiBa& where ka precedes kp in the set {k}'. 

We conclude, therefore, that for any set {&}, \p 
defined by Eq. (2.9) will satisfy Eqs. (2.1a) and (2.4a) 
when a(P) is given by the above rule. There is one 
exception: All the &'s in {k} must be distinct, otherwise 
\f/ will vanish identically. Condition (2.4a) determines 
only the form of \f/. The allowed values of the &'s will 
be determined by Eq. (2.8). I t is easily verified that 

these equations are equivalent to the N equations. 

( - ) ^ - i e r * * ^ = e x p ( f E . ^ ^ ) , (all j), (2.15) 

where we have defined 

0**=O. (2.16) 

Although Eqs. (2.15) are N equations in N unknowns, 
there will be many sets of solutions. The problem we 
have here is quite similar to the one-dimensional Heisen-
berg model of ferromagnetism with nearest neighbor 
interactions, first solved by Bethe.5 Let us agree to 
order the k's (assuming they are real) so that 

k1<k2<"'<kN. (2.17) 

By observing that 
6ij=—6ji, (2.18) 

and taking the product of all N equations in (2.15), we 
find that 

E i * * i = 2 ( T / L ) » , (2.19) 

where n is an integer. We also find, by virtue of Eq. 
(2.13a), that if {k} is a solution to Eq. (2.15), then the 
set {&'} defined by 

k/=ki+2imo/L (2.20) 

is a solution for any integer no. The significance of Eq. 
(2.20) is the following: Since Eq. (2.9) defines \f/ only 
in Rh the k's cannot be regarded as true wave vectors. 
But the sum of the &'s is a true wave vector and is, in 
fact, the total momentum of \f/; i.e., 

N N 

Povb= (E(-id/dXj))f= ( E k3)yp=p$ (iiLR). (2.21a) 
I I 

Equation (2.19) tells us that the total momentum must 
be an integral multiple of 2ir/L—an expected result. 
Equation (2.20) tells us that for any state with mo­
mentum p there is a state with momentum 

pf = p-\-2irmp, (2.21b) 
where 

P=N/L, (2.22) 

obtained by a simple shift of the ^ s . Conversely for 
any state with momentum |^ |>7rp there is a corre­
sponding state having a momentum in the range 

—7rp<^<7rp. (2.23) 

We have, thus, to consider only states in the interval 
(2.23). All other states are obtained by the simple 
"umklapp," Eq. (2.20), which has the physical meaning 
of imparting a total momentum to the system while 
preserving the "internal" state of the system. The in­
teger no inEq. (2.20) is thus one of the quantum numbers 

5 See R. Orbach, Phys. Rev. 112, 309 (1958). This contains 
references to earlier papers. 
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describing a state. The energy of the new state is k\ such that 

N 4TOOP 1 1 N 2irm e W 
E'=Z(k/)2=E+ p+-(2imop¥, (2.24) * i= — - E 0kl-—+-— 

i N N L *-i L L 

a well-known consequence of Galilean relativity. 
To elucidate the nature of Eq. (2.15) we must study 

the two-body problem. To avoid loss of continuity we 
have relegated this to Appendix A. The principal results 
are as follows: (a) The ansatz, Eq. (2.9), appears to 
give all eigenstates of the problem; (b) for Y > 0 , the 
case in which we are interested, the k's are always real; 
(c) for 7 = 0 we obtain the noninteracting solution, 
while for 7 = oo we obtain Girardeau's solution6 with a 
continuous transition in between. 

These same considerations apply to the iV-particle 
case. Since the £'s are real, we may order them according 
to Eq. (2.17). For real {k} we can say something about 
the solution to Eq. (2.15). Dividing two successive equa­
tions and equating exponents, we have 

8j~(kj+1—kj)L==J2s=1
N(dsj—ds,j+i)+2wnj 

0 = 1 , 2 , - . . , # - 1 ) , (2.25) 

where rij is an integer depending upon j , defined for 
7 = 1 , 2, — -, N— 1. These n/s are the generalization of 
%x in Eq. (A3). Since dkj is a monotonically increasing 
function of j by Eqs. (2.13), the sum in Eq. (2.25) is 
negative. Therefore, 

n5>\ (all j ) , (2.26) 

if there is to be a solution. Since 

* i = * i + ( l / £ ) E . - i ' - 1 « . , (2.27a) 

and 

*«-*/»= ( V ^ E - H T - ^ . (<*>0), (2.27b) 

the right side of Eq. (2.25) involves only the 5's. 
Equation (2.25) is thus a self-contained set determining 
the 5's. If any set {n} is chosen satisfying (2.26), there 
is presumably exactly one solution for the 5's. At least 
that was the case for two particles and will prove to be 
true for the cases we shall investigate involving a large 
number of particles. We also note that 

8j<2irnj. (2.28) 

The remaining step is to determine the individual 
&'s so as to satisfy Eqs. (2.15) and (2.23). If the j=l 
equation of (2.15) is satisfied, the remainder will auto­
matically be by virtue of Eq. (2.25). Thus, if we choose 

6 Girardeau obtained the solution to the hard-core problem only 
for N odd. For N even, however, there is an equally simple solu­
tion. One simply uses the Fermi function satisfying antiperiodic 
boundary conditions, i.e., Lk = ir-\-2mr, where n is an integer. 
This exactly compensates the unwanted change of sign of his A 
function. For two particles the ground state has k2=—ki = ir/L. 

1 N I 1 k-i \ 2irm e(N) 
= £ * ( - E * y ) + , (2.29) 

L H \L y=i I L L 
where 

e(A0 = 7r ! ° r N even, a-ic\\ 
= 0 for TV odd, {Z'6V) 

and m is some integer, and use Eq. (2.27a) to determine 
the other k% Eq. (2.15) will be satisfied. To determine 
the integer m, which is not arbitrary, we observe that 

N 1 N-l 
P=Zk3-Nk1+-Z (N-j)dj 

1 L y=i 

= - I l V - i ) « ; - P £ 0jl-2rmp+e(N)p. (2.31) 
L y-i J'=I 

Equation (2.23) then fixes m. 
As further support for the assertion that Eq. (2.25) 

has a unique solution for a given {n}, we shall consider 
the two limiting cases c=0 and c= 00. 

c= 00: In this case all the 0's are zero, whence 

limc_>oo $3= 27r%, (2.32) 

so that not only is the solution of (2.25) unique, but 
(2.28) becomes an equality. I t is clear that we recover 
all Girardeau's wave functions and energies; the term 
e(N) just gives the extra x mentioned in footnote 6 
for the even N case. 

c = t f : B y E q . (2.13) 

limc->od(x) = —w for %>0 (2.33) 

— T for # < 0 , 

and, hence, Eq. (2.25) yields 

l im^o dj= 2T(UJ— 1). (2.34) 

There is, however, a caveat: if some % = 1 then dj—» 0, 
but it is then not clear that we can use the limiting form 
(2.33). We must ask for l[mc-+o(d/c). Only if it is in­
finity can we use Eq. (2.33) and thereby obtain Eq. 
(2.34). But if 5 4>0 Eq. (2.33) is certainly correct. 
Hence, by reductio ad absurdum, the only consistent 
conclusion is that Eq. (2.34) is always correct. The 
solution to Eq. (2.25) is again unique. We have, of 
course, recovered the well-known Bose functions for 
free particles. For N even, the e(N) term in Eq. (2.31), 
which in this case is unwanted, is compensated by the 
term 21 0ji-

We, thus, may conclude that the nj are a complete 
set of "internal" quantum numbers for the system. 
Together with nQ [Eq. (2.20)] they specify all states. 
By virtue of Eq. (2.28) moreover, the n3- may be 
thought of heuristically as the spacing between the &'s. 
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The exact spacing depends upon c to be sure, and also 
upon the relative position of dj in the set {8}. The fact 
that even for tij= const the spacing is not uniform 
(except for c~ oo) gives rise to the principal difficulty 
in the analysis of the many-particle case. One other 
peculiarity of the problem should be remarked upon. 
The limiting case c= oo proved above to be particularly 
simple, but for c —> 0 the problem became pathological. 
Indeed, the latter limit will prove to be surprisingly 
delicate as we shall see. 

III. GROUND-STATE ENERGY AND 
WAVE FUNCTION 

We are interested in passing to the limit of a large 
system. This means N, L—> oo such that p = fixed 
constant. From dimensional considerations the ground-
state energy can always be written 

E0=Nf?l(N,cL), (3.1) 

where Z is a dimensionless function of its arguments. 
But if EQ is to be an extensive variable (as will, indeed, 
prove to be the case), / can depend only on intensive 
variables. The only dimensionless intensive variable in 
the problem is 

y=c/P. (3.2) 
Therefore, 

E0=Np*e(y). (3.3) 

I t is easy to show directly from Eq. (2.1) that e(y) is a 
monotonically increasing function of y. We also expect 
that e(0) = 0 (free particles) and e(oo) = 7r2/3 
(Girardeau's solution). We can easily get an upper 
bound for e(y) by a variational calculation. Using the 
unperturbed Bose function, ^ = 1 , we obtain 

e(Y)<7. 

Using Girardeau's function,1 we have 

e(y)<Tr2/3. 

(3.4) 

(3.5) 

Returning to Eq. (2.25), it is clear that the choice 

» i = 1 (3.6) 

gives the ground state, for this choice minimizes the 
5's and hence allows the &'s to be as close to zero as 
possible. We also see from the symmetry of the equa­
tions that if k is in {k}, then so is —k. Indeed this is 
always so for n,= const and implies that ^ = 0 for such 
states. Equation (2.31) determines k± in this case: 

- h ^ — ^ (N-j)8j=kN^K(y\ (3.7) 
NL i 

From Eq. (2.28) et seq. we see that 

K(0) = 0, iT(oo) = xp, (3.8) 

with presumably a continuous monotonic transition in 
between. 

We are, thus, led to expect that K(y) is an intensive 
variable and that the process of passing to an infinite 
system consists in "filling in" more and more points in 
the set {k} between — K and K with the understanding 
that the spacing between k's may not be uniform. This 
may be shown as follows: The inequality &y+i— k3- < 2T/L, 
Eq. (2.28), permits us for a large system to use a Taylor 
expansion in Eq. (2.25), i.e., 

e(ks-k3)-e(ks-kj+1) 
1 

= -2c(kj+1-kj)- -+0{1/D), (3.9) 
C ~T" \Ks Kj) 

and, hence, 
1 N 

L «-i 
2TT 

+ — + 0 ( 1 / L 2 ) . (3.10) 
L 

Define 
k^-k^l/Lffa), (3.11) 

by means of which the sum in Eq. (3.10) may be ap­
proximated by an integral by Poisson's formula to the 
required accuracy in Lr1. Equation (3.10) becomes 

J -h 

M 2c I : - 1 - dp=2Tf(k)-l. (3.12) 
-Kc2+(p-ky 

The meaning of f(k) is that for a large system 

Lf{k)dk—number of &'s in (k,k-\-dk). (3.13) 

The subsidiary condition determining the number of 
particles is 

/ 
f(k)dk=py (3.14) 

while the ground-state energy is given by 

N N rK 

£ o = = X > / = — / f(k)k2dk. (3.15) 
i P J-K 

One final condition implied by Eqs. (3.11) and (3.13) is 

/ ( * ) > 0 . (3.16) 

Let us change variables as follows: Define 

k^Kx) c=KX; f(Kx)=g(x), (3.17) 

in terms of which Eqs. (3.12), (3.14), and (3.15) be­
come, respectively, 

r1 g(x)dx 
1+2X/ : -=2n{y), (3.18) 

i \ 2 + 0 - ; y ) 2 

5 ( T ) = — / g{x)xHx, 
\sJ-i 

y j g{x)dx=\. 

(3.19) 

(3.20) 
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The program, therefore, consists of the following steps: 
(i) Solve Eq. (3.18) for a fixed X; (ii) use Eq. (3.20) to 
determine X as a function of y; (iii) Eq. (3.19) then gives 
e ( T ) ; ( i v ) E q . (3.17) gives K(y), i.e., 

K=pyX~l=p\ / g(x)dx . (3.21) 

Equation (3.18) is an inhomogeneous Fredholm 
equation of the second kind with an inhomogeneous 
term that is positive definite (i.e., + 1 ) , In Appendix B 
we discuss this equation in considerable detail and prove 
the following: 

(a) For any inhomogeneous term there is exactly one 
solution g(y). 

(b) g(y) is an infinitely diflerentiable (analytic) 
function of X for X>0. 

(c) If the inhomogeneous term is positive definite 
[as in Eq. (3.18)], g(y)>0 for all y. 

(d) If the inhomogeneous term is bounded above 
(below), then g(y) is bounded above (below). 

These statements enable us to claim that g(y,y), e(y), 
and K(y) are analytic functions of 7 (except for 7 = 0 ) . 
Since there are then no unusual kinks or points of dis­
continuous derivatives, it becomes a straightforward 
matter to evaluate all quantities numerically with con­
fidence. The proof is as follows: (b) and (c) above, 
together within Eq. (3.20), imply that 7 is an analytic 
function of X for X in (0,oo). Equation (3.19) then im­
plies that e is analytic in X; Eq, (3.21) implies that K 
is analytic in X. The problem is then to prove that (i) X 
is an analytic function of 7 and that (ii) the range 
0<X<oo ? in fact, covers the required range 0 < 7 < ° o . 
By the implicit function theorem, statement (i) will 
be true if we can show that 

dy r r1 j * 
— H / g{oo)dx 
dX U _ i J 

/ g(x)dx—X I •g(x)dx\, (3.22) 
d\ 

for all X. By (b) above, Q / V g(x)dxj~2^0. As for the 
two terms in { }, we observe that if we define 

/ d x d\ 
h(x,X) = [ 1 )g(x,\), 

\dX XdxJ 
(3.23) 

and integrate Eq. (3.18) by parts several times, we 
easily obtain an equation for h, viz., 

h(x,X) 

\2+(x-y)2 ,X) = 2xj 

-2g(l,X)( + ) (3.24) 

By (c) above, the inhomogeneous term in Eq. (3.24) 
is negative definite and, consequently, h(x,X)<0 [by 
then applying (c) to Eq. (3.24)]. We have, therefore, 

0 > X / h(x,X)dx 

-B dg(x,X) 
X g(x,X) )dx+2g(l,X) 

dX 

(3.25) 

by using the definition (3.23) and integrating by parts. 
Since g(l,X)>0, the integral in Eq. (3.25) is negative 
definite. But this integral is just the negative of the 
term in { } in (3.22). Hence, statement (i) above is 
proved. We see, incidently, that X and 7 are monotonic-
ally increasing functions of each other. 

As for (ii) above, we see from Eq. (3.18) that 

lim^00g(x,X) = l/2w, 

and, consequently, from Eq. (3.20) 

lim x-*oo 7 = 

(3.26) 

(3.27a) 

As X —> 0, on the other hand, the bounds mentioned in 
(d) above guarantee that g(x,X) H-> 0. [On the contrary 
g(x,X) —> °° in this limit.] Equation (3.20) then implies 
that 

l imx_o7=0. (3.27b) 

Equations (3.27) establish (ii) above. 
To recapitulate, we have shown that all quantities 

are analytic functions of 7 in (0,oo). As the above argu­
ments tend to suggest, however, and as we, in fact, show 
later, there is a very serious singularity at 7 = 0. The 
physical meaning of this singularity is that any interac­
tion, however weak (but volume-independent), leads 
in the limit of a large system to a system that is in some 
way basically different from the noninteracting case. 
If one tries to find a series for e(y) for small 7, such a 
series can at best be asymptotic—a result already indi-

' A> 

- / 

V ̂ - - i 1 1 , 

-—of""" 

. . . . t . , 1 

(D K(y)//> | 

(|)V(y)//>2 

© t (y)//>2 ^ 

^^®) 

t . ., , t „, ! 

FIG. 1. Various numerically derived properties of the ground 
state plotted as functions of y — c/p. K = cutoff momentum, 
fx = chemical potential, v = potential energy per particle, and 
/ = kinetic energy per particle. As y —> 00 : K^-n-p; fx—>ir2p2, 
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cated, but not proved, by the conventional perturbation 
theoretic treatments. 

In Appendix B an outline is given of the numerical 
solution of Eqs. (3.18-20). While nonpathologic be­
havior is guaranteed by the above analyticity considera­
tions, the singularity at 7 = 0 makes the numerical 
calculation more and more difficult as this limit is 
approached. 

In plotting results we use units in which p = 1, so 
that K/p varies between 0 and w. We have also elimi­
nated the dependent parameter X in favor of the inde­
pendent parameter y by using Eq. (3.20). [Numerical 
values of X as a function of 7 can be obtained, if desired, 
from the relation \=y(K/p)-\ Eq. (3.21).] Figure 1 

FIG. 2. The distribution function of "quasi-momenta" in the 
ground state for various values of y = c/p. The vertical dashed 
lines are the cutoff momenta K (cf. Fig. 1). When 7 = °°, / = (2T)~K 
For all 7, f-KKf(k)dk=p. 

shows K(y) while Fig. 2 shows the density function 
f(k,y) for several values of 7. I t will be noticed that as 
7—>0 small values of k become relatively more im­
portant. Figure 3 shows the end result of the calculation, 
e(y). The straight dashed line is the zeroth-order per­
turbation theory result e=y, which also coincides with 
the primitive upper bound obtained before [Eq. (3.4)]. 
The other dashed curve, e = 7 [ l — ( 4 / 3 X ) V Y ] , is the 
result of Bogoliubov's perturbation theory which we 
shall discuss presently. I t is in fair agreement with the 
exact answer up to 7 = 2 . We may, therefore, regard 
0 < 7 < 2 as the weak coupling region. On the other hand, 
it is interesting to note that even for 7 = 1 0 , e(y) is 

e1 2 

© NUMERICAL RESULT 

ZERO ORDER PERTURBATION 

(D BOGOLIUBOV'S RESULT 

FIG. 3. The ground-state energy Eo = Np2e(y). The full curve 
gives e (7) obtained numerically. As 7 —> 001 e —» \TT2. Curve 2 
is the zero-order perturbation theory result, i.e., the expectation 
value of the potential in the noninteracting ground state. Curve 3 
is the result of Bogoliubov's perturbation theory, which is seen 
to be good up to y ^ 2 . 

still quite far from its asymptotic limit, |x 2 . In fact, 
in order to get within 10% of this asymptotic limit 7 
must be about 37. The intermediate coupling region, by 
one definition at least, is, therefore, 2 < 7 < 3 7 . 

There are other quantities of interest in connection 
with the ground state; these are also plotted in Fig. 1. 
There is the chemical potential /z, or energy necessary 
to add one particle to the system, defined by 

dEo ( 
—=P\ 

dN \ 

de\ 
3e-y— 1. 

dy) 
(3.28) 

Also interesting is the potential energy per particle v, 
which by a well-known theorem is 

c d de 
v= E0=p2y—, 

N dc dy 
(3.29) 

and the kinetic energy per particle 

1 / de\ 
t=—E*-v=A e-y— 1. (3.30) 

N \ dy) 

We conclude this section with a list of the asymptotic 
forms of the various quantities for large and small 7. 

Large 7. This is the easiest case. The denominator in 
the integral of Eq. (3.18) may be effectively replaced by 
X2. The error thus introduced in the integral is small, 
but by Eq. (3.26) the integral itself is small compared to 
1, so that the resultant error in g will be quite small in­
deed. This substitution leads to g(x) = const which may 
be readily evaluated as 

g(x) = X(2xX-4)-1 . (3.31) 

Substitution of Eq. (3.31) into Eqs. (3.19) and (3.20) 
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leads (for large 7) to 

1 / 7 \ 2 7 
X = - ( 7 + 2 ) , * = M ) , K=ir p, 

x v y + 2 / 7 + 2 
(3.32) 

3 T + 2 4 7 - 2 
M= f?e, v= p2e, t= p2£. 

7 + 2 7 + 2 7 + 2 

These results are accurate to 1% for 7 as small as 10. 
Small 7. As we show in Appendix B, as X —-»0 the 

factor 27r on the right side of Eq. (3.18) becomes an 
eigenvalue of the integral equation. Consequently, 
g(x,\) has a singularity at X=0. In addition to this 
difficulty, the kernel of the integral equation also be­
comes quite pathological. I t will be recognized that as 
X —> 0 the kernel becomes a well-known representation 
for 2w5(x—y) so that in this limit Eq. (3.18) reads: 
2irg(x) = 2irg{x)-\-\. I t is clear, therefore, that in this 
limit g becomes unbounded—a statement borne out by 
the limits on g given in Appendix B. 

There does not seem to be any simple way to get a 
systematic, reliable expansion of g as X—»0. We can, 
however, guess the zeroth order form for g: 

1 
g(x,\) ( l -x 2 ) 1 / 2 , (X->0) (3.33) 

2TTX 

and one can then show, using bounding arguments 
similar to those in Appendix B, that the correction to 
(3.33) is of higher order in X for all x, and is positive 
definite. Beyond this, we have been unable to obtain 
an unambiguous correction to (3.33). One of the major 
difficulties is deciding what happens at the end points, 

1*1=1. 
Equation (3.33) allows us to find only the leading 

term for the quantities mentioned in (3.32). These turn 
out to be (for small 7) 

^Wy, e=y> K=2pVy, (3~.. 
/x=2p27, v=y, t=0. 

The equation e=y is plotted in Fig. 3. We see that 
the upper bound for e [Eq. (3.4)3 is> m fact> its asymp­
totic form—a result predicted by elementary perturba­
tion theory. 

I t will be noticed from Fig. 1, as well as from Eqs. 
(3.32) and (3.34) ,that for small 7 the potential energy 
dominates the kinetic. The reverse is true for large 7 ; 
in fact v —> 0 as 7 —> 00. This behavior is exactly the 
same as for three dimensions—it is often said that a 
large potential behaves like a kinetic energy barrier. 
This fact is supposed by some to be tied up with the 
ability of particles to "go around" each other in three 
dimensions. But as we can clearly see, it is also present 
in one dimension. Thus, the difference between one and 
three dimensions does not lie here—it is apparently 
immaterial to the particles whether they can "get 
around" each other or merely "through" each other. 

D W. L I N I G E R 

IV. PERTURBATION THEORY 

The well-known perturbation theory of Bogoliubov2 

was at first assumed to be an expansion in the density. 
That this is incorrect was realized when it was found 
that the correct parameter for a low-density expansion 
is the scattering length (in three dimensions) and not 
J*v(x)dzx as appears in Bogoliubov's theory. But 
Bogoliubov's theory is asymptotically correct if we 
regard it as an expansion in the potential. In other words, 
it may be expected to give the first two terms in the 
energy correctly for any density if the potential is so 
weak that it may be treated by the Born approximation. 
In our case, therefore, the Bogoliubov theory should be 
correct for small 7. On the other hand, small 7 may be 
thought of as high density—the reverse of the usual 
(incorrect) assumption mentioned above. 

This last observation leads to a second reason for 
believing in the Bogoliubov result for small 7. One can 
show (we shall not do so here) that if the Fourier trans­
form of the potential is everywhere nonnegative, then 
Bogoliubov's theory is correct—at least as far as the 
ground-state energy is concerned—in the limit of high 
density. The 5-function potential certainly satisfies 
the above criterion. 

As stated in the introduction, one of the uses of an 
exact model is as a check for approximation schemes. 
I t is indeed fortunate that the present model has a 
definite range of coupling constant over which the 
Bogoliubov theory may be unambiguously expected to 
be correct. Our model, therefore, should serve not only 
to establish the validity of the Bogoliubov theory but 
should also serve as an indicator (taking appropriate 
account of the difference between one and three dimen­
sions) of the range over which the theory is reasonably 
accurate. 

The Bogoliubov prescription easily yields the follow­
ing results: The spectrum of elementary excitations is 
given by 

€(^) = p2 |^/p |[( i>/p)2+47]1 / 2 . (4.1) 

We have purposely written e(p) in terms of the dimen-
sionless variable p/p. The ground-state energy is given 
by 

E,= W(2c/L)+\ ZP It(p)-P2-N{2c/V)-] 
= A V T [ 1 - (4/3TT)VyJ (4.2) 

The expression for e(y), (4.2) is plotted in Fig. 3 ; 
it is adequate up to approximately 7 = 2 . Equation 
(3.34) shows the leading term is exact. While we have 
not found an analytic expression for the second term, 
(4/37r)73/2, the numerical results of Fig. 3 indicate 
that it too is correct. I t is interesting to note that the 
exact equation for e(y) is so pathological at 7 = 0 that 
it was an effort to find even the zeroth-order term for 
e(y), while perturbation theory gives the first two terms 
by elementary quadrature. 
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As for the elementary excitations, we shall show in 
I I that Eq. (4.1) is also fairly accurate up to about 
7 = 2 , but that there is another type of elementary exci­
tation unaccounted for by Bogoliubov's theory. 
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APPENDIX A. THE TWO-BODY PROBLEM 

To elucidate the nature of Eqs. (2.15), we shall study 
the two-body problem. To highlight the basic difference 
between the repulsive and attractive cases, we shall 
consider both. For the two-body problem, (2.15) 
becomes 

eik2L-=eid2i-— e—ik\L^ (Al) 

There are several ways to solve this problem and we 
shall choose one which may be generalized to the A7-
body case. Define 

( * 2 - * i ) i = « , 7=*cL, (A2) 

then, multiplying the two equations (Al), we obtain 

8=2d(k2~ki)+2Trn1 (A3) 
= - 4 t3Ln-1(8/2y)+2wnh 

where n\ is an integer. If we invert Eq. (A3) we obtain 

8/2y = — tan (5/4), m even (A4a) 

= [tan (5/4)D"1, m odd. (A4b) 

I t must be remembered that Eqs. (A4) have far more 
solutions than Eq. (A3) (because |0| <T by definition). 
Now if z tarns=real, then z is either real or imaginary, 
not complex. The same applies if (1/z) tans=real . 
Hence, the roots of Eq. (A3) are either real or imaginary. 
For the real roots we choose 5 positive in accordance 
with (2.17). For Y > 0 (repulsive case), there are, in 
fact, only real roots as Eqs. (A4) show. For every 
solution to either Eq. (A4a) or (A4b) there exists an 
integer n\ such that Eq. (A3) is satisfied, and conversely 
for every integer ni> 1 there is a unique positive solution 
to Eq. (A3) given by either (A4a) or (A4b). The single 
exception is ni=0 for which there can be no solution 
because the first term on the left side of Eq. (A3) is 
negative (5 = 0 is not allowed). We see that 

2Tc(tii—l)<8<2mi. (AS) 

In the limiting cases the roots corresponding to Wi=l, 

2, 3, etc., are, respectively, 

5 = 0, 2TT, 4TT, etc. (7 = 0) (A6a) 

5=27r, 47r, 671-, etc. (7 = 00). (A6b) 

We have now to determine ki and k2 separately so 
as to satisfy Eqs. (Al). Substituting the value of 02i 
from Eq. (A3) into Eq. (Al) we see that for every root, 
5, there is in fact a unique solution satisfying (2.23) 
given by 

Lk2=-Lk1=%8] p=0, (wiodd) (A7a) 

Lk2=^8~{-T) Lki=— §5+71-; 

P=2TT/L=TP, {fix even). (A7b) 

Thus, we see that for every integral value of n\ > 1 there 
corresponds a unique state having a definite energy and 
a momentum in the range (2.23). The integer n\ may, 
therefore, be considered the second or "internal," 
quantum number of the problem which, together with 
no, specifies a state. The ground state corresponds to 
U\— 1 and has zero momentum as expected. 

For 7 < 0 (attractive case), the situation is more 
complicated and rather surprising. The real roots are 
much the same as before except that here n\— 0 becomes 
permissible if 7 > —2. Equation (A5) is changed to 

27mi < 5 < 2 T T ( W I + 1 ) , (A5a) 

while Eqs. (A7) remain unaltered. For the imaginary 
roots, it is wise to return to the original definition of 
eie ££,qm (2.12)] m order to avoid ambiguity in the defini­
tion of tan - 1 . One finds that for ni—1 there is always a 
pair of equal and opposite imaginary roots given by 
Eq. (A4b). Only one of them need be considered, for 
the other corresponds to interchanging ki and k2. If we 
write 8 = ia ( a>0) , then 

a > - 2 7 . (A8) 

By Eq. (A7a) this state has zero momentum and its 
energy is 

£ 0 = - ( 1 / 2 L V < - \c\ (A9) 

This state, which is the ground state of the problem, is 
the analog of the single bound state for an attractive 
delta function in infinite space for which JSo= — J^2, 
\[/=exp(—%c\xi—x2\). Putting the particles in a box 
with infinite walls (zero boundary conditions) would 
reduce the binding energy, however, contrary to 
Eq. (A9). The periodic boundary conditions are respon­
sible for this anomalous result. 

Even more surprising is the appearance of a second 
bound state. We saw above that for y> — 2 there is an 
^ i = 0 real solution. In this case there is no other bound 
state. But if 7 < — 2 (strong coupling) the real solution 
for ni=0 disappears in favor of an imaginary solution 
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to Eq. (A4a). For this solution APPENDIX B. SOLUTION OF THE BASIC 
INTEGRAL EQUATION 

(A10) I. Existence, Uniqueness, and Analyticity 

By Eq. (A7b) this state has a momentum P=2TT/L o f t h e Solution 
and an energy (j) T h e in t egral equation (3.18) is a special case of 

1 2 

2D D r(y)+ K(y-x)g(x)dx=ag(y), (Bl) 

Eor 7 =—2 the wi=0 root is 5 = 0 which must be dis- where 
carded. On the other hand, the state cannot disappear K(y) = 2\/(\2-{-y2) 
for a single value of y. The paradox is resolved by taking 
the limit 7—» —2, whereupon we find and X>0. Equation (Bl) can be brought into the form 

\//f=[2+c(x2—%i)2 exp| i— (xi+x2) ?\ i—(%i+x2) , (7= • -2), (A12) 

in Ri. Two facts should be noticed about this second 
bound state. Firstly, it has a nonzero momentum, but 
it does not correspond to the translation of a bound state 
with p=0. Translated states of two particles with zero 
momentum must have momenta which are integral 
multiples of 4:w/L. Secondly, this state does not disap­
pear in the limit L —> 00 as might have been hoped. In 
fact, for any fixed c we can always choose L large enough 
such that 7 < —2 and this second state will make its 
appearance. As L —> 00 both inequalities (A8) and (A 10) 
approach equalities so that EQ and EQ becomes asymp­
totically degenerate and equal to the infinite space 
binding energy. 

Having obtained these wave functions we may ask 
if the ansatz Eq. (2.9) [with the single exception, Eq. 
(A 12)] exhausts all the solutions of the Schrodinger 
equation. I t seems clear that it, in fact, does so, at 
least for the repulsive case, although we cannot prove 
that this is true. We are led to this view because in the 
repulsive case we obtain the well-known wave functions 
for 7 = 0 (free particles) and we obtain Girardeau's 
solution for 7 = 00 (hard cores), with a continuous transi­
tion from one to the other. For 7 < 0 , on the other hand, 
the situation is not quite so clear. As 7 —> 0 we recover 
the free particle solutions. For 7 ^ 0 we can only observe 
that as L—> 00 we obtain the well-known bound state 
and scattering solutions for the attractive 5-function 
potential. 

These same considerations apply to the A^-particle 
problem and we shall therefore suppose that Eqs. (2.9) 
and (2.15) yield all the wave functions of the problem 
for the repulsive case. 

From consideration of the two-body problem we are 
led to the following hypothesis: For the repulsive case 
every solution {k} contains only real k% which we may, 
therefore, order according to (2.17). For the attractive 
case, which we shall not consider further, complex F s 
may appear. One should expect many types of nonreal 
solutions for 7 < 0 corresponding to two-body, three-
body, etc., bound states. 

u(s)—n\ R(s—t)u(t)dt=v(s), (B2) 

by letting y—\s, x—\t, a = l / A < o o , /z=2/V, u(s) = g(y), 
v(s) = r(y)/<r, and 

R(s,t) = R(s-t) = l/tl+(s-t)*J (B3) 

By definition,7 R is positive definite if 

-a J —a 
t)u(s)u(t)dsdt>0, (B4) 

for any square integrable u(s)^0. For R to be positive 
definite with respect to the interval (—a, a) it is suf­
ficient that R be positive definite with respect to (— 00, 
00) because the square integrable functions with respect 
to (—a, a) can be thought of as a subset of square 
integrable functions with respect to (—00, «>) which 
vanish identically for |$ | >a. Let 

J —00 

R(s-t)u{t)dt and u*(p), ri*(j>) 

be the Fourier transforms of u(s) and 17(5), respectively. 
Then, according to Parseval's equation,8 and because 
rj(s) is real, 

/ c ,= / u(s)r}(s)ds= I {s)yi{s)ds= u*(p)f(p)dp. 

As rj(s) is defined by a convolution, one has 

V*(s)=W*R*(fi)if(j,), 
and, thus 

/« ,=(2T)"*r it*{p)\u*{p)\*dp. 
j —00 

7 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Springer-Verlag, Berlin, 1931), Vol. I, p. 105. 

8 W. Schmeidler, Integralgleichungen mit Anwendungen in Physik 
und Technik (Akademische Verlagsgesellschaft, Leipzig, 1955), 
Vol. 1, pp. 74, 75. 
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I t is well known9 that 

R*(p)=R*(p) = (7r/2)1/2e-l^>0, 

and, thus, 7oo>0 except for u(s) = 0, that is (B4) is 
proved. Since R is positive definite, all eigenvalues of 
(Bl) or (B2) are positive.10 

(ii) Consider the kernel R and its iterates11 

RM(s,t) = R(s,t), (BSa) 

, 0 = 1 R™(s,T)R(r,t)dT, (*^1). (B5b) 
J — a 

or of the equivalent representation 

R«+»(s. 

From the defmtion (B3) of R it is evident that there 
exist constants Q > 0 such that \djRa)/dsj\^Cj for 
any i ^ O . One has 

J —< 

R(T,t)dr= T'(a,0 = a rc tan(a—0+arc tan(a+0 . (B6) 

I t is easy to see that 

7 r / 2 < a r c t a n 2 ^ ^ r ( ^ ) ^ 2 a r c t a n a = 7 r - e , e>0 . (B7) 

Assume now that, for a certain i^l and any j ^ O , 

\d*RW(s,t)/dst\ ^Cjiir-ey-1. 

Then, because d^R^ (s,t)/ds3' is continuous in s for all j , 
one can differentiate under the integral sign and, using 
(B7), one gets 

d'K^foO 
ds> 

a d>RW(s,T) 

As (B8) holds for i=0 it follows by induction that (B8) 
holds for all ^ 0 . Therefore, the Neumann series and 
its derivatives with respect to s taken term by term, that 
is, 

d>'p(s,t) oo d>RV+1)(s,t) 
= E M* (B9) 

ds3' »=o ds3 

for j ^ O , converge absolutely and uniformly in both 
variables s and t for all H<\/(TT— e). The same result 
holds for the derivatives with respect to t as can be 
proved in a similar way. 

From the uniform convergence of the Neumann series 
for 7 = 0 follows first the existence of the resolvent 
kernel, p(s,t), in particular for /x= 1/w, and the validity 
of the representation12 

u(s) = v(s)+n .[ p(s,t)v(t)dt, 
J —a 

(B10) 

9 G. A. Campbell and R. M. Foster, Fourier Integrals for Practical 
Applications (American Telephone and Telegraph Company, 
New York, 1942), p. 45. 

10 Reference 7, p. 112. 
11 Reference 8, p. 270. 
12 Reference 7, p. 119. 

1 
g(y) = -r(y)+ 7« 

7 2 i - l 

(y,x)r(x)dx} (Bl la ) 

K (y,*) = L ; = o ° V - ^ + 1 > (y,x). (Bl lb) 

The eigenvalues of (B2) are, thus, all ^1/(TT—-e) and 
those of (Bl) are ^ 2 T T - 2 € . Property (a) of Sec. I l l , 
that is, the existence of a unique solution of Eq. (Bl) 
for cr= 27r, is thus proved. From the uniform convergence 
of the series in (B9) with j^l follows the analyticity of 
the resolvent kernel with respect to s and t. 

(iii) Let \=z be complex in the expressions for the 
kernel i£_and its iterates. Consider a closed circular 
domain D defined by \z—-Xi|^5, with real Xi, 8 and 
0<5<Xi/V2. Then, if y is real, it is easy to see that 
| i^ (^ ;2) |^2(Xi+5) / (Xi-5) 2 forany2 € j5 .Let [7r -€ i (5) ] 
= 2 arctan [2/(X1—5)], ei(5) > 0 . As 8 - » 0, the quantity 
g(5) = C(^i+^)/(^i—^)U- [j—ei(d)~] decreases monoton-
ically to (IT— e) = 2 arctan (2/Xi), where €i(5)^e. Thus, 
if 0<€2<e, q(8)^ir—62 for sufficiently small 8, Now as­
sume that, for a certain i^l and real y, x, £, 

\K^(y,x)z)\^ 

Then, 

\K<*»(y,x',z)\ 

Xi+5 

(\i-8} 
•Gr-e*)*-1. (B12) 

KM(y,S;z)K&x',z)d!; 

XR{r,t)dr\^C^-,)\ (B8) a n d 

\i+8 r1 2( 
^2i ( 7 T - 6 2 ) - 1 / 

(Xi-S)2 i _ i ( X ! -

2 ( X i + 5 ) ^ 

/ : 

( X i - « ) 2 + « - * ) 2 

2Q*+B)d£ 2(Xx+8) r1 (\i-8)d£ 

i (\i-8y+(£-x¥ (Xx-5) J_ ! ( X i - S ) 2 + ( f - * ) 2 

^2q(8)^2(T-e2); 

thus, (B12) holds for i+1. As shown above, (B12) does 
hold for i = l , and by induction it follows that (B12) 
holds for all i'Zzl. As a consequence, the Neumann 
series (Bllb) with \=z converges uniformly with re­
spect to z in D. The kernel K and its iterates are ana­
lytic functions of z in D because D does not intersect 
the imaginary axis, the only place where K and its 
iterates could have singularities. Thus, for <r^.l/2w, 
(Bllb) represents a uniformly converging series of 
analytic functions and, as a consequence,13 K(y,x',z) is 
analytic in z in the neighborhood of any Xi>0. In 
particular, K is analytic in X in the real sense. Finally, 
from (Blla) follows the analyticity of g(y) as a function 
of X. This completes the proof of statement (b) of Sec. 
I l l , that is g(y) is analytic in X for a= 1/2T. 

13 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, New York, 1952), p. 91. 
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(iv) Using l/(l+4:a2)^\R(s,t)\^l and inequality 
(B7) one can prove by induction that 

Cl / ( l+4a 2 ) ] (x /2)*- 1 g \R™(s,t)\ ^ (7r-ey-K 

Thus, there exist constants, bi and &2, such that, for 

1 
0 < & 1 = [ l / ( l + 4 a 2 ) ] — — £ |p(5,01 

l-/*Gr/2) 

1 
S = 62<*> (B.13) 

1—fx(r—e) 

If there exist constants £3 and 64 such that 6 3 ^ ( ^ ) ^ 6 4 , 
then one obtains from (B10) 

h(l+2ab1)^u(s)^bi(l+2afxb2)J (B14) 

which proves statement (d) of Sec. I l l , that is if r(y) 
is bounded above or below, then so is the solution g(y). 
The proof of statement (c) of Sec. I l l [ that is, if r(y) 
is positive definite, then so is the solution g(y)2 follows 

I. INTRODUCTION 

IN the preceding paper1 we introduced a soluble model 
of a Bose gas interacting via a repulsive 5-function 

potential. We discussed the nature of the eigenfunc­
tions and explicitly calculated the ground-state energy 
and other properties of the ground state in the limit of 
a large system. 

In this paper we discuss the nature of the excitation 
spectrum for a large system of N particles. The sur­
prising result, as we stated but did not show in I, is that 
for all values of the potential strength, the most con­
venient and natural way to view the spectrum is to 
regard it as a double spectrum of elementary boson 
excitations. While Bogoliubov's perturbation theory2-3 

1 E. Lieb and W. Liniger, Phys. Rev. 130,1605 (1963) (referred 
to here as I). 

2 See I, Sec. IV. 
3 See, for example, The Many Body Problem, edited by C. 

DeWitt (John Wiley & Sons, Inc., New York, 1958), pp. 347-355. 

immediately from (B14) as b% can be chosen positive 
in this case. 

II. Numerical Solution 

The basic integral equation (B2) has been solved 
numerically by applying Simpson's rule to the integral 
on a grid {si=~a+(i—l)h;h=a/n;i=l, • • •, 2n+l). 
This yields a system of (2n+l) linear algebraic equa­
tions for the (2n+l) discrete approximate values 
Ui^u(si) which can be solved by a standard method. 
The quadratures involved in calculating y and e also 
have been carried out by Simpson's rule. The functions 
K{y) and e(y) are obtained in parametric form, that is 
(K(X),y(\)) and (e(\),y(\)). To obtain /x, the quantities 
e and 7 are evaluated on a sufficiently fine grid of equi­
distant X values. Then, 

de de tdy 
jji=Se—y——2>e—y—/ — 

dy d\' dX 

can be calculated by numerical differentiation. 

gives one of the spectra quite accurately for a weak 
potential, the second spectrum is entirely unaccounted 
for (see Figs. 3 and 4). The second spectrum exists 
only for values of the momentum satisfying | p\ <wp. 

We may summarize the results of this paper as 
follows: (i) In Sec. II we discuss the nature of the energy 
spectrum of the problem and show that there are two 
elementary spectra. These are always well defined and 
are explicitly calculated. We show that there is no 
energy gap and that the two spectra have a common 
slope at p = 0 which means that they propagate sound 
at the same velocity. The velocity of sound at absolute 
zero derived in this way from an atomic picture4-6 is 
shown to be identical with the velocity of sound defined 
by the usual macroscopic considerations [cf. Eqs. (1.1) 
and (1.4)]. 

4 R. P. Feynman, Phys. Rev. 91, 1291 (1953). 
5 R. P. Feynman, Phys. Rev. 91, 1301 (1953). 
6 R. P. Feynman, Phys. Rev. 94, 262 (1954). 
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Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum 
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We continue the analysis of the one-dimensional gas of Bose particles interacting via a repulsive delta 
function potential by considering the excitation spectrum. Among other things we show that: (i) the ele­
mentary excitations are most naturally thought of as a double spectrum, not a single one; (ii) the velocity 
of sound derived from the macroscopic compressibility is shown to agree with the velocity of sound derived 
from microscopic considerations, i.e., from the phonon spectrum. We also introduce a distinction between 
elementary excitations and quasiparticles, on the basis of which we give some heuristic reasons for expecting 
the double spectrum to be a general feature, even in three dimensions, and not an exception. 


