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(iv) Using l/(l+4:a2)^\R(s,t)\^l and inequality 
(B7) one can prove by induction that 

Cl / ( l+4a 2 ) ] (x /2)*- 1 g \R™(s,t)\ ^ (7r-ey-K 

Thus, there exist constants, bi and &2, such that, for 

1 
0 < & 1 = [ l / ( l + 4 a 2 ) ] — — £ |p(5,01 

l-/*Gr/2) 

1 
S = 62<*> (B.13) 

1—fx(r—e) 

If there exist constants £3 and 64 such that 6 3 ^ ( ^ ) ^ 6 4 , 
then one obtains from (B10) 

h(l+2ab1)^u(s)^bi(l+2afxb2)J (B14) 

which proves statement (d) of Sec. I l l , that is if r(y) 
is bounded above or below, then so is the solution g(y). 
The proof of statement (c) of Sec. I l l [ that is, if r(y) 
is positive definite, then so is the solution g(y)2 follows 

I. INTRODUCTION 

IN the preceding paper1 we introduced a soluble model 
of a Bose gas interacting via a repulsive 5-function 

potential. We discussed the nature of the eigenfunc
tions and explicitly calculated the ground-state energy 
and other properties of the ground state in the limit of 
a large system. 

In this paper we discuss the nature of the excitation 
spectrum for a large system of N particles. The sur
prising result, as we stated but did not show in I, is that 
for all values of the potential strength, the most con
venient and natural way to view the spectrum is to 
regard it as a double spectrum of elementary boson 
excitations. While Bogoliubov's perturbation theory2-3 

1 E. Lieb and W. Liniger, Phys. Rev. 130,1605 (1963) (referred 
to here as I). 

2 See I, Sec. IV. 
3 See, for example, The Many Body Problem, edited by C. 

DeWitt (John Wiley & Sons, Inc., New York, 1958), pp. 347-355. 

immediately from (B14) as b% can be chosen positive 
in this case. 

II. Numerical Solution 

The basic integral equation (B2) has been solved 
numerically by applying Simpson's rule to the integral 
on a grid {si=~a+(i—l)h;h=a/n;i=l, • • •, 2n+l). 
This yields a system of (2n+l) linear algebraic equa
tions for the (2n+l) discrete approximate values 
Ui^u(si) which can be solved by a standard method. 
The quadratures involved in calculating y and e also 
have been carried out by Simpson's rule. The functions 
K{y) and e(y) are obtained in parametric form, that is 
(K(X),y(\)) and (e(\),y(\)). To obtain /x, the quantities 
e and 7 are evaluated on a sufficiently fine grid of equi
distant X values. Then, 

de de tdy 
jji=Se—y——2>e—y—/ — 

dy d\' dX 

can be calculated by numerical differentiation. 

gives one of the spectra quite accurately for a weak 
potential, the second spectrum is entirely unaccounted 
for (see Figs. 3 and 4). The second spectrum exists 
only for values of the momentum satisfying | p\ <wp. 

We may summarize the results of this paper as 
follows: (i) In Sec. II we discuss the nature of the energy 
spectrum of the problem and show that there are two 
elementary spectra. These are always well defined and 
are explicitly calculated. We show that there is no 
energy gap and that the two spectra have a common 
slope at p = 0 which means that they propagate sound 
at the same velocity. The velocity of sound at absolute 
zero derived in this way from an atomic picture4-6 is 
shown to be identical with the velocity of sound defined 
by the usual macroscopic considerations [cf. Eqs. (1.1) 
and (1.4)]. 

4 R. P. Feynman, Phys. Rev. 91, 1291 (1953). 
5 R. P. Feynman, Phys. Rev. 91, 1301 (1953). 
6 R. P. Feynman, Phys. Rev. 94, 262 (1954). 
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We continue the analysis of the one-dimensional gas of Bose particles interacting via a repulsive delta 
function potential by considering the excitation spectrum. Among other things we show that: (i) the ele
mentary excitations are most naturally thought of as a double spectrum, not a single one; (ii) the velocity 
of sound derived from the macroscopic compressibility is shown to agree with the velocity of sound derived 
from microscopic considerations, i.e., from the phonon spectrum. We also introduce a distinction between 
elementary excitations and quasiparticles, on the basis of which we give some heuristic reasons for expecting 
the double spectrum to be a general feature, even in three dimensions, and not an exception. 
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The velocity of sound v8, derived from the excitation 
spectrum is given by 

vs=limp->ode(p)/dp, (1.1) 

where e(p) is the energy of an elementary excitation of 
momentum p. By a well-known macroscopic argument,7 

on the other hand, 

vs=Z(-L/mp)dP/dLJ^ (1.2) 

where P is the pressure, 

P^-dEo/dL, (1.3) 

L is the length of the "box," p=N/L is the density, m 
is the mass per particle (= \ in our units), and EQ is the 
ground-state energy. 

In I we defined the dimensionless parameter y = p~1c, 
where 2c is the strength of the 5 function. In terms of 7, 
£0 may be written Eo=Np2e(y). In terms of these 
quantities, vs may be written 

vs=2p(3e-ye+hie)lli ,. , , 
= 2 ( M - h A ) 1 / 2 , ^ " ' 

where "dot" denotes differentiation with respect to 7 
and /x is the chemical potential given by 

dE0 

M= =P2(3e-7<0. (1.5) 
dN 

Bogoliubov's formula for e(p) [1(4.1)] gives 

».= 2p71/2, (1.6) 

while using Eq. (1.4) and Bogoliubov's expression for 
e( 7)[I(4.2)] we get 

^=2p[7 - ( l /27 r )7 3 / 2 ] 1 / 2 . (1.7) 

Equations (1.6) and (1.7) are plotted as dashed curves 
in Fig. 5 along with the correct result for vs obtained 
numerically. I t will be noted that Eq. (1.7) is far more 
accurate than Eq. (1.6). In fact, the difference between 
Eq. (1.7) and the exact answer is so minute up to 7 = 10 
that we are unable to distinguish the two graphically. 
This is indeed remarkable in view of the fact that 
Bogoliubov's expression for e(y) is quite bad beyond 
7 = 3 and becomes negative for y> (37r/4)2c^5.5. 

(ii) Based on the results of this model, we are led to 
the introduction of two distinct quantities—called ele
mentary excitations and quasiparticles—which are de
fined differently, and are, in fact, different, but which 
are apparently somehow related. This is discussed in 
Sec. I I I . 

The quantities that we calculate are given by the 
solutions to certain integral equations. While these 
cannot be obtained in closed form we are able to prove 
directly the statements made above. The quantitative 
results have been obtained by Werner Liniger on an 

7 See, for example, F. London, Superfiuids (John Wiley & Sons, 
Inc., New York, 1954), Vol. II, p. 83. 
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IBM 7090 computer at the IBM Research Center. The 
equations considered here are similar to those considered 
in I. The reader is referred to Appendix B of that paper 
for a discussion of the numerical methods employed. 

II. EXCITED STATES AND ELEMENTARY 
EXCITATIONS 

In paper I we discussed the Hamiltonian8 

ff = ~IliNd*/dxZ+2cZuj)Hxi-Xj), (2.1) 

and showed that in the subdomain 0<x< • • • <x^<L 
all eigenfunctions are of the form 

* (*V • ',xN) = Zpa(P)P expiiZj-MiXj), (2.2) 

where the summation is over permutations, P , of 
{k} = &i, <&2, < • • •, <&iv, and a(P) is a function of P. 
We found that for any set {k} the a(P) 's could be 
uniquely determined. The condition determining the 
allowed k's is 

( i = l , 2 , . - - , t f - l ) (2.3) 

0.y= - 2 t a n - ^ C * . - A y ) A l (2.4) 

and fij are any integers > 1. 
The ground state was obtained from Eq. (2.3) by 

putting all tij— 1. In this case —ki^kN—K where K is 
a function of 7. The simplest excitation is obtained by 
putting some one tij=2 while the rest remain unity. 
The effect of this is to increase dj by approximately 27r, 
but at the same time all the other 5's will be shifted 
slightly. Neglecting the change in spacing, the effect 
of making rij— 2 can be approximately thought of either 
as moving kj+i to K (or —K) leaving a hole behind, or 
else as pushing apart the k's, leaving a double space at 
the j t h position. 

To orient ourselves, let us consider the 7 = 00 (hard 
core) case. As Girardeau9 has pointed out, the energy 
spectrum of the Bose gas is then exactly the same as for 
a noninteracting one-component Fermi gas (the wave 
functions are quite different of course). The problem is 
this: How can we describe this Fermi spectrum in con
ventional boson terms? If we regard the energy levels 
simply as a collection of numbers, the problem is 
similar to that of classical spectroscopy. Can we find a 
small number of elementary energy levels from which 
all others may be deduced by addition? 

The conventional description of the Fermi spec
trum is to regard the elementary excitation process 
as taking a particle from the state q{\q\<K) to a 
state k (\k\>K). The energy and momentum of this 
state are 

e(kyq) = k2-q2, 

p(k,q) = k-q. 

*h=l, 2w = l. 
9 M. Girardeau, J. Math. Phys. 1, 516 (1960). 
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The difficulty with this classification scheme is twofold: 
(a) Every excitation must be described in terms of two 
parameters instead of merely one as one normally hopes 
to do for a Bose system. There is no unique e(p) curve. 
(b) Too many provisos must be added to the original 
specification (e.g., there can be at most one excitation 
of any given type; | q | can be greater than K for high-
level compound excitations, etc.). 

If we are interested only in low-lying excitations, how
ever, difficulties (a) and (b) above can be remedied by 
the following scheme. Define two types of one parameter 
elementary excitations by these rules: 

Type I. Take a particle from K to q>K (or alter
natively from —K to q<— K). This excitation has an 
energy and momentum given by 

ei=q2-K\ (2.6) 

= q+K, q<-K K ' J 

ei(p) = P2+2*p\p\. (2.8) 

Type II. Take a particle from 0<q<K to K+2w/L 
(or alternatively from -K<q<0 to —K—2ir/L). The 
energy and momentum for this state are given to 
OiN'1) by 

e*=K*-f, (2.9) 

p=K-q, 0<q<K 

= —JET—g, 0>q>-K V ' ; 

€*(p) = 2TP\p\-f. (2.11) 

For the first type of excitation — &><p< <*> while for 
the second type ~Trp<p<irp only. These two types of 
excitations must be supplemented by exactly two other 
excitations, which we shall call umklapp excitations, 
namely take a particle from — K to K+2w/L (or 
alternatively from K to —K—2TT/L). The energies of 
the umklapp excitations are 2w2p/L and, hence, are of 
order N~x. Their momenta, however, are 2irp and — 27rp, 
respectively. 

Any of these excitations may be carried out any 
number of times and we may simultaneously have as 
many different types of as many different momenta as 
we please. For example, one type I excitation of mo
mentum p means taking a particle from K to K+p. Two 
excitations of this same momentum means taking one 
more particle from K—2TT/L to p—2w/L. The momen
tum of the resulting state is exactly 2p while the energy 
is twice that of one excitation to order N~x. Thus, each 
of these elementary excitations may be regarded as 
bosons. 

By experimenting with a &-space diagram, the reader 
may easily convince himself that for any specified com
bination of multiple excitations of type I (or type II)-
there corresponds exactly one true state of the system, 
and conversely. The momentum of the true state is 
exactly the sum of the momenta of the elementary 
excitations, while the energy of the true state differs 

from the sum of the elementary energies only by 0 (N"1) 
if the total number of excitations is finite (i.e., not of 
order A7). 

The difficulty with this classification scheme is that 
either type I or type I I excitations form a "complete 
set" in the sense that they are in a one-one correspond
ence with the true excitation spectrum. Thus, any type 
I I excitation may be thought of as a multiple type I 
excitation. The correspondence is this: m excitations of 
type I with momentum p—2-irn/L corresponds to 
exactly the same true state as n type I I excitations 
with momentum p=2win/L. In particular, one type I I 
excitation of momentum p corresponds to (l/2w)Lp 
type I excitations of momentum p = 2ir/L. If p is a 
fixed momentum independent of Z, however, then the 
corresponding type I I excitation may be thought of 
essentially as an infinite number of type I excitations of 
vanishing momentum. Since ei(p) and ez(p) are not 
proportional to p, the true energy of the type I I excita
tion, 2irpp—p2, is very badly approximated by the 
(l/2w)Lp type I excitations, viz., 

(l/2ir)Lp[2Tp (2T/L) - ( 2 T T / L ) 2 ] ^ 2 X P ^ . 

The situation is, indeed, rather complicated and there 
does not seem to be any very simple way out of the 
dilemma. On the one hand, one can say that there is 
only one elementary excitation spectrum (one can 
choose either type I or type II) which is boson-like and 
which "generates" all the true states. On the other 
hand, physical considerations tell us that type I and 
type I I excitations ought to stand on an equal footing, 
just as holes and particles play a similar role in the 
theory of the Fermi gas. I t is patently absurd to think 
of a type I I excitation as an infinite number of type I 
excitations of vanishing momentum. 

We shall adopt here the "symmetric" point of view 
which seems to us the more natural way to view the 
problem. But we must then realize that if we calculate 
the partition function on this basis we will be double 
counting. The true free energy is that of the Fermi 
gas which one can calculate by standard methods. To 
leading order, 

F=Eo-(kT)2A, (2.12) 

where A is given by a well-known integral. If one 
calculates the free energy using the double boson spec
trum [Eqs. (2.9) and (2.11)], one finds that 

F'=E*-2(kT)*A. (2.13) 

The factor 2 is a precise reflection of the double counting. 
Either type I or type I I alone would give Eq. (2.12). 
But if one does not double count, one gets a thoroughly 
distorted view of the nature of the excitation spectrum. 

The situation for y^ <*> is qualitatively the same as 
for the 7 = oo case we have just discussed. Only the e(p) 
functions differ; having discussed the over-all structure 
of the elementary excitations, we proceed now to calcu
late €i(P) and ez{P) for y^ oo.. 
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Type I Excitations ("Particle" States) 

We put nj=l(l<j<N— 2) and tix-£>>l. Let kN—q, 
where q>K, and write 

i / = f c + ( l / I K f = l , '-,N-l (2.14) 

where k/ are the new values of the remaining k's. At 
this point there are two ways to proceed—both leading 
of the same result. In Eq. (2.14) we could let ki=k's 
in the iV-particle ground state, or we could let ki=k's 
in the N— 1 particle ground state (co* will, of course, 
be different in the two cases). We shall adopt the 
latter definition because it leads to a simpler calculation. 

Now, 
1 -2c 

e(k/-ki') = 6(kj—ki)-\—fa-cm) . (2.15) 
L c2+(kj-ki)2 

Inserting Eq. (2.15) in Eq. (2.3) or 1(2.15) we obtain 
the integral equation 

,(k)+ r 
TT=2c J 

* [co(r)-a>(fe)]/(f) 

K c2+(r-k)2 
dr-6(q-k), (2.16) 

where f(k) is the distribution function of the k's in the 
ground state, [cf. 1(3.12)]. We have chosen the term TT 
(instead of 3w, Sir, etc.) in Eq. (2.16) so that as <?—>0 
the wave function approaches the ground-state wave 
function for N particles. If we define 

«(* ) / ( * ) s / ( J ) , (2.17) 

Eq. (2.16) becomes 

2wJ(k) = 2cf 
J -I 

J(r)dr 
-T-6(q-k). (2.18) 

LKc2+(k-r)2 

Using Eq. (2.14) the momentum of the state is 

N-l N-l 1 N-l 

P= E k/+q= E ki+— E "i+q 
y=i i L i 

= q+[ J(k)dk, (2.19) 
J-K 

while the excitation energy is 

(ki')2-Eo(N)+? 

= -fji+q2+2 kJ(k)dk, (2.20) 

€ i=E/= 

where E0(N) is the ground-state energy for N particles. 
To find €i(p) we have to eliminate the parameter q 
between Eqs. (2.19) and (2.20). 

As we stated in I, Sec. I l l , Eq. (2.18) has a solu
tion which is unique and negative definite (because 
ir-\-6(q—k) is positive definite). Since / (and, hence, co) 
are negative we conclude, as was to be expected, that 
adding a particle with momentum q>K to the N— 1 
particle system decreases all the other k's. 
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FIG. 1. The type I excitation spectrum, ei(p), plotted for small 
momenta and various values of y = c/p. When Y = 0, ei~p2; when 
7 = oo, ei = p2~\-2irp\p\. 

In Fig. 1 we display the ei(p) curve for several values 
of 7 (in dimensionless units). The 7 = 0 curve is ei (p) — p2 

(free particles), while the 7 = 00 is given by Eq. (2.8). 
All curves are linear for small p, the region of linearity 
increasing with 7. 

The continuation of these curves for large p is given 
in the logarithmic plot of Fig. 2. To find an analytic 
expression for ei(^) for large p we expand 6(q—k) in a 
Laurent series for large q and retain the leading term. 
The obvious results are 

J{k)c 
2yp 

-/(*), 

p~q-2y p2/q, 

e i ( £ ) ~ - / * + ^ 2 + 4 7 p 2 . 

(2.21) 

(2.22) 

(2.23) 

I t should be noted that these last equations are true 
only if 7 is finite and p/py>y. If 7 = 00 on the other 
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FIG. 2. The type I excitation spectrum for large momentum 
and various values of 7 = c/p. When 7 = 0, ei = p2; when 7 = °o, 
e1^=p2J

r2Trp\p\. 
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hand, 0 = 0 and Eqs. (2.6)-(2.8) must be used instead. 
In this case J(k)= —"irf(k) = — \. 

Equation (2.21) and (2.23) have a simple physical 
interpretation. The wave function can be well repre
sented (in an average sense) by 

lf>=X> e^N^-i^ . . .i%N_^ (2.24) 

where the summation is on permutations and ^0 is the 
ground state for TV—1 particles. In second-quantized 
notation this would be 

i ^ a p W - 1 ) . (2.25) 

The energy of this state [Eq. (2.23)] can be interpreted 
as follows: First, remove a particle from the iV-particle 
ground state. This contributes an energy—p. Second, 
put it back in a plane wave state with momentum 
p—thereby adding p2 to the energy. But the plane 
wave also interacts with the remaining N— 1 particles— 
this energy is pv(0) [y(p) is the Fourier transform (F.T.) 
of the potential]. In our case this is 2yp2. Finally, when 
the wave function is symmetrized, additional terms 
appear which ordinarily vanish as p —> °o. But one of 
these terms—the F. T. of the potential times the two-
particle correlation function—does not vanish for a 
5-f unction and is in fact just 2yp2. The total result is 
Eq. (2.23). 

Before turning to excitations of type I I ("hole" 
states) there are several questions to be answered about 
the behavior of Eqs. (2.18)-(2.20) as g-> K. 

(a) Do both p and ei vanish in this limit? If so, is 
ei(p) linear for small p? 

(b) Is Bogoliubov's expression for the velocity of 
sound correct for small 7? 

(c) Do the two expressions, Eqs. (1.1) and (1.4), for 
the velocity of sound agree for all 7 ? 
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FIG. 3. The type II excitation, e2, as a function of momentum 
for various values of y — c/p. This spectrum exists only up to 
\p\ =7rp. When T = 0, €2 = 0; when 7 = °o? €2= — p2-\-2irp\p\. 

All these questions can be answered in the affirma
tive, but the proof involves very tedious manipulation 
of the integral Eqs. I (3.18) and (2.18). These are 
summarized in the Appendix. Question (b) above is 
especially significant in view of the great debate as to 
whether or not there is an energy gap in the excitation 
spectrum. In our model there is none. 

Type II Excitations ("Hole" States) 

In this case we set all w»=l except for i=j when 
Uj=2. Let kj=q (which we may assume to be a con
tinuous parameter) with 0<q<K. In analogy with 
Eq. (2.14) we write 

(2.26) 
i / = W ( l / l K (i<j) 

where now kick's in the (iV+1) particle ground state. 

2. €Z/P2 

3. B0G0L1UB0V 

7 = 0.787 

FIG. 4. A comparison plot 
of the two types of excita
tions, €1 and €2, for7=0.787. 
The dashed curve is Bogo-
liubov's spectrum which is 
quite close to the type I 
spectrum. The type I I spec
trum does not exist in 
Bogoliubov's theory. 

As before we derive the equations 

/

K J{r)dr 
+T+6(q-k), (2.27) 

-KC2+(k—r)2 -(k-r)2 

p=-q+l J(k)dk, 

€2 : 

J ~K 

-H-q2+2f 
J-K 

kJ(k)dk. 

(2.28) 

(2.29) 

We observe that in this case J(k) is negative definite 
(to see why this ought to be so, look at the 7 = 00 limit). 
When q=K, the solution to Eq. (2.27) is the negative 
of the solution to Eq. (2.18) so that in this limit both 
p and €2 vanish. As q decreases both p and €2 increase 
until, when <7=0, p = Tp [and not ^ ( 7 ) as might have 
been expected]. The case g < 0 need not be considered. 
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If we think of the Fermi case, what we have done is 
taken a particle from q>0 to K. Taking a particle from 
q<0 to K is, in our picture, to be regarded as the sum 
of two excitations; taking a particle from q<0 to — K 
followed by an umklapp from — K to K. 

In Fig. 3 we show the e^ip) curves for various values 
of 7. The 7= 00 case is given by Eq. (2.11). When 7=0, 
e2(p)^0. Figure 4 compares ei(^), e2(^) and Bogoliu
bov's spectrum given in I Eq. (4.1) for 7=0.787. It will 
be seen that Bogoliubov's spectrum is a good approxi
mation to ei(p) for this value of 7. It will also be noted 
that €1 and €2 have the same slope at p—0—a fact which 
may be easily proved from the integral equations. This 
common value of the velocity of sound is plotted in 
Fig. 5 together with Bogoliubov's results, Eqs. (1.6) 
and (1.7). With regard to the velocity of sound, we 
have seen that the macroscopic definition, Eq. (1.4), 
agrees for all 7 with the microscopic definition based on 
the conjecture of Feynman4-6 that the low-energy 
excitations are in general longitudinal phonons. But 
Feynman's additional conjecture that there is only one 
spectrum is apparently incorrect, at least in the present 
model. If one excites a sound wave in this system, most 
probably both types of excitations will be excited, just 
as in a Fermi gas both holes and particles are excited. 

III. A DISCUSSION OF ELEMENTARY EXCITATIONS 
AND QUASIPARTICLES 

In the literature of the quantum-mechanical many-
body problem two phrases are used interchangeably— 
elementary excitations and quasiparticles. We would 
like to propose here a distinction between the two. 

A gas in a box has certain well-defined energies and 
wave functions which form a complete set. By definition 
these do not decay or interact with each other. The 
energies are real. Furthermore, as we have seen in our 
model and as is undoubtedly true, in general, the 
spectrum of low-lying states falls into a pattern. There 
exists one or more (in our case two) sets of energy vs 
momentum curves such that: (a) For each point on 
one of these curves there is an eigenstate; (b) if we add 
together the energy and momenta corresponding to 
several points on one or more of the curves, we obtain 
(to order N~l) a resultant energy and momentum corre
sponding to an exact wave function of the system. The 
converse is also true: every state can be thought of as 
a sum of the elementary states. 

These basic energy vs momentum curves we call 
elementary excitations. From this point of view, ele
mentary excitations are a bookkeeping arrangement. 
There does not exist any simple operator which, acting 
on the ground state, gives these elementary states, nor 
can "compound" states be obtained from the elemen
tary ones by simple operators. Nevertheless, when one 
attempts to diagonalize the many-body Hamiltonian 
by some method, it is the elementary excitations in the 
above sense that one is calculating. 

Another quantity, called a quasiparticle may be 
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FIG. 5. The velocity of sound, vs, as a function oiy—c/p. Curve 
2 is the result obtained from Bogoliubov's excitation spectrum. 
Curve 3, which is graphically indistinguishable from the true 
result up to 7 = 10, is the velocity of sound derived from the macro
scopic compressibility using Bogoliubov's expression for the 
ground-state energy. 

defined as a pole in the Fourier transform of a propa
gator (or Green's function). The one-particle propa
gator is given in second quantized notation by10 

G=G++G_, where 

G+(p,t)=-i(^N\ape-iHW\^oN)eiE^, t>0, 

G_ (p,t) = ±i(foN I aJeiHtap | ̂ N)e~iE«\ * < 0, (3.1) 

where the (+) sign is for fermions, the (—-) sign for 
bosons. The time Fourier transform of both G+ and G_ 
have a branch cut on the real axis and various singu
larities on the wrong Riemann sheet. The poles nearest 
the real axis are quasiparticle poles while the other 
singularities reflect more complex collective modes. 

The energy of a quasiparticle (i.e., the position of the 
pole) is complex, which means that it decays in time. 
Nevertheless, there is a reputed connection, which has 
never been made very precise between quasiparticles 
and elementary excitations in the sense we have used 
them above. The difference between the two, and the 
reason one decays and the other does not, lies in the 
form of the wave functions. The elementary excitations 
refer to exact eigenfunctions which unfortunately, for 
an interacting system, do not have the plane wave 
character of the excitations of a noninteracting gas. 
The quasiparticle, on the other hand, may be thought 
of as an attempt to find (inexact) wave functions which 
do have a plane wave character. The function tf/l^o^) 
in Eq. (3.1) is such a plane wave type function. 

Elementary excitations are more useful for calculating 
the free energy or any other quantity where only the 
energy is involved. Quasiparticles are useful for calcu
lating the response of the system to an external in
fluence, for, by the nature of a physical excitation 
process, plane waves are generally excited at time 2=0. 
The propagator G samples the exact states, so to speak, 
to find a linear combination which looks most like the 
plane wave state at t=0. 

10 V. M. Galitskii and A. B. Migdal, Soviet Phys.—TETP 7, 
96 (1958). 
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For a noninteracting Bose gas, G- is identically zero. 
The pole in G+ lies on the real axis and gives the spec
trum e (p) = p2. When the interaction is turned on, the 
extent to which this pole moves off the real axis depends 
upon the extent to which a J \ ipoN) is no longer an exact 
eigenstate of the iV+1 particle system. It is this pole 
to which perturbation based calculations direct their 
attention. In our case we have seen that for large p at 
least, ap

f\\f/QN) approaches an eigenstate [Eq. (2.25)]. 
Unfortunately, we are not in a position to calculate G, 
but if one believes that quasiparticle poles and ele
mentary excitations are similar, than our e±{p) curve 
must be connected with this pole in G+. 

From whence arises our second spectrum, ^(p)? We 
believe it is connected with GL. The negative time part 
of the propagator must also have singularities, but since 
it vanishes for zero interaction it would be very dim-
cult indeed for perturbation theory to find them. If 
<j)p—av\\poN+1) were an exact eigenstate of the iV-particle 
problem, G_- would have a pole on the real axis. For the 
noninteracting case <£P=0, but if we look at our type II 
wave functions it will be seen that to a rough approxima
tion they are just <j>v. Thus, we are led to the view that 
our type II spectrum corresponds to a quasiparticle pole 
of the negative time part of the one body propagator. 

We do not propose to elucidate here the connection 
between elementary excitations and quasiparticles—we 
merely point out that these two types of objects can 
be defined. Neither will we attempt to evaluate G. But 
the above discussion is pertinent to the outstanding 
question of whether our double excitation spectrum has 
any relevance in three dimensions. 

It is to be noted, first of all, that all the quantities we 
have calculated are smoothly dependent on 7 and 
behave just as one intuitively expects them to behave 
in any number of dimensions. Although we have fre
quently called attention to the analogy of this gas with 
a Fermi system, and although this Fermi gas analogy 
clearly breaks down in three dimensions, it should not be 
supposed that the double spectrum result is a conse
quence of one dimension forcing the Bose system to 
look like a Fermi system. While it may be argued that 
the salient difference between one and three dimensions 
is that in three dimensions particles can "get around 
each other," the true state of affairs is expressed by the 
functions v(y) and t(y) plotted in Fig. 1 of I. As we have 
already mentioned, the fact that the potential is effec
tively a kinetic energy barrier for large y, a result that 
also holds in three dimensions, means that it is really 
immaterial to the particles whether they can "get 
around each other" or merely "through each other." 

Thus, there appears to be no truly basic physical (as 
distinguished from mathematical) distinction between 
our gas and a similar gas in three dimensions. It is quite 
possible, therefore, that a double (or perhaps more fold) 
spectrum exists in three dimensions. Another possibility 
is^that in three dimensions the double spectrum does 
not exist for small potentials, but makes its appearance 

when the potential becomes sufficiently strong. In the 
theory of a lattice of coupled harmonic oscillators,11 

for example, it is known that one imperfect light mass 
may cause an isolated energy level to appear above the 
perfect lattice band. In one dimension this always 
happens; in three dimensions it occurs only if the im
perfect mass is sufficiently small. If this second possi
bility—the onset of a double spectrum for large poten
tials—were to occur, then clearly perturbation theory 
would be hard pressed to predict it. 

We turn finally to an argument based on the previous 
considerations of this section. For the very same reasons 
that it is believed that the positive time part of the 
propagator has a pole near the real axis, the negative 
time part too may be presumed to have a similar pole. 
For what reason is this pole any less "elementary" 
than its counterpart in the positive time part of the 
propagator? 
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APPENDIX: THE EXCITATION SPECTRUM AT LOW 
MOMENTUM AND THE VELOCITY OF SOUND 

We justify here the claims made in Sec. II about the 
excitation spectrum of type I (a similar analysis applies 
to type II). We want to show the absence of a gap 
and the equivalence of the two definitions of vs, Eqs. 
(1.1) and (1.4). 

We first transform Eq. (2.18) to dimensionless form 
by defining 

k=Kx; J(Kx) = j(x); q=Ks; c=KX; (Al) 

where s>l. Expanding the inhomogeneous term in 
Eq. (2.18)Jor s~ l , we obtain 

2irj{%) = 2\ 

We write 

and define 

j{y)dy / l — x\ 
— 7r+2 tan-

-i\*+(x-yf i~) 
- (* - ! ) -

2X 
(A2) 

X2+(l-x)2 

j(x,s) = j0(x)+ (s- l)j'i(x), (A3) 

2<t>i(x) = j0(x)+jo(-x), (A4) 

2<t>2(x) = Jo'(x)+ja'(-x), (A5) 

2<t>g(x) = ji(x)+ji(-x), (A6) 

2Mx) = ji(x)-j1(-x), (A7) 
11 A. Maradudin, P. Mazur, E. Montroll, and G. Weiss, Rev. 

Mod. Phys. 30, 175 (1958). 
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where "prime'' means differentiation with respect to x. and 
We easily obtain the equations —g'(x,X). (A17) 

l - * \ 2g(l,X) 
27rtfi(a:,X)= / Ker^i-x+tan-if J 

Equation (A8) may be solved by inspection, i.e., 

/l+x\ *i(«,X)=-J. (A18) 
+ t a n - 1 ( — - ) , (A8) 

\ X / Comparison of Eqs. (A9) and (A10), together with the 
observation that 

2Tr<t>2(x,\)= / Ker02-X 1 ri 
J Lx2H-(l—x)2 X2+(1+«)2J / , «to*,(*>X) = i o ( l ) - i o ( - l ) , (A19) 

X [ l + i o ( D - i o ( - l ) ] , (A9) 
yields the result 

27T03(: (*,X) = J Ker03 $2^X)=-<l>z(x,\)\l+ f dx 4>z(x,\)dxl (A20) 

+X ] (\\Q) Integrating Eq. (A 14) with respect to x and using 
Eq. (A16) we find that 

2*4>i(x,\)= J Kerfa / dx—=—g(l,X) 1 + / dx fo(x,\) \+-, (A21a) 

+XLx2+(l-x)2~x2+(l+^J, J fe^=~xg(1'X)L+/ dxx2<t>z{X}X)\ 
where ,/* Ker means the integral operator appearing in ? x 

Eq. (A2). . . . + - / dxx2g(x,\), (A21b) 
The function g(#,X) introduced in I satisfies X J-± 

, ^ [ , where we have used the definition of \/y given in 
2*g(*)= / Kerg+1, (A12) I ( 3 2 0 ) . 

"\ 1 

while the function _ = / dx g (x,\) = —. (A22) 
/ d x d \ y J-i K 

iWKsW ( M 3 ) Now, since 
satisfies . . T f . . , , ,An\ 

e{y) = — / g(x,k)%dx, (A23) 
r X3J_! 

2irh(x)= / KerA [cf. I Eq. (3.19)], the definition of /z, Eq. (1.5) together 
with Eqs. (A21), is equivalent to 

,X2+(l-#)2 X2+(l+#)2 
-2g(l,\)\ + 1. (A14) 

Lx2+(i-#)2 x2+(i+#)2J 
fjL=K2[l+f dx<j>z(x)xA/ 

r \l+[ dxfo(x)\ (A24) 
'= / Kerg' L J_i J 

A simple manipulation of Eq. (A 12) shows that the 
function g'= dg/dx satisfies 

2n' 

In terms of the functions <£i to 04, Eq. (2.19) for the 
I. (A15J w 

_X2+(1-*)2 X2+(l+x)2 t l I n In terms of the functions <j>i to 04, 1 
: : : r - (A15) momentum takes the form (for s~V) 

X2+ (1 — xf X2+ (l+x)2J 

Comparing Eqs. (A10) and (All) with Eqs. (A14) p ^ ^ ^ f dxfaix)] 
Ld (A15) we find that L J_i J 

*8(*,X) = A(*,X), (A16) +K(s-l)\l+[ dxfrix)]. (A25) 
2*(1,X) L 7_x J 
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The expression for ei, Eq. (2.20), takes the form 
( f o r s ^ l ) 

€i=-ii+K*+K*f dx<j>2{x)(\-x>) 

+2K*(s-l)\l+ f dxxfa(x)\ (A26) 

Inserting Eqs. (A18), (A20), and (A24) into Eqs. 
(A25) and (A26) we find that 

H . L I E B 

auxiliary function 
/ d x d \ 

m (x,\) = I 1 W>3 (x,\) • 
\d\ X dxJ 

(A32) 

In analogy with Eqs. (A 13) and (A 14), this function 
satisfies 

lims_>i p=0; lims_>i € i=0 ; (A27) 

2wm(x,'K) 

= / , K e i w - [ H - 2 0 , ( l , X ) J 

J Lx2+(i 
i—1 
(1+#)2J 

thereby proving the assertion that there is no energy 
gap and that the lower end of the spectrum is in 
f a c t £ = 0 . 

Inserting Eqs. (A17) and (A22) into Eq. (A26), we 
find that for small s (i.e., small p) 

+2 f: 
1 —X 

+ ( l - x ) 2 X 2 + ( l + x ) 2 

1+x 
' (A33) 

xYJA 

ti(P)=P\g(i,V •L 1 + / dx<j>z(x) 

L[X 2 +(1 -* ) 2 ] 2 [ X 2 + ( l + 

On the other hand, as we see from Eq. (A15), the func
tion g"=d2g/dx2 satisfies 

p. (A28) 

By Eq. (1.1), the velocity of sound, v8, is, therefore, the 
factor { }-1p in Eq. (A28). I t is always positive since fo 
is positive. An alternative expression for vs can be 
obtained from Eq. (A21a), viz., 

2 r l r1 d -l 
vs=-\ — / dx—g(x,\) L (A29) 

XL7 J _ I dX J 

In I we showed that for X small, g(x,\)~ (1/2T\) 
{l-x2)1'2 and 4X2 = 7. Substituting this into Eq. (A29) 
we obtain 

z>s~2T
l/2p, (small 7), (A30) 

thereby confirming Bogoliubov's result, Eq. (1.6). 
The last step is to confirm that Eqs. (1.4) and 

(A29) agree. We must calculate d^i/dy — (d\/dy) (dfi/dX). 
The factor dk/dy can be obtained from Eq. (A22) and 
(A21a), viz., 

dX 1X2( r r1 - i ] " 1 

— = ~ U ( U ) [ l + / ^ s M j j • (A31) 

To obtain dfx/d\ from Eq. (A24) the essential point is 
to evaluate (d/dX)03(x,X). To this end we define the 

2 - 8 " = / Kerg-2Xg'(l,X) 
L x 2 + ( l - t f ) 2 X 2 + ( l + x ) 2 J 

-4X^(1 ,4-
X 2 + ( l - * ) 2 X 2 + ( l + x ) 2 

1 — x \-\-x 
2 ]2J' 

(A34) .[x2+(i-x)2]2 [x2+(i+x)2: 
Comparing Eqs. (A10), (A33), and (A34) we find that 

1 
m(x,\) = 

2X£(1,X)' 

l r 

XL 

*"(*,X) 

1+208(1,X)4 
S(1,A)-

m(xy\). (A35) 

In analogy with Eqs. (A21), dfx/d\ may be written 
in terms of m(xi\) which in turn may be written in 
terms of <£3, g, g', and g" by using Eq. (A35). We shall 
not carry out the tedious manipulation here, but one 
eventually finds that Eq. (1.4) reduces to Eq. (A29). 

An alternative expression for vs may be obtained by 
comparing Eqs. (A22), (A28), and (A31). One easily 
finds that 

73 d\ dK 
vs = 2p =2K~2y—. (A36) 

X3 dy dy 
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